SlideShare a Scribd company logo
PSpiceを活用した太陽光システムシミュレーション
株式会社ビー・テクノロジー
http://www.bee-tech.com/
horigome@bee-tech.com
1
Copyright (C) Bee Technologies Inc. 2010
Designer
EDA
Device
Model
Technology
of
Simulation
2
Copyright (C) Bee Technologies Inc. 2010
回路解析シミュレータ
PSpice (ABMライブラリーが豊富)
デザインキット
回路方式のテンプレート
モデル
3
Copyright (C) Bee Technologies Inc. 2010
ABM=Analog Behavior Model
スパイス・パーク http://www.spicepark.com/
55種類のデバイス、3,316モデル(2010年6月30日現在)をご提供中。
現在、グローバル版スパイス・パークを準備中。
4
Copyright (C) Bee Technologies Inc. 2010
バッテリーのスパイスモデルの推移
放電特性
付加抵抗
一定
放電特性
付加抵抗
可変
充電特性
+
放電特性
5
Copyright (C) Bee Technologies Inc. 2010
リチウムイオン電池
ニッケル水素電池
鉛蓄電池
6
Copyright (C) Bee Technologies Inc. 2010
リチウムイオン電池の充放電特性シミュレーションのセミナー及びデモは、
2010年7月28日(水曜日)東京
2010年7月29日(木曜日)大阪 で開催致します。info@bee-tech.comまでお問い合わせ下さい。
PV Li-Ion Battery System
Design Kit
7
Copyright (C) Bee Technologies Inc. 2010
BAYSUN’s Lithium-Ion Batteries Pack : Power Battery Plus (PBT-BAT-0001)
• Capacity............................65[Wh], 4400[mAh] (Approximately)
• Rated Current....................3[A]
• Input Voltage.......................20.5 [Vdc]
• Output Voltage....................12.8 ~ 16.4 [Vdc] ( 4 cells )
• Charging time......................5[hours] (Approximately)
1.1 Lithium-Ion Batteries Pack Specification
8
Copyright (C) Bee Technologies Inc. 2010
1.2 Discharge Time Characteristics
0.2C ( 880 mA )
0.5C ( 2200 mA )
1C ( 4400 mA )
Batteries Pack Model Parameters
NS (number of batteries in series) = 4 cells
C (capacity) = 4400 mA
SOC1 (initial state of charge) = 100%
TSCALE (time scale) , simulation : real time
1 : 3600s or
1s : 1h
Discharge Rate : 0.2C(880mA), 0.5C(2200mA), and 1C(4400mA)
0
Hi
0
DMOD
D1
Voch
16.8Vdc
0
+ -
U1
PBT-BAT-0001
TSCALE = 3600
SOC1 = 100
C1
1n
0
IN-
OUT+
OUT-
IN+
G1
limit(V(%IN+, %IN-)/0.01, 0, rate*CAh )
GVALUE
PARAMETERS:
rate = 1
CAh = 4400m
Time
0s 1.0s 2.0s 3.0s 4.0s 5.0s 6.0s
V(Hi)
8V
10V
12V
14V
16V
18V
TSCALE=3600 means
time Scale (Simulation
time : Real time) is
1:3600
9
Copyright (C) Bee Technologies Inc. 2010
1.3 Single Cell Discharge Characteristics
• Single cell discharge characteristics are compared between measurement data and simulation data.
Measurement Simulation
2.00
2.50
3.00
3.50
4.00
4.50
-10
0
10
20
30
40
50
60
70
80
90
100
VOLTAGE
[V]
SOC [%]
0.2C ( 880mA )
0.5C ( 2200mA )
1.0C ( 4400mA )
Single cell
10
Copyright (C) Bee Technologies Inc. 2010
1.4 Charge Time Characteristics
SOC [%]
Vbatt [V] ICharge [A]
Batteries Pack Model Parameters
NS (number of batteries in series) = 4 cells
C (capacity) = 4400 mA
SOC1 (initial state of charge) = 100%
TSCALE (time scale) , simulation : real time
1 : 3600s or
1s : 1h
Charger Adaptor
Input Voltage = 20.5 Vdc
Input Current = 880 mA(max.)
IN-
OUT+
OUT-
IN+
G1
Limit(V(%IN+, %IN-)/0.1, 0, rate*CAh )
GVALUE
DMOD
D1
Voch
16.8Vdc
0
0
+ -
U1
PBT-BAT-0001
TSCALE = 3600
SOC1 = 0
Vin
20.5Vdc
0
Hi
0
C1
1n
PARAMETERS:
rate = 0.2
CAh = 4400m
Time
0s 1.0s 2.0s 3.0s 4.0s 5.0s 6.0s 7.0s
1 V(Hi) 2 I(U1:PLUS)
8V
10V
12V
14V
16V
18V
1
0A
1.0A
2.0A
3.0A
4.0A
5.0A
2
>>
V(X_U1.SOC)
0V
20V
40V
60V
80V
100V
SEL>>
11
Copyright (C) Bee Technologies Inc. 2010
BP Solar’s photovoltaic module : SX330
• Maximum power (Pmax)..............30[W]
• Voltage at Pmax (Vmp).............16.8[V]
• Current at Pmax (Imp)...............1.78[A]
• Short-circuit current (Isc)...........1.94[A]
• Open-circuit voltage(Voc)...........21.0[V]
2.1 Solar Cells Specification
502mm
595mm
12
Copyright (C) Bee Technologies Inc. 2010
2.2 Output Characteristics vs. Incident Solar Radiation
SX330
+
U1
SX330
SOL = 1
Parameter, SOL is added as
normalized incident radiation,
where SOL=1 for AM1.5 conditions
V_V1
0V 5V 10V 15V 20V 25V 30V
I(Isence)* V(V1:+)
0W
10W
20W
30W
40W
SEL>>
I(Isence)
0A
0.5A
1.0A
1.5A
2.0A
2.5A
SOL=1
SOL=0.5
SOL=0.16
SOL=1
SOL=0.5
SOL=0.16
Current
(A)
Power
(W)
Voltage (V)
SX330 Output Characteristics vs. Incident Solar Radiation
13
Copyright (C) Bee Technologies Inc. 2010
3. Solar Cell Battery Charger
• Solar Cell charges the Li-ion batteries pack (PBT-BAT-001) with direct connect technique.
Choose the solar cell that is able to provide current at charging rate or more with the
maximum power voltage (Vmp) nears the batteries pack charging voltage.
• PBT-BAT-0001 (Li-ion batteries pack)
– Charging time is approximately 5 hours with charging rate 0.2C or 880mA
– Voltage during charging with 0.2C is between 14.7 to 16.9 V
Time
0s 1.0s 2.0s 3.0s 4.0s 5.0s 6.0s 7.0s
1 V(Hi) 2 I(U1:PLUS)
8V
10V
12V
14V
16V
18V
1
0A
1.0A
2.0A
3.0A
4.0A
5.0A
2
SEL>>
SEL>>
V(X_U1.SOC)
0V
20V
40V
60V
80V
100V
14.7 V
14.9 V
0.2C or 880mA
14
Copyright (C) Bee Technologies Inc. 2010
3.1 Concept of Simulation PV Li-Ion Battery Charger Circuit
Lithium-Ion
Batteries Pack
Photovoltaic
Module
Over Voltage Protection
Circuit
16.8V Clamp Circuit
PBT-BAT-0001 (BAYSUN)
DC12.8~16.4V (4 cells)
4400mAh
SX 330 (BP Solar)
Vmp=16.8V
Pmax=30W
Short circuit current ISC
depends on condition: SOL
15
Copyright (C) Bee Technologies Inc. 2010
3.2 PV Li-Ion Battery Charger Circuit
• Input value between 0-1 in the “PARAMETERS: sol = ” to set the normalized incident
radiation, where SOL=1 for AM1.5 conditions.
DMOD
D1
Voch
16.8Vdc
0
0
Hi
0
C1
1n
PARAMETERS:
sol = 1
SX330
+
U2
SX330
SOL = {sol}
0
pv
+ -
U1
PBT-BAT-0001
TSCALE = 3600
SOC1 = 0
16
Copyright (C) Bee Technologies Inc. 2010
Time
0s 1s 2s 3s 4s 5s 6s 7s 8s 9s 10s
V(X_U1.SOC)
0V
20V
40V
60V
80V
100V
3.3 Charging Time Characteristics vs. Weather Condition
• Simulation result shows the charging time for sol = 1, 0.5, and 0.16.
sol = 1.00
sol = 0.50
sol = 0.16
17
Copyright (C) Bee Technologies Inc. 2010
3.4 Concept of Simulation PV Li-Ion Battery Charger Circuit
+ Constant Current
Lithium-Ion
Batteries Pack
Photovoltaic
Module
Over Voltage Protection
Circuit
16.8V Clamp Circuit
PBT-BAT-0001 (BAYSUN)
DC12.8~16.4V (4 cells)
4400mAh
SX 330 (BP Solar)
Vmp=16.8V
Pmax=30W
Constant
Current
Control
Circuit
Icharge=0.2C (880mA)
Short circuit current ISC
depends on condition: SOL
18
Copyright (C) Bee Technologies Inc. 2010
3.5 Constant Current PV Li-Ion Battery Charger Circuit
• Input the battery capacity (Ah) and charging current rate (e.g. 0.2*CAh) in the
• “PARAMETERS: CAh = 4400m and rate = 0.2 ” to set the charging current.
DMOD
D1
Voch
16.8Vdc
0
0
Hi
0
C1
1n
PARAMETERS:
sol = 1
SX330
+
U2
SX330
SOL = {sol}
0
pv
PARAMETERS:
rate = 0.2
CAh = 4400m
IN-
OUT+
OUT-
IN+
G1
Limit(V(%IN+, %IN-)/0.1, 0, rate*CAh)
GVALUE
+ -
U1
PBT-BAT-0001
TSCALE = 3600
SOC1 = 0
19
Copyright (C) Bee Technologies Inc. 2010
Time
0s 1s 2s 3s 4s 5s 6s 7s 8s 9s 10s
V(X_U1.SOC)
0V
20V
40V
60V
80V
100V
3.6 Charging Time Characteristics vs. Weather Condition
(Constant Current)
• Simulation result shows the charging time for sol = 1, 0.5, and 0.16. If PV can generate
current more than the constant charge rate (0.2A), battery can be fully charged in about 5
hour.
sol = 1.00
sol = 0.50
sol = 0.16
20
Copyright (C) Bee Technologies Inc. 2010
4.1 Concept of Simulation PV Li-Ion Battery System in 24hr.
Lithium-Ion
Batteries Pack
Photovoltaic
Module
Over Voltage Protection
Circuit
16.8V Clamp Circuit
PBT-BAT-0001 (BAYSUN)
DC12.8~16.4V (4 cells)
4400mAh
SX 330 (BP Solar)
Vmp=16.8V
Pmax=30W
DC/DC
Converter
Vopen= (V)
Vclose= (V)
The model contains 24hr.
solar power data (example).
DC Load
VIN=10~18V
VOUT=5V
VIN = 5V
IIN = 1.5A
Low-Voltage
Shutdown
Circuit
21
Copyright (C) Bee Technologies Inc. 2010
4.2 Short-Circuit Current vs. Time (24hr.)
• Short-circuit current vs. time characteristics of photovoltaic module SX330 for 24hours as the
solar power profile (example) is included to the model.
Time
0s 4s 8s 12s 16s 20s 24s
I(X_U1.I_I1)
0A
0.4A
0.8A
1.2A
1.6A
2.0A
SX330
+
U2
SX330_24H_TS3600
The model contains
24hr. solar power data
(example).
22
Copyright (C) Bee Technologies Inc. 2010
4.3 PV-Battery System Simulation Circuit
Ronof f 1
100
dchth
Low-Voltage Shutdown Circuit
DC/DC Converter
DMOD
D1
Voch
16.8Vdc
0
0
batt
0
C1
100n
IC = 16.4
0
pv
+ -
U1
PBT-BAT-0001
TSCALE = 3600
SOC1 = 70
SX330
+
U2
SX330_24H_TS3600
batt1
C3
10n
+
-
+
-
S2
S
VON = 0.7
VOFF = 0.3
ROFF = 10MEG
RON = 0.01
0
0
IN+
IN-
OUT+
OUT-
ecal_Iomax
n*V(%IN+, %IN-)*I(IN)/5
EVALUE
Iomax
0
IN+
IN-
OUT+
OUT-
E2
IF( V(lctrl) > 0.25 ,Lopen ,Lclose)
EVALUE
0
PARAMETERS:
Lopen = 14
Lclose = 15.2
IN+
IN-
OUT+
OUT-
E1
IF(V(batt1)>V(dchth),5,0)
EVALUE
Ronof f
100
Conof f
1n
IC = 5
Lctrl
PARAMETERS:
n = 1
I1
1.5Adc
0
OUT
IN+
IN-
OUT+
OUT-
E3
IF( I(OUT)-V(Iomax) > 0 ,n*V(%IN+, %IN-)*I(IN)/(I(OUT)+1u), 5 )
EVALUE
out_dc
DMOD
D2
Conof f 1
100n
IN-
OUT+
OUT-
IN+
G1
Limit( V(%IN+, %IN-)/0.1, 1m, 5*I(out)/(n*limit(V(%IN+, %IN-),10,25)) )
GVALUE
IN
Solar cell model with
24hr. solar power
data.
Lopen value is load
shutdown voltage.
Lclose value is load
reconnect voltage
Set initial battery
voltage, IC=16.4, for
convergence aid.
SOC1 value is initial
State Of Charge of the
battery, is set as 70%
of full voltage.
7.5W Load
(5Vx1.5A).
 Simulation at 15W load, change I1 from 1.5A to 3A
23
Copyright (C) Bee Technologies Inc. 2010
DCDCコンバータの簡易モデル
DCACコンバータの簡易モデルもあります。
Time
0s 4s 8s 12s 16s 20s 24s
1 V(out_dc) 2 I(IN)
0V
2.5V
5.0V
7.5V
1
400mA
500mA
600mA
2
SEL>>
SEL>>
V(X_U1.SOC)
0V
25V
50V
75V
100V
1 V(batt) 2 I(U1:PLUS)
12.5V
15.0V
17.5V
1
>>
-2.0A
0A
2.0A
2
I(pv)
0A
1.0A
4.3.1 Simulation Result (SOC1=100)
• C1: IC=16.4
• Run to time: 24s (24hours in real world)
• Step size: 0.01s
PV generated current
Battery current
Battery voltage
Battery SOC
DC/DC input current
DC output voltage
• .Options ITL4=1000
SOC1=100 Fully charged,
stop charging
Battery supplies current when solar
power drops.
PV module charge the battery
Charging
time
24
Copyright (C) Bee Technologies Inc. 2010
Time
0s 4s 8s 12s 16s 20s 24s
1 V(out_dc) 2 I(IN)
0V
2.5V
5.0V
7.5V
1
0A
0.5A
1.0A
2
>>
V(X_U1.SOC)
0V
25V
50V
75V
100V
10.152m,69.889)
1 V(batt) 2 I(U1:PLUS)
12.5V
15.0V
17.5V
1
-2.0A
0A
2.0A
2
SEL>>
SEL>>
(7.6750,15.199)
(5.1850,14.000)
I(pv)
0A
1.0A
4.3.2 Simulation Result (SOC1=70)
• C1: IC=16.4
• Run to time: 24s (24hours in real world)
• Step size: 0.01s
• SKIPBP
PV generated current
Battery current
Battery voltage
Battery SOC
DC/DC input current
DC output voltage
• .Options ITL4=1000
SOC1=70
V=Lopen
V=Lclose
Shutdown
Reconnect
Fully charged,
stop charging
Battery supplies current when solar
power drops.
PV module charge the battery
Charging
time
25
Copyright (C) Bee Technologies Inc. 2010
Time
0s 4s 8s 12s 16s 20s 24s
1 V(out_dc) 2 I(IN)
0V
2.5V
5.0V
7.5V
1
0A
0.5A
1.0A
2
>>
V(X_U1.SOC)
0V
100V
SEL>>
(12.800m,29.854)
1 V(batt) 2 I(U1:PLUS)
12.5V
15.0V
17.5V
1
-2.0A
0A
2.0A
2
>> (1.6328,14.004)
(7.6150,15.193)
I(pv)
0A
1.0A
4.3.3 Simulation Result (SOC1=30)
• C1: IC=15
• Run to time: 24s (24hours in real world)
• Step size: 0.01s
• Total job time = 2s
PV generated current
Battery current
Battery voltage
Battery SOC
DC/DC input current
DC output voltage
• .Options ITL4=1000
SOC1=30
V=Lopen
V=Lclose
Shutdown
Reconnect
Fully charged,
stop charging
Battery supplies current when solar
power drops.
PV module charge the battery
Charging time
26
Copyright (C) Bee Technologies Inc. 2010
Time
0s 4s 8s 12s 16s 20s 24s
1 V(out_dc) 2 I(IN)
0V
2.5V
5.0V
7.5V
1
0A
0.5A
1.0A
2
>>
V(X_U1.SOC)
0V
100V
1 V(batt) 2 I(U1:PLUS)
12.5V
15.0V
17.5V
1
-2.0A
0A
2.0A
2
SEL>>
SEL>>
(7.6163,15.200)
I(pv)
0A
1.0A
4.3.4 Simulation Result (SOC1=10)
• C1: IC=14.4
• Run to time: 24s (24hours in real world)
• Step size: 0.01s
• SKIPBP
PV generated current
Battery current
Battery voltage
Battery SOC
DC/DC input current
DC output voltage
• .Options RELTOL=0.01
• .Options ITL4=1000
SOC1=10
V=Lclose
Shutdown
Reconnect
Fully charged,
stop charging
Battery supplies current when solar
power drops.
PV module charge the battery
Charging time
27
Copyright (C) Bee Technologies Inc. 2010
Time
0s 4s 8s 12s 16s 20s 24s
1 V(out_dc) 2 I(IN)
0V
2.5V
5.0V
7.5V
1
0A
1.0A
2.0A
2
>>
V(X_U1.SOC)
0V
25V
50V
75V
100V
1 V(batt) 2 I(U1:PLUS)
12.5V
15.0V
17.5V
1
-2.0A
0A
2.0A
2
SEL>>
SEL>>
(20.473,14.003)
(7.6086,15.200)
(3.8973,14.000)
I(pv)
0A
1.0A
4.3.5 Simulation Result (SOC1=100, IL=3A or 15W load)
• C1: IC=16.4
• Run to time: 24s (24hours in real world)
• Step size: 0.001s
PV generated current
Battery current
Battery voltage
Battery SOC
DC/DC input current
DC output voltage
• .Options ITL4=1000
SOC1=100 Fully charged,
stop charging
Battery supplies current when solar
power drops.
PV module charge the battery
Charging
time
V=Lopen
Shutdown
V=Lopen
Shutdown
28
Copyright (C) Bee Technologies Inc. 2010
4.3.4 Simulation Result (Example of Conclusion)
• If initial SOC is 100%,
– this system will never shutdown.
• If initial SOC is 70%,
– this system will shutdown after 5.185 hours (about 5:11AM.).
– system load will reconnect again at 7:40AM (Morning).
• If initial SOC is 30%,
– this system will shutdown after 1.633 hours (about 1:38AM.).
– system load will reconnect again at 7:37AM (Morning).
• If initial SOC is 10%,
– this system will start shutdown.
– this system will reconnect again at 7:37AM (Morning).
• With the PV generated current profile, battery will fully charged in about 4.25
hours.
29
Copyright (C) Bee Technologies Inc. 2010
The simulation start from midnight(time=0).
The system supplies DC load 7.5W.
4.3.4 Simulation Result (Example of Conclusion)
• If initial SOC is 100%,
– this system will shutdown after 3.897 hours (about 3:54AM.).
– system load will reconnect again at 7:37AM (Morning).
– this system will shutdown again at 8:28 PM (Night).
• With the PV generated current profile, battery will fully charged in about
5.5 hours.
30
Copyright (C) Bee Technologies Inc. 2010
The simulation start from midnight(time=0).
The system supplies DC load 15W.
お問合わせ先)
info@bee-tech.com
Bee Technologies Group
【本社】
株式会社ビー・テクノロジー
〒105-0012 東京都港区芝大門二丁目2番7号 7セントラルビル4階
代表電話: 03-5401-3851
設立日:2002年9月10日
資本金:8,830万円
【子会社】
Bee Technologies Corporation (アメリカ)
Siam Bee Technologies Co.,Ltd. (タイランド)
デバイスモデリング
スパイス・パーク(スパイスモデル・ライブラリー)
デザインキット
デバイスモデリング教材
31
Copyright (C) Bee Technologies Inc. 2010
本ドキュメントは予告なき変更をする場合がございます。
ご了承下さい。また、本文中に登場する製品及びサービス
の名称は全て関係各社または個人の各国における商標
または登録商標です。本原稿に関するお問い合わせは、
当社にご連絡下さい。

More Related Content

What's hot

SPICE MODEL of 5GLZ47A , TC=80degree (Professional Model) in SPICE PARK
SPICE MODEL of 5GLZ47A , TC=80degree (Professional Model) in SPICE PARKSPICE MODEL of 5GLZ47A , TC=80degree (Professional Model) in SPICE PARK
SPICE MODEL of 5GLZ47A , TC=80degree (Professional Model) in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of MSE-2000 in SPICE PARK
SPICE MODEL of MSE-2000 in SPICE PARKSPICE MODEL of MSE-2000 in SPICE PARK
SPICE MODEL of MSE-2000 in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of MSE-1500 in SPICE PARK
SPICE MODEL of MSE-1500 in SPICE PARKSPICE MODEL of MSE-1500 in SPICE PARK
SPICE MODEL of MSE-1500 in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of RURD460S , TC=150degree (Professional Model) in SPICE PARK
SPICE MODEL of RURD460S , TC=150degree (Professional Model) in SPICE PARKSPICE MODEL of RURD460S , TC=150degree (Professional Model) in SPICE PARK
SPICE MODEL of RURD460S , TC=150degree (Professional Model) in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of MSE-200 in SPICE PARK
SPICE MODEL of MSE-200 in SPICE PARKSPICE MODEL of MSE-200 in SPICE PARK
SPICE MODEL of MSE-200 in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of RURG3060 , TC=110degree (Professional Model) in SPICE PARK
SPICE MODEL of RURG3060 , TC=110degree (Professional Model) in SPICE PARKSPICE MODEL of RURG3060 , TC=110degree (Professional Model) in SPICE PARK
SPICE MODEL of RURG3060 , TC=110degree (Professional Model) in SPICE PARK
Tsuyoshi Horigome
 
Free SPICE Model of CLH01 in SPICE PARK
Free SPICE Model of CLH01 in SPICE PARKFree SPICE Model of CLH01 in SPICE PARK
Free SPICE Model of CLH01 in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of OSUB3131P , Blue (Standard Model) in SPICE PARK
SPICE MODEL of OSUB3131P , Blue (Standard Model) in SPICE PARKSPICE MODEL of OSUB3131P , Blue (Standard Model) in SPICE PARK
SPICE MODEL of OSUB3131P , Blue (Standard Model) in SPICE PARK
Tsuyoshi Horigome
 
PSpiceによるバッテリー回路アプリケーション
PSpiceによるバッテリー回路アプリケーションPSpiceによるバッテリー回路アプリケーション
PSpiceによるバッテリー回路アプリケーション
Tsuyoshi Horigome
 
SPICE MODEL of OSWT5111A , White ,TA=25degree (Professional Model) in SPICE PARK
SPICE MODEL of OSWT5111A , White ,TA=25degree (Professional Model) in SPICE PARKSPICE MODEL of OSWT5111A , White ,TA=25degree (Professional Model) in SPICE PARK
SPICE MODEL of OSWT5111A , White ,TA=25degree (Professional Model) in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of RURD660S , TC=150degree (Professional Model) in SPICE PARK
SPICE MODEL of RURD660S , TC=150degree (Professional Model) in SPICE PARKSPICE MODEL of RURD660S , TC=150degree (Professional Model) in SPICE PARK
SPICE MODEL of RURD660S , TC=150degree (Professional Model) in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of EC30LA02 (Standard Model) in SPICE PARK
SPICE MODEL of EC30LA02 (Standard Model) in SPICE PARKSPICE MODEL of EC30LA02 (Standard Model) in SPICE PARK
SPICE MODEL of EC30LA02 (Standard Model) in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of OSWT5161A , White ,TA=-20degree (Professional Model) in SPICE ...
SPICE MODEL of OSWT5161A , White ,TA=-20degree (Professional Model) in SPICE ...SPICE MODEL of OSWT5161A , White ,TA=-20degree (Professional Model) in SPICE ...
SPICE MODEL of OSWT5161A , White ,TA=-20degree (Professional Model) in SPICE ...
Tsuyoshi Horigome
 
SPICE MODEL of BP3110 , PSpice Model in SPICE PARK
SPICE MODEL of BP3110 , PSpice Model in SPICE PARKSPICE MODEL of BP3110 , PSpice Model in SPICE PARK
SPICE MODEL of BP3110 , PSpice Model in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of CLH01 (Standard Model) in SPICE PARK
SPICE MODEL of CLH01 (Standard Model) in SPICE PARKSPICE MODEL of CLH01 (Standard Model) in SPICE PARK
SPICE MODEL of CLH01 (Standard Model) in SPICE PARK
Tsuyoshi Horigome
 
Free SPICE Model of 10DL2CZ47A in SPICE PARK
Free SPICE Model of 10DL2CZ47A in SPICE PARKFree SPICE Model of 10DL2CZ47A in SPICE PARK
Free SPICE Model of 10DL2CZ47A in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of CMH05A (Professional Model) in SPICE PARK
SPICE MODEL of CMH05A (Professional Model) in SPICE PARKSPICE MODEL of CMH05A (Professional Model) in SPICE PARK
SPICE MODEL of CMH05A (Professional Model) in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of RURD460S , TC=150degree (Standard Model) in SPICE PARK
SPICE MODEL of RURD460S , TC=150degree (Standard Model) in SPICE PARKSPICE MODEL of RURD460S , TC=150degree (Standard Model) in SPICE PARK
SPICE MODEL of RURD460S , TC=150degree (Standard Model) in SPICE PARK
Tsuyoshi Horigome
 
Free SPICE Model of S2L20U in SPICE PARK
Free SPICE Model of S2L20U in SPICE PARKFree SPICE Model of S2L20U in SPICE PARK
Free SPICE Model of S2L20U in SPICE PARK
Tsuyoshi Horigome
 
Free SPICE Model of U1GC44 in SPICE PARK
Free SPICE Model of U1GC44 in SPICE PARKFree SPICE Model of U1GC44 in SPICE PARK
Free SPICE Model of U1GC44 in SPICE PARK
Tsuyoshi Horigome
 

What's hot (20)

SPICE MODEL of 5GLZ47A , TC=80degree (Professional Model) in SPICE PARK
SPICE MODEL of 5GLZ47A , TC=80degree (Professional Model) in SPICE PARKSPICE MODEL of 5GLZ47A , TC=80degree (Professional Model) in SPICE PARK
SPICE MODEL of 5GLZ47A , TC=80degree (Professional Model) in SPICE PARK
 
SPICE MODEL of MSE-2000 in SPICE PARK
SPICE MODEL of MSE-2000 in SPICE PARKSPICE MODEL of MSE-2000 in SPICE PARK
SPICE MODEL of MSE-2000 in SPICE PARK
 
SPICE MODEL of MSE-1500 in SPICE PARK
SPICE MODEL of MSE-1500 in SPICE PARKSPICE MODEL of MSE-1500 in SPICE PARK
SPICE MODEL of MSE-1500 in SPICE PARK
 
SPICE MODEL of RURD460S , TC=150degree (Professional Model) in SPICE PARK
SPICE MODEL of RURD460S , TC=150degree (Professional Model) in SPICE PARKSPICE MODEL of RURD460S , TC=150degree (Professional Model) in SPICE PARK
SPICE MODEL of RURD460S , TC=150degree (Professional Model) in SPICE PARK
 
SPICE MODEL of MSE-200 in SPICE PARK
SPICE MODEL of MSE-200 in SPICE PARKSPICE MODEL of MSE-200 in SPICE PARK
SPICE MODEL of MSE-200 in SPICE PARK
 
SPICE MODEL of RURG3060 , TC=110degree (Professional Model) in SPICE PARK
SPICE MODEL of RURG3060 , TC=110degree (Professional Model) in SPICE PARKSPICE MODEL of RURG3060 , TC=110degree (Professional Model) in SPICE PARK
SPICE MODEL of RURG3060 , TC=110degree (Professional Model) in SPICE PARK
 
Free SPICE Model of CLH01 in SPICE PARK
Free SPICE Model of CLH01 in SPICE PARKFree SPICE Model of CLH01 in SPICE PARK
Free SPICE Model of CLH01 in SPICE PARK
 
SPICE MODEL of OSUB3131P , Blue (Standard Model) in SPICE PARK
SPICE MODEL of OSUB3131P , Blue (Standard Model) in SPICE PARKSPICE MODEL of OSUB3131P , Blue (Standard Model) in SPICE PARK
SPICE MODEL of OSUB3131P , Blue (Standard Model) in SPICE PARK
 
PSpiceによるバッテリー回路アプリケーション
PSpiceによるバッテリー回路アプリケーションPSpiceによるバッテリー回路アプリケーション
PSpiceによるバッテリー回路アプリケーション
 
SPICE MODEL of OSWT5111A , White ,TA=25degree (Professional Model) in SPICE PARK
SPICE MODEL of OSWT5111A , White ,TA=25degree (Professional Model) in SPICE PARKSPICE MODEL of OSWT5111A , White ,TA=25degree (Professional Model) in SPICE PARK
SPICE MODEL of OSWT5111A , White ,TA=25degree (Professional Model) in SPICE PARK
 
SPICE MODEL of RURD660S , TC=150degree (Professional Model) in SPICE PARK
SPICE MODEL of RURD660S , TC=150degree (Professional Model) in SPICE PARKSPICE MODEL of RURD660S , TC=150degree (Professional Model) in SPICE PARK
SPICE MODEL of RURD660S , TC=150degree (Professional Model) in SPICE PARK
 
SPICE MODEL of EC30LA02 (Standard Model) in SPICE PARK
SPICE MODEL of EC30LA02 (Standard Model) in SPICE PARKSPICE MODEL of EC30LA02 (Standard Model) in SPICE PARK
SPICE MODEL of EC30LA02 (Standard Model) in SPICE PARK
 
SPICE MODEL of OSWT5161A , White ,TA=-20degree (Professional Model) in SPICE ...
SPICE MODEL of OSWT5161A , White ,TA=-20degree (Professional Model) in SPICE ...SPICE MODEL of OSWT5161A , White ,TA=-20degree (Professional Model) in SPICE ...
SPICE MODEL of OSWT5161A , White ,TA=-20degree (Professional Model) in SPICE ...
 
SPICE MODEL of BP3110 , PSpice Model in SPICE PARK
SPICE MODEL of BP3110 , PSpice Model in SPICE PARKSPICE MODEL of BP3110 , PSpice Model in SPICE PARK
SPICE MODEL of BP3110 , PSpice Model in SPICE PARK
 
SPICE MODEL of CLH01 (Standard Model) in SPICE PARK
SPICE MODEL of CLH01 (Standard Model) in SPICE PARKSPICE MODEL of CLH01 (Standard Model) in SPICE PARK
SPICE MODEL of CLH01 (Standard Model) in SPICE PARK
 
Free SPICE Model of 10DL2CZ47A in SPICE PARK
Free SPICE Model of 10DL2CZ47A in SPICE PARKFree SPICE Model of 10DL2CZ47A in SPICE PARK
Free SPICE Model of 10DL2CZ47A in SPICE PARK
 
SPICE MODEL of CMH05A (Professional Model) in SPICE PARK
SPICE MODEL of CMH05A (Professional Model) in SPICE PARKSPICE MODEL of CMH05A (Professional Model) in SPICE PARK
SPICE MODEL of CMH05A (Professional Model) in SPICE PARK
 
SPICE MODEL of RURD460S , TC=150degree (Standard Model) in SPICE PARK
SPICE MODEL of RURD460S , TC=150degree (Standard Model) in SPICE PARKSPICE MODEL of RURD460S , TC=150degree (Standard Model) in SPICE PARK
SPICE MODEL of RURD460S , TC=150degree (Standard Model) in SPICE PARK
 
Free SPICE Model of S2L20U in SPICE PARK
Free SPICE Model of S2L20U in SPICE PARKFree SPICE Model of S2L20U in SPICE PARK
Free SPICE Model of S2L20U in SPICE PARK
 
Free SPICE Model of U1GC44 in SPICE PARK
Free SPICE Model of U1GC44 in SPICE PARKFree SPICE Model of U1GC44 in SPICE PARK
Free SPICE Model of U1GC44 in SPICE PARK
 

Similar to PSpiceを活用した太陽光システムシミュレーション

PSpiceを活用した太陽光システムシミュレーション
PSpiceを活用した太陽光システムシミュレーションPSpiceを活用した太陽光システムシミュレーション
PSpiceを活用した太陽光システムシミュレーション
Tsuyoshi Horigome
 
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料
spicepark
 
SPICE Model of TC7USB31WBG
SPICE Model of TC7USB31WBGSPICE Model of TC7USB31WBG
SPICE Model of TC7USB31WBG
Tsuyoshi Horigome
 
SCS110AG Standard Model LTspice Model (Free SPICE Model)
SCS110AG Standard Model LTspice Model (Free SPICE Model)SCS110AG Standard Model LTspice Model (Free SPICE Model)
SCS110AG Standard Model LTspice Model (Free SPICE Model)
Tsuyoshi Horigome
 
Concept of modeling of Lithium ion batteries (v1)
Concept of modeling of Lithium ion batteries (v1)Concept of modeling of Lithium ion batteries (v1)
Concept of modeling of Lithium ion batteries (v1)
Tsuyoshi Horigome
 
SPICE Model of TC7USB31FK
SPICE Model of TC7USB31FKSPICE Model of TC7USB31FK
SPICE Model of TC7USB31FK
Tsuyoshi Horigome
 
D1113 hitachi ignition
D1113 hitachi  ignitionD1113 hitachi  ignition
D1113 hitachi ignition
Hugo Nelson Parra
 
TPC8203 PSpice Model (TOSHIBA)
TPC8203 PSpice Model (TOSHIBA)TPC8203 PSpice Model (TOSHIBA)
TPC8203 PSpice Model (TOSHIBA)
Tsuyoshi Horigome
 
SFH6916_08 - Datasheet - VISHAY
SFH6916_08 - Datasheet - VISHAYSFH6916_08 - Datasheet - VISHAY
SFH6916_08 - Datasheet - VISHAY
MarioFarias18
 
Original NPN Transistor KSP10 KSP 10 TO-92 New
Original NPN Transistor KSP10 KSP 10 TO-92 NewOriginal NPN Transistor KSP10 KSP 10 TO-92 New
Original NPN Transistor KSP10 KSP 10 TO-92 New
AUTHELECTRONIC
 
SPICE MODEL of TPC8115 (Standard+BDS Model) in SPICE PARK
SPICE MODEL of TPC8115 (Standard+BDS Model) in SPICE PARKSPICE MODEL of TPC8115 (Standard+BDS Model) in SPICE PARK
SPICE MODEL of TPC8115 (Standard+BDS Model) in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of DF30JC4 , (Professional Model) in SPICE PARK
SPICE MODEL of DF30JC4 , (Professional Model) in SPICE PARKSPICE MODEL of DF30JC4 , (Professional Model) in SPICE PARK
SPICE MODEL of DF30JC4 , (Professional Model) in SPICE PARK
Tsuyoshi Horigome
 
2SK4017 (Professional Model) PSpice Model (Free SPICE Model)
2SK4017 (Professional Model) PSpice Model (Free SPICE Model)2SK4017 (Professional Model) PSpice Model (Free SPICE Model)
2SK4017 (Professional Model) PSpice Model (Free SPICE Model)
Tsuyoshi Horigome
 
SPICE MODEL of KD320GX-LFB , PSpice Model in SPICE PARK
SPICE MODEL of KD320GX-LFB , PSpice Model in SPICE PARKSPICE MODEL of KD320GX-LFB , PSpice Model in SPICE PARK
SPICE MODEL of KD320GX-LFB , PSpice Model in SPICE PARK
Tsuyoshi Horigome
 
Original transistor NPN MJE243 MJE243G JE243G TO 225 New
Original transistor NPN MJE243 MJE243G JE243G TO 225 NewOriginal transistor NPN MJE243 MJE243G JE243G TO 225 New
Original transistor NPN MJE243 MJE243G JE243G TO 225 New
authelectroniccom
 
Original transistor PNP MJE253 MJE253G JE253G 253G TO 225 New
Original transistor PNP MJE253 MJE253G JE253G 253G TO 225 NewOriginal transistor PNP MJE253 MJE253G JE253G 253G TO 225 New
Original transistor PNP MJE253 MJE253G JE253G 253G TO 225 New
AUTHELECTRONIC
 
SPICE MODEL of TPCA8059-H (Professional+BDP Model) in SPICE PARK
SPICE MODEL of TPCA8059-H (Professional+BDP Model) in SPICE PARKSPICE MODEL of TPCA8059-H (Professional+BDP Model) in SPICE PARK
SPICE MODEL of TPCA8059-H (Professional+BDP Model) in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of TPCA8063-H (Professional+BDP Model) in SPICE PARK
SPICE MODEL of TPCA8063-H (Professional+BDP Model) in SPICE PARKSPICE MODEL of TPCA8063-H (Professional+BDP Model) in SPICE PARK
SPICE MODEL of TPCA8063-H (Professional+BDP Model) in SPICE PARK
Tsuyoshi Horigome
 
SSM3K15AMFV (professional Model) PSpice Model (Free SPICE Model)
SSM3K15AMFV (professional Model) PSpice Model (Free SPICE Model)SSM3K15AMFV (professional Model) PSpice Model (Free SPICE Model)
SSM3K15AMFV (professional Model) PSpice Model (Free SPICE Model)
Tsuyoshi Horigome
 
SSM3K15FS (Standard Model) PSpice Model (Free SPICE Model)
SSM3K15FS (Standard Model) PSpice Model (Free SPICE Model)SSM3K15FS (Standard Model) PSpice Model (Free SPICE Model)
SSM3K15FS (Standard Model) PSpice Model (Free SPICE Model)
Tsuyoshi Horigome
 

Similar to PSpiceを活用した太陽光システムシミュレーション (20)

PSpiceを活用した太陽光システムシミュレーション
PSpiceを活用した太陽光システムシミュレーションPSpiceを活用した太陽光システムシミュレーション
PSpiceを活用した太陽光システムシミュレーション
 
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料
 
SPICE Model of TC7USB31WBG
SPICE Model of TC7USB31WBGSPICE Model of TC7USB31WBG
SPICE Model of TC7USB31WBG
 
SCS110AG Standard Model LTspice Model (Free SPICE Model)
SCS110AG Standard Model LTspice Model (Free SPICE Model)SCS110AG Standard Model LTspice Model (Free SPICE Model)
SCS110AG Standard Model LTspice Model (Free SPICE Model)
 
Concept of modeling of Lithium ion batteries (v1)
Concept of modeling of Lithium ion batteries (v1)Concept of modeling of Lithium ion batteries (v1)
Concept of modeling of Lithium ion batteries (v1)
 
SPICE Model of TC7USB31FK
SPICE Model of TC7USB31FKSPICE Model of TC7USB31FK
SPICE Model of TC7USB31FK
 
D1113 hitachi ignition
D1113 hitachi  ignitionD1113 hitachi  ignition
D1113 hitachi ignition
 
TPC8203 PSpice Model (TOSHIBA)
TPC8203 PSpice Model (TOSHIBA)TPC8203 PSpice Model (TOSHIBA)
TPC8203 PSpice Model (TOSHIBA)
 
SFH6916_08 - Datasheet - VISHAY
SFH6916_08 - Datasheet - VISHAYSFH6916_08 - Datasheet - VISHAY
SFH6916_08 - Datasheet - VISHAY
 
Original NPN Transistor KSP10 KSP 10 TO-92 New
Original NPN Transistor KSP10 KSP 10 TO-92 NewOriginal NPN Transistor KSP10 KSP 10 TO-92 New
Original NPN Transistor KSP10 KSP 10 TO-92 New
 
SPICE MODEL of TPC8115 (Standard+BDS Model) in SPICE PARK
SPICE MODEL of TPC8115 (Standard+BDS Model) in SPICE PARKSPICE MODEL of TPC8115 (Standard+BDS Model) in SPICE PARK
SPICE MODEL of TPC8115 (Standard+BDS Model) in SPICE PARK
 
SPICE MODEL of DF30JC4 , (Professional Model) in SPICE PARK
SPICE MODEL of DF30JC4 , (Professional Model) in SPICE PARKSPICE MODEL of DF30JC4 , (Professional Model) in SPICE PARK
SPICE MODEL of DF30JC4 , (Professional Model) in SPICE PARK
 
2SK4017 (Professional Model) PSpice Model (Free SPICE Model)
2SK4017 (Professional Model) PSpice Model (Free SPICE Model)2SK4017 (Professional Model) PSpice Model (Free SPICE Model)
2SK4017 (Professional Model) PSpice Model (Free SPICE Model)
 
SPICE MODEL of KD320GX-LFB , PSpice Model in SPICE PARK
SPICE MODEL of KD320GX-LFB , PSpice Model in SPICE PARKSPICE MODEL of KD320GX-LFB , PSpice Model in SPICE PARK
SPICE MODEL of KD320GX-LFB , PSpice Model in SPICE PARK
 
Original transistor NPN MJE243 MJE243G JE243G TO 225 New
Original transistor NPN MJE243 MJE243G JE243G TO 225 NewOriginal transistor NPN MJE243 MJE243G JE243G TO 225 New
Original transistor NPN MJE243 MJE243G JE243G TO 225 New
 
Original transistor PNP MJE253 MJE253G JE253G 253G TO 225 New
Original transistor PNP MJE253 MJE253G JE253G 253G TO 225 NewOriginal transistor PNP MJE253 MJE253G JE253G 253G TO 225 New
Original transistor PNP MJE253 MJE253G JE253G 253G TO 225 New
 
SPICE MODEL of TPCA8059-H (Professional+BDP Model) in SPICE PARK
SPICE MODEL of TPCA8059-H (Professional+BDP Model) in SPICE PARKSPICE MODEL of TPCA8059-H (Professional+BDP Model) in SPICE PARK
SPICE MODEL of TPCA8059-H (Professional+BDP Model) in SPICE PARK
 
SPICE MODEL of TPCA8063-H (Professional+BDP Model) in SPICE PARK
SPICE MODEL of TPCA8063-H (Professional+BDP Model) in SPICE PARKSPICE MODEL of TPCA8063-H (Professional+BDP Model) in SPICE PARK
SPICE MODEL of TPCA8063-H (Professional+BDP Model) in SPICE PARK
 
SSM3K15AMFV (professional Model) PSpice Model (Free SPICE Model)
SSM3K15AMFV (professional Model) PSpice Model (Free SPICE Model)SSM3K15AMFV (professional Model) PSpice Model (Free SPICE Model)
SSM3K15AMFV (professional Model) PSpice Model (Free SPICE Model)
 
SSM3K15FS (Standard Model) PSpice Model (Free SPICE Model)
SSM3K15FS (Standard Model) PSpice Model (Free SPICE Model)SSM3K15FS (Standard Model) PSpice Model (Free SPICE Model)
SSM3K15FS (Standard Model) PSpice Model (Free SPICE Model)
 

More from Tsuyoshi Horigome

KGIとKPIについて(営業の目標設定とKPIの商談プロセス) About KGI and KPI
KGIとKPIについて(営業の目標設定とKPIの商談プロセス) About KGI and KPIKGIとKPIについて(営業の目標設定とKPIの商談プロセス) About KGI and KPI
KGIとKPIについて(営業の目標設定とKPIの商談プロセス) About KGI and KPI
Tsuyoshi Horigome
 
FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
Tsuyoshi Horigome
 
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Tsuyoshi Horigome
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
Tsuyoshi Horigome
 
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Tsuyoshi Horigome
 
SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )
Tsuyoshi Horigome
 
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Tsuyoshi Horigome
 
SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )
Tsuyoshi Horigome
 
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Tsuyoshi Horigome
 
SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )
Tsuyoshi Horigome
 
Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)
Tsuyoshi Horigome
 
Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)
Tsuyoshi Horigome
 
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
Tsuyoshi Horigome
 
PSpice simulation of power supply for TI is Error
PSpice simulation of power supply  for TI is ErrorPSpice simulation of power supply  for TI is Error
PSpice simulation of power supply for TI is Error
Tsuyoshi Horigome
 
IGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintIGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or Rgint
Tsuyoshi Horigome
 
Electronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsElectronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposals
Tsuyoshi Horigome
 
Electronic component sales method focused on new hires
Electronic component sales method focused on new hiresElectronic component sales method focused on new hires
Electronic component sales method focused on new hires
Tsuyoshi Horigome
 
Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)
Tsuyoshi Horigome
 
Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出
Tsuyoshi Horigome
 
伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)
Tsuyoshi Horigome
 

More from Tsuyoshi Horigome (20)

KGIとKPIについて(営業の目標設定とKPIの商談プロセス) About KGI and KPI
KGIとKPIについて(営業の目標設定とKPIの商談プロセス) About KGI and KPIKGIとKPIについて(営業の目標設定とKPIの商談プロセス) About KGI and KPI
KGIとKPIについて(営業の目標設定とKPIの商談プロセス) About KGI and KPI
 
FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
 
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
 
SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )
 
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
 
SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )
 
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
 
SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )
 
Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)
 
Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)
 
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
 
PSpice simulation of power supply for TI is Error
PSpice simulation of power supply  for TI is ErrorPSpice simulation of power supply  for TI is Error
PSpice simulation of power supply for TI is Error
 
IGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintIGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or Rgint
 
Electronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsElectronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposals
 
Electronic component sales method focused on new hires
Electronic component sales method focused on new hiresElectronic component sales method focused on new hires
Electronic component sales method focused on new hires
 
Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)
 
Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出
 
伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)
 

Recently uploaded

CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECTCHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
jpsjournal1
 
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
Yasser Mahgoub
 
Welding Metallurgy Ferrous Materials.pdf
Welding Metallurgy Ferrous Materials.pdfWelding Metallurgy Ferrous Materials.pdf
Welding Metallurgy Ferrous Materials.pdf
AjmalKhan50578
 
Null Bangalore | Pentesters Approach to AWS IAM
Null Bangalore | Pentesters Approach to AWS IAMNull Bangalore | Pentesters Approach to AWS IAM
Null Bangalore | Pentesters Approach to AWS IAM
Divyanshu
 
132/33KV substation case study Presentation
132/33KV substation case study Presentation132/33KV substation case study Presentation
132/33KV substation case study Presentation
kandramariana6
 
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Sinan KOZAK
 
artificial intelligence and data science contents.pptx
artificial intelligence and data science contents.pptxartificial intelligence and data science contents.pptx
artificial intelligence and data science contents.pptx
GauravCar
 
Computational Engineering IITH Presentation
Computational Engineering IITH PresentationComputational Engineering IITH Presentation
Computational Engineering IITH Presentation
co23btech11018
 
Material for memory and display system h
Material for memory and display system hMaterial for memory and display system h
Material for memory and display system h
gowrishankartb2005
 
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
insn4465
 
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.pptUnit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
KrishnaveniKrishnara1
 
john krisinger-the science and history of the alcoholic beverage.pptx
john krisinger-the science and history of the alcoholic beverage.pptxjohn krisinger-the science and history of the alcoholic beverage.pptx
john krisinger-the science and history of the alcoholic beverage.pptx
Madan Karki
 
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
Gino153088
 
ISPM 15 Heat Treated Wood Stamps and why your shipping must have one
ISPM 15 Heat Treated Wood Stamps and why your shipping must have oneISPM 15 Heat Treated Wood Stamps and why your shipping must have one
ISPM 15 Heat Treated Wood Stamps and why your shipping must have one
Las Vegas Warehouse
 
International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...
gerogepatton
 
Engineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdfEngineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdf
abbyasa1014
 
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURSCompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
RamonNovais6
 
Software Engineering and Project Management - Introduction, Modeling Concepts...
Software Engineering and Project Management - Introduction, Modeling Concepts...Software Engineering and Project Management - Introduction, Modeling Concepts...
Software Engineering and Project Management - Introduction, Modeling Concepts...
Prakhyath Rai
 
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
IJECEIAES
 
Hematology Analyzer Machine - Complete Blood Count
Hematology Analyzer Machine - Complete Blood CountHematology Analyzer Machine - Complete Blood Count
Hematology Analyzer Machine - Complete Blood Count
shahdabdulbaset
 

Recently uploaded (20)

CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECTCHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
 
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
 
Welding Metallurgy Ferrous Materials.pdf
Welding Metallurgy Ferrous Materials.pdfWelding Metallurgy Ferrous Materials.pdf
Welding Metallurgy Ferrous Materials.pdf
 
Null Bangalore | Pentesters Approach to AWS IAM
Null Bangalore | Pentesters Approach to AWS IAMNull Bangalore | Pentesters Approach to AWS IAM
Null Bangalore | Pentesters Approach to AWS IAM
 
132/33KV substation case study Presentation
132/33KV substation case study Presentation132/33KV substation case study Presentation
132/33KV substation case study Presentation
 
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
 
artificial intelligence and data science contents.pptx
artificial intelligence and data science contents.pptxartificial intelligence and data science contents.pptx
artificial intelligence and data science contents.pptx
 
Computational Engineering IITH Presentation
Computational Engineering IITH PresentationComputational Engineering IITH Presentation
Computational Engineering IITH Presentation
 
Material for memory and display system h
Material for memory and display system hMaterial for memory and display system h
Material for memory and display system h
 
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
 
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.pptUnit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
 
john krisinger-the science and history of the alcoholic beverage.pptx
john krisinger-the science and history of the alcoholic beverage.pptxjohn krisinger-the science and history of the alcoholic beverage.pptx
john krisinger-the science and history of the alcoholic beverage.pptx
 
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
 
ISPM 15 Heat Treated Wood Stamps and why your shipping must have one
ISPM 15 Heat Treated Wood Stamps and why your shipping must have oneISPM 15 Heat Treated Wood Stamps and why your shipping must have one
ISPM 15 Heat Treated Wood Stamps and why your shipping must have one
 
International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...
 
Engineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdfEngineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdf
 
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURSCompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
 
Software Engineering and Project Management - Introduction, Modeling Concepts...
Software Engineering and Project Management - Introduction, Modeling Concepts...Software Engineering and Project Management - Introduction, Modeling Concepts...
Software Engineering and Project Management - Introduction, Modeling Concepts...
 
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
 
Hematology Analyzer Machine - Complete Blood Count
Hematology Analyzer Machine - Complete Blood CountHematology Analyzer Machine - Complete Blood Count
Hematology Analyzer Machine - Complete Blood Count
 

PSpiceを活用した太陽光システムシミュレーション

  • 6. 6 Copyright (C) Bee Technologies Inc. 2010 リチウムイオン電池の充放電特性シミュレーションのセミナー及びデモは、 2010年7月28日(水曜日)東京 2010年7月29日(木曜日)大阪 で開催致します。info@bee-tech.comまでお問い合わせ下さい。
  • 7. PV Li-Ion Battery System Design Kit 7 Copyright (C) Bee Technologies Inc. 2010
  • 8. BAYSUN’s Lithium-Ion Batteries Pack : Power Battery Plus (PBT-BAT-0001) • Capacity............................65[Wh], 4400[mAh] (Approximately) • Rated Current....................3[A] • Input Voltage.......................20.5 [Vdc] • Output Voltage....................12.8 ~ 16.4 [Vdc] ( 4 cells ) • Charging time......................5[hours] (Approximately) 1.1 Lithium-Ion Batteries Pack Specification 8 Copyright (C) Bee Technologies Inc. 2010
  • 9. 1.2 Discharge Time Characteristics 0.2C ( 880 mA ) 0.5C ( 2200 mA ) 1C ( 4400 mA ) Batteries Pack Model Parameters NS (number of batteries in series) = 4 cells C (capacity) = 4400 mA SOC1 (initial state of charge) = 100% TSCALE (time scale) , simulation : real time 1 : 3600s or 1s : 1h Discharge Rate : 0.2C(880mA), 0.5C(2200mA), and 1C(4400mA) 0 Hi 0 DMOD D1 Voch 16.8Vdc 0 + - U1 PBT-BAT-0001 TSCALE = 3600 SOC1 = 100 C1 1n 0 IN- OUT+ OUT- IN+ G1 limit(V(%IN+, %IN-)/0.01, 0, rate*CAh ) GVALUE PARAMETERS: rate = 1 CAh = 4400m Time 0s 1.0s 2.0s 3.0s 4.0s 5.0s 6.0s V(Hi) 8V 10V 12V 14V 16V 18V TSCALE=3600 means time Scale (Simulation time : Real time) is 1:3600 9 Copyright (C) Bee Technologies Inc. 2010
  • 10. 1.3 Single Cell Discharge Characteristics • Single cell discharge characteristics are compared between measurement data and simulation data. Measurement Simulation 2.00 2.50 3.00 3.50 4.00 4.50 -10 0 10 20 30 40 50 60 70 80 90 100 VOLTAGE [V] SOC [%] 0.2C ( 880mA ) 0.5C ( 2200mA ) 1.0C ( 4400mA ) Single cell 10 Copyright (C) Bee Technologies Inc. 2010
  • 11. 1.4 Charge Time Characteristics SOC [%] Vbatt [V] ICharge [A] Batteries Pack Model Parameters NS (number of batteries in series) = 4 cells C (capacity) = 4400 mA SOC1 (initial state of charge) = 100% TSCALE (time scale) , simulation : real time 1 : 3600s or 1s : 1h Charger Adaptor Input Voltage = 20.5 Vdc Input Current = 880 mA(max.) IN- OUT+ OUT- IN+ G1 Limit(V(%IN+, %IN-)/0.1, 0, rate*CAh ) GVALUE DMOD D1 Voch 16.8Vdc 0 0 + - U1 PBT-BAT-0001 TSCALE = 3600 SOC1 = 0 Vin 20.5Vdc 0 Hi 0 C1 1n PARAMETERS: rate = 0.2 CAh = 4400m Time 0s 1.0s 2.0s 3.0s 4.0s 5.0s 6.0s 7.0s 1 V(Hi) 2 I(U1:PLUS) 8V 10V 12V 14V 16V 18V 1 0A 1.0A 2.0A 3.0A 4.0A 5.0A 2 >> V(X_U1.SOC) 0V 20V 40V 60V 80V 100V SEL>> 11 Copyright (C) Bee Technologies Inc. 2010
  • 12. BP Solar’s photovoltaic module : SX330 • Maximum power (Pmax)..............30[W] • Voltage at Pmax (Vmp).............16.8[V] • Current at Pmax (Imp)...............1.78[A] • Short-circuit current (Isc)...........1.94[A] • Open-circuit voltage(Voc)...........21.0[V] 2.1 Solar Cells Specification 502mm 595mm 12 Copyright (C) Bee Technologies Inc. 2010
  • 13. 2.2 Output Characteristics vs. Incident Solar Radiation SX330 + U1 SX330 SOL = 1 Parameter, SOL is added as normalized incident radiation, where SOL=1 for AM1.5 conditions V_V1 0V 5V 10V 15V 20V 25V 30V I(Isence)* V(V1:+) 0W 10W 20W 30W 40W SEL>> I(Isence) 0A 0.5A 1.0A 1.5A 2.0A 2.5A SOL=1 SOL=0.5 SOL=0.16 SOL=1 SOL=0.5 SOL=0.16 Current (A) Power (W) Voltage (V) SX330 Output Characteristics vs. Incident Solar Radiation 13 Copyright (C) Bee Technologies Inc. 2010
  • 14. 3. Solar Cell Battery Charger • Solar Cell charges the Li-ion batteries pack (PBT-BAT-001) with direct connect technique. Choose the solar cell that is able to provide current at charging rate or more with the maximum power voltage (Vmp) nears the batteries pack charging voltage. • PBT-BAT-0001 (Li-ion batteries pack) – Charging time is approximately 5 hours with charging rate 0.2C or 880mA – Voltage during charging with 0.2C is between 14.7 to 16.9 V Time 0s 1.0s 2.0s 3.0s 4.0s 5.0s 6.0s 7.0s 1 V(Hi) 2 I(U1:PLUS) 8V 10V 12V 14V 16V 18V 1 0A 1.0A 2.0A 3.0A 4.0A 5.0A 2 SEL>> SEL>> V(X_U1.SOC) 0V 20V 40V 60V 80V 100V 14.7 V 14.9 V 0.2C or 880mA 14 Copyright (C) Bee Technologies Inc. 2010
  • 15. 3.1 Concept of Simulation PV Li-Ion Battery Charger Circuit Lithium-Ion Batteries Pack Photovoltaic Module Over Voltage Protection Circuit 16.8V Clamp Circuit PBT-BAT-0001 (BAYSUN) DC12.8~16.4V (4 cells) 4400mAh SX 330 (BP Solar) Vmp=16.8V Pmax=30W Short circuit current ISC depends on condition: SOL 15 Copyright (C) Bee Technologies Inc. 2010
  • 16. 3.2 PV Li-Ion Battery Charger Circuit • Input value between 0-1 in the “PARAMETERS: sol = ” to set the normalized incident radiation, where SOL=1 for AM1.5 conditions. DMOD D1 Voch 16.8Vdc 0 0 Hi 0 C1 1n PARAMETERS: sol = 1 SX330 + U2 SX330 SOL = {sol} 0 pv + - U1 PBT-BAT-0001 TSCALE = 3600 SOC1 = 0 16 Copyright (C) Bee Technologies Inc. 2010
  • 17. Time 0s 1s 2s 3s 4s 5s 6s 7s 8s 9s 10s V(X_U1.SOC) 0V 20V 40V 60V 80V 100V 3.3 Charging Time Characteristics vs. Weather Condition • Simulation result shows the charging time for sol = 1, 0.5, and 0.16. sol = 1.00 sol = 0.50 sol = 0.16 17 Copyright (C) Bee Technologies Inc. 2010
  • 18. 3.4 Concept of Simulation PV Li-Ion Battery Charger Circuit + Constant Current Lithium-Ion Batteries Pack Photovoltaic Module Over Voltage Protection Circuit 16.8V Clamp Circuit PBT-BAT-0001 (BAYSUN) DC12.8~16.4V (4 cells) 4400mAh SX 330 (BP Solar) Vmp=16.8V Pmax=30W Constant Current Control Circuit Icharge=0.2C (880mA) Short circuit current ISC depends on condition: SOL 18 Copyright (C) Bee Technologies Inc. 2010
  • 19. 3.5 Constant Current PV Li-Ion Battery Charger Circuit • Input the battery capacity (Ah) and charging current rate (e.g. 0.2*CAh) in the • “PARAMETERS: CAh = 4400m and rate = 0.2 ” to set the charging current. DMOD D1 Voch 16.8Vdc 0 0 Hi 0 C1 1n PARAMETERS: sol = 1 SX330 + U2 SX330 SOL = {sol} 0 pv PARAMETERS: rate = 0.2 CAh = 4400m IN- OUT+ OUT- IN+ G1 Limit(V(%IN+, %IN-)/0.1, 0, rate*CAh) GVALUE + - U1 PBT-BAT-0001 TSCALE = 3600 SOC1 = 0 19 Copyright (C) Bee Technologies Inc. 2010
  • 20. Time 0s 1s 2s 3s 4s 5s 6s 7s 8s 9s 10s V(X_U1.SOC) 0V 20V 40V 60V 80V 100V 3.6 Charging Time Characteristics vs. Weather Condition (Constant Current) • Simulation result shows the charging time for sol = 1, 0.5, and 0.16. If PV can generate current more than the constant charge rate (0.2A), battery can be fully charged in about 5 hour. sol = 1.00 sol = 0.50 sol = 0.16 20 Copyright (C) Bee Technologies Inc. 2010
  • 21. 4.1 Concept of Simulation PV Li-Ion Battery System in 24hr. Lithium-Ion Batteries Pack Photovoltaic Module Over Voltage Protection Circuit 16.8V Clamp Circuit PBT-BAT-0001 (BAYSUN) DC12.8~16.4V (4 cells) 4400mAh SX 330 (BP Solar) Vmp=16.8V Pmax=30W DC/DC Converter Vopen= (V) Vclose= (V) The model contains 24hr. solar power data (example). DC Load VIN=10~18V VOUT=5V VIN = 5V IIN = 1.5A Low-Voltage Shutdown Circuit 21 Copyright (C) Bee Technologies Inc. 2010
  • 22. 4.2 Short-Circuit Current vs. Time (24hr.) • Short-circuit current vs. time characteristics of photovoltaic module SX330 for 24hours as the solar power profile (example) is included to the model. Time 0s 4s 8s 12s 16s 20s 24s I(X_U1.I_I1) 0A 0.4A 0.8A 1.2A 1.6A 2.0A SX330 + U2 SX330_24H_TS3600 The model contains 24hr. solar power data (example). 22 Copyright (C) Bee Technologies Inc. 2010
  • 23. 4.3 PV-Battery System Simulation Circuit Ronof f 1 100 dchth Low-Voltage Shutdown Circuit DC/DC Converter DMOD D1 Voch 16.8Vdc 0 0 batt 0 C1 100n IC = 16.4 0 pv + - U1 PBT-BAT-0001 TSCALE = 3600 SOC1 = 70 SX330 + U2 SX330_24H_TS3600 batt1 C3 10n + - + - S2 S VON = 0.7 VOFF = 0.3 ROFF = 10MEG RON = 0.01 0 0 IN+ IN- OUT+ OUT- ecal_Iomax n*V(%IN+, %IN-)*I(IN)/5 EVALUE Iomax 0 IN+ IN- OUT+ OUT- E2 IF( V(lctrl) > 0.25 ,Lopen ,Lclose) EVALUE 0 PARAMETERS: Lopen = 14 Lclose = 15.2 IN+ IN- OUT+ OUT- E1 IF(V(batt1)>V(dchth),5,0) EVALUE Ronof f 100 Conof f 1n IC = 5 Lctrl PARAMETERS: n = 1 I1 1.5Adc 0 OUT IN+ IN- OUT+ OUT- E3 IF( I(OUT)-V(Iomax) > 0 ,n*V(%IN+, %IN-)*I(IN)/(I(OUT)+1u), 5 ) EVALUE out_dc DMOD D2 Conof f 1 100n IN- OUT+ OUT- IN+ G1 Limit( V(%IN+, %IN-)/0.1, 1m, 5*I(out)/(n*limit(V(%IN+, %IN-),10,25)) ) GVALUE IN Solar cell model with 24hr. solar power data. Lopen value is load shutdown voltage. Lclose value is load reconnect voltage Set initial battery voltage, IC=16.4, for convergence aid. SOC1 value is initial State Of Charge of the battery, is set as 70% of full voltage. 7.5W Load (5Vx1.5A).  Simulation at 15W load, change I1 from 1.5A to 3A 23 Copyright (C) Bee Technologies Inc. 2010 DCDCコンバータの簡易モデル DCACコンバータの簡易モデルもあります。
  • 24. Time 0s 4s 8s 12s 16s 20s 24s 1 V(out_dc) 2 I(IN) 0V 2.5V 5.0V 7.5V 1 400mA 500mA 600mA 2 SEL>> SEL>> V(X_U1.SOC) 0V 25V 50V 75V 100V 1 V(batt) 2 I(U1:PLUS) 12.5V 15.0V 17.5V 1 >> -2.0A 0A 2.0A 2 I(pv) 0A 1.0A 4.3.1 Simulation Result (SOC1=100) • C1: IC=16.4 • Run to time: 24s (24hours in real world) • Step size: 0.01s PV generated current Battery current Battery voltage Battery SOC DC/DC input current DC output voltage • .Options ITL4=1000 SOC1=100 Fully charged, stop charging Battery supplies current when solar power drops. PV module charge the battery Charging time 24 Copyright (C) Bee Technologies Inc. 2010
  • 25. Time 0s 4s 8s 12s 16s 20s 24s 1 V(out_dc) 2 I(IN) 0V 2.5V 5.0V 7.5V 1 0A 0.5A 1.0A 2 >> V(X_U1.SOC) 0V 25V 50V 75V 100V 10.152m,69.889) 1 V(batt) 2 I(U1:PLUS) 12.5V 15.0V 17.5V 1 -2.0A 0A 2.0A 2 SEL>> SEL>> (7.6750,15.199) (5.1850,14.000) I(pv) 0A 1.0A 4.3.2 Simulation Result (SOC1=70) • C1: IC=16.4 • Run to time: 24s (24hours in real world) • Step size: 0.01s • SKIPBP PV generated current Battery current Battery voltage Battery SOC DC/DC input current DC output voltage • .Options ITL4=1000 SOC1=70 V=Lopen V=Lclose Shutdown Reconnect Fully charged, stop charging Battery supplies current when solar power drops. PV module charge the battery Charging time 25 Copyright (C) Bee Technologies Inc. 2010
  • 26. Time 0s 4s 8s 12s 16s 20s 24s 1 V(out_dc) 2 I(IN) 0V 2.5V 5.0V 7.5V 1 0A 0.5A 1.0A 2 >> V(X_U1.SOC) 0V 100V SEL>> (12.800m,29.854) 1 V(batt) 2 I(U1:PLUS) 12.5V 15.0V 17.5V 1 -2.0A 0A 2.0A 2 >> (1.6328,14.004) (7.6150,15.193) I(pv) 0A 1.0A 4.3.3 Simulation Result (SOC1=30) • C1: IC=15 • Run to time: 24s (24hours in real world) • Step size: 0.01s • Total job time = 2s PV generated current Battery current Battery voltage Battery SOC DC/DC input current DC output voltage • .Options ITL4=1000 SOC1=30 V=Lopen V=Lclose Shutdown Reconnect Fully charged, stop charging Battery supplies current when solar power drops. PV module charge the battery Charging time 26 Copyright (C) Bee Technologies Inc. 2010
  • 27. Time 0s 4s 8s 12s 16s 20s 24s 1 V(out_dc) 2 I(IN) 0V 2.5V 5.0V 7.5V 1 0A 0.5A 1.0A 2 >> V(X_U1.SOC) 0V 100V 1 V(batt) 2 I(U1:PLUS) 12.5V 15.0V 17.5V 1 -2.0A 0A 2.0A 2 SEL>> SEL>> (7.6163,15.200) I(pv) 0A 1.0A 4.3.4 Simulation Result (SOC1=10) • C1: IC=14.4 • Run to time: 24s (24hours in real world) • Step size: 0.01s • SKIPBP PV generated current Battery current Battery voltage Battery SOC DC/DC input current DC output voltage • .Options RELTOL=0.01 • .Options ITL4=1000 SOC1=10 V=Lclose Shutdown Reconnect Fully charged, stop charging Battery supplies current when solar power drops. PV module charge the battery Charging time 27 Copyright (C) Bee Technologies Inc. 2010
  • 28. Time 0s 4s 8s 12s 16s 20s 24s 1 V(out_dc) 2 I(IN) 0V 2.5V 5.0V 7.5V 1 0A 1.0A 2.0A 2 >> V(X_U1.SOC) 0V 25V 50V 75V 100V 1 V(batt) 2 I(U1:PLUS) 12.5V 15.0V 17.5V 1 -2.0A 0A 2.0A 2 SEL>> SEL>> (20.473,14.003) (7.6086,15.200) (3.8973,14.000) I(pv) 0A 1.0A 4.3.5 Simulation Result (SOC1=100, IL=3A or 15W load) • C1: IC=16.4 • Run to time: 24s (24hours in real world) • Step size: 0.001s PV generated current Battery current Battery voltage Battery SOC DC/DC input current DC output voltage • .Options ITL4=1000 SOC1=100 Fully charged, stop charging Battery supplies current when solar power drops. PV module charge the battery Charging time V=Lopen Shutdown V=Lopen Shutdown 28 Copyright (C) Bee Technologies Inc. 2010
  • 29. 4.3.4 Simulation Result (Example of Conclusion) • If initial SOC is 100%, – this system will never shutdown. • If initial SOC is 70%, – this system will shutdown after 5.185 hours (about 5:11AM.). – system load will reconnect again at 7:40AM (Morning). • If initial SOC is 30%, – this system will shutdown after 1.633 hours (about 1:38AM.). – system load will reconnect again at 7:37AM (Morning). • If initial SOC is 10%, – this system will start shutdown. – this system will reconnect again at 7:37AM (Morning). • With the PV generated current profile, battery will fully charged in about 4.25 hours. 29 Copyright (C) Bee Technologies Inc. 2010 The simulation start from midnight(time=0). The system supplies DC load 7.5W.
  • 30. 4.3.4 Simulation Result (Example of Conclusion) • If initial SOC is 100%, – this system will shutdown after 3.897 hours (about 3:54AM.). – system load will reconnect again at 7:37AM (Morning). – this system will shutdown again at 8:28 PM (Night). • With the PV generated current profile, battery will fully charged in about 5.5 hours. 30 Copyright (C) Bee Technologies Inc. 2010 The simulation start from midnight(time=0). The system supplies DC load 15W.
  • 31. お問合わせ先) info@bee-tech.com Bee Technologies Group 【本社】 株式会社ビー・テクノロジー 〒105-0012 東京都港区芝大門二丁目2番7号 7セントラルビル4階 代表電話: 03-5401-3851 設立日:2002年9月10日 資本金:8,830万円 【子会社】 Bee Technologies Corporation (アメリカ) Siam Bee Technologies Co.,Ltd. (タイランド) デバイスモデリング スパイス・パーク(スパイスモデル・ライブラリー) デザインキット デバイスモデリング教材 31 Copyright (C) Bee Technologies Inc. 2010 本ドキュメントは予告なき変更をする場合がございます。 ご了承下さい。また、本文中に登場する製品及びサービス の名称は全て関係各社または個人の各国における商標 または登録商標です。本原稿に関するお問い合わせは、 当社にご連絡下さい。