SlideShare a Scribd company logo
Numerical investigation of polarization
effects and dual-wavelength
emission in InGaN light-emitting diodes
Student: Tsun-Hsin Wang
Advisor: Prof. Yen-Kuang Kuo
Date: 2013-06-22
Ph.D. Defense
Tsun-Hsin Wang/BLL/NCUE 2
Outline
1. Introduction
2. Literature review
3. Polarization effects
4. Dual-wavelength emission
5. Conclusion
6. Q&A
Tsun-Hsin Wang/BLL/NCUE 3
Outline
1. Introduction
2. Literature review
3. Polarization effects
4. Dual-wavelength emission
5. Conclusion
6. Q&A
Tsun-Hsin Wang/BLL/NCUE 4
1. Introduction
1.1 Dissertation proposal
1.2 Physical models and applied
equations
1.3 Material parameters
1.4 Free parameters
1.5 Limit and criteria of
numerical simulation
Tsun-Hsin Wang/BLL/NCUE 5
1. Introduction
(1.1 Dissertation proposal)
Research motivation
Proposed approaches
InGaN light-emitting diodes (LEDs) with
GaN-InGaN-GaN barriers
Monolithic white InGaN LEDs
Proposed future works
Publication list
(2011-10-01)
Tsun-Hsin Wang/BLL/NCUE 6
1. Introduction
(1.2 Physical models and applied equations)
( / )
( )
( )
( ) ( )
D A f
p
n
p p p B
n n n B
e p n N N N
p
e J e R G
t
n
e J e R G
t
J e p k T p
J e N n N k T n
 
  
  
 
      

   


   

    
    
Models
Poisson’s equation
Current continuity equations
Drift and diffusion models
Chen et al., Appl. Phys. B- Lasers Opt. 98, 779 (2010).
Tsun-Hsin Wang/BLL/NCUE 7
1. Introduction
(1.2 Physical models and applied equations)
Green InGaN LEDs
Mobility in cm2/V-s
max min
min
1.37
17
0.29
17
( )
1 ( )
298
( , ) 386
1 ( )
1.0 10
174
( , ) 132
1 ( )
1.0 1
:
0
n
ref
n
n
N
N
N
InGaN N
N
AlGaN N
Elec
N
tron

 
 



 

 


 

 Wu, J. Appl. Phys. 106, 011101 (2009).
Caughey, Proc. IEEE 55, 2192 (1967).
( ) 10
:
( )
p p
Ho
InGaN A
le
lGaN
 
 
Tsun-Hsin Wang/BLL/NCUE 8
1. Introduction
(1.2 Physical models and applied equations)
Polarization in C/m2
1
( )
( ) (1 ) ( ) (1 ) ( )
0.042 0.034 (1 ) 0.038 (1 )
sp x x
sp sp sp
P In Ga N
x P InN x P GaN x x B InGaN
x x x x

        
         
1 1 1
( ) ( ) ( )
total x x sp x x pz x x
P In Ga N P In Ga N P In Ga N
  
 
1
( )
( ) (1 ) ( ) (1 ) ( )
0.090 0.034 (1 ) 0.090 (1 )
sp x x
sp sp sp
P Al Ga N
x P AlN x P GaN x x B AlGaN
x x x x

        
        
1 1 1
( ) ( ) ( )
total x x sp x x pz x x
P Al Ga N P Al Ga N P Al Ga N
  
 
Wu, J. Appl. Phys. 106, 011101 (2009).
Fiorentini et al., Appl. Phys. Lett. 80, 1204 (2002).
Tsun-Hsin Wang/BLL/NCUE 9
1. Introduction
(1.2 Physical models and applied equations)
Polarization in C/m2
0
xx yy
a a
a
 

 
13
33
2
zz xx
C
C
 
 
1
( ) ( ) (1 ) ( )
pz x x pz pz
P Al Ga N x P AlN x P GaN
     
2
( ) 1.347 7.559
pz
P InN  
    
2
( ) 1.808 7.888
pz
P AlN  
    
1
( ) ( ) (1 ) ( )
pz x x pz pz
P In Ga N x P InN x P GaN
     
Wu, J. Appl. Phys. 106, 011101 (2009).
2
( ) 0.918 9.541
pz
P GaN  
    
Tsun-Hsin Wang/BLL/NCUE 10
1. Introduction
(1.2 Physical models and applied equations)
Bandgap energy (binary) in eV
Wu, J. Appl. Phys. 106, 011101 (2009).
2 3 2
1.799 10
( , ) ( ,0) 6.25
1462
AlN
g g
AlN
T T
E AlN T E AlN
T T



 
   
 
Varshni, Physica 34, 149 (1967).
2 3 2
0.909 10
( , ) ( ,0) 3.51
830
GaN
g g
GaN
T T
E GaN T E GaN
T T



 
   
 
2 3 2
0.414 10
( , ) ( ,0) 0.69
454
InN
g g
InN
T T
E InN T E InN
T T



 
   
 
Tsun-Hsin Wang/BLL/NCUE 11
1. Introduction
(1.2 Physical models and applied equations)
Bandgap energy (ternary) in eV
1
( , )
( , ) (1 ) ( , ) (1 ) ( )
0.69 3.51 (1 ) 2.1 (1 ) [ 0 ]
g x x
g g g
E In Ga N T
x E InN T x E GaN T x x B InGaN
x x T
x K
x

        
       
 
1
( , )
( , ) (1 ) ( , ) (1 ) ( )
6.25 3.51 (1 ) 0.24 (1 ) [ ]
0
g x x
g g g
E Al Ga N T
x E AlN T x E GaN T x x B AlGaN
x x x x T K

        
        

Wu, J. Appl. Phys. 106, 011101 (2009).
Tsun-Hsin Wang/BLL/NCUE 12
1. Introduction
(1.2 Physical models and applied equations)
Recombination rate
2 3
2
2 3
3
2 3
Recombination=Radiative+Nonradiative
Nonradiative=Shockley-Read-Hall (SRH)+Auger
1
SRH Radiative Auger
C
SRH
C C C
C
Radiative IQE
C C C
C
Auger
C C C
A n
A n B n C n
B n
A n B n C n
C n
A n B n C n
  

 

  


    

 
    


    
Cho et al., Laser Photonics Rev. 7, 408 (2013).
Tsun-Hsin Wang/BLL/NCUE 13
1. Introduction
(1.2 Physical models and applied equations)
Efficiency
External quantum efficiency (EQE)
=Internal quantum efficiency (IQE) Extraction efficiency (EE)
Injection efficiency (IE)
(max) (min)
Efficiency droop 100%
(max)
EQE IQE EE IE
IQE IQE
IQE
   
 



  

 
Cho et al., Laser Photonics Rev. 7, 408 (2013).
Tsun-Hsin Wang/BLL/NCUE 14
1. Introduction
(1.3 Material parameters)
6 × 6 k∙p model
6 6
0
0
H
L
H
H
H

 
  
 
t t
H
t t
t t
F K iH
H K G iH
iH iH 

 
 
  
 
 
 
 
t t
L
t t
t t
F K iH
H K G iH
iH iH 
 
 
  
 
 
  
 
1 2
F  
     
1 2
G  
     
2
2 2 2
1 2 1 2
0
[ ( )] ( )
2
z x y zz xx yy
Ak A k k D D
m
   
     
2
2 2 2
3 4 3 4
0
[ ( )] ( )
2
z x y zz xx yy
A k A k k D D
m
   
     
2
2 2
5
0
( )
2
t x y
K A k k
m
 
2
2 2
6
0
2
t z x y
H A k k k
m
 
3
2
  
Zhao et al., IEEE J. Quantum Electron. 45, 66 (2009).
Tsun-Hsin Wang/BLL/NCUE 15
1. Introduction
(1.3 Material parameters)
Parameters Symbol (unit) GaN InN AlN
Lattice constant a0 (Å) 3.189 3.533 3.112
Lattice constant (c-axis) c0 (Å) 5.185 5.693 4.982
Lattice mismatch to GaN template ε 0 2.47% –9.74%
Bandgap energy (0 K) Eg(0) (eV) 3.51 0.69 6.25
Varshni parameter α (meV/K) 0.909 0.414 1.799
Varshni parameter β (K) 830 454 1462
Spontaneous polarization PSP (C/m2) –0.034 –0.042 0.090
Piezoelectric polarization PPZ (C/m2) 0 –0.451 0.205
Crystal-field split energy Δcr (eV) 0.010 0.040 –0.169
Spin-orbit split energy Δso (eV) 0.017 0.005 0.019
Hole effective mass parameter A1 –7.21 –8.21 –3.86
A2 –0.44 –0.68 –0.25
A3 6.68 7.57 3.58
A4 –3.46 –5.23 –1.32
A5 –3.40 –5.11 –1.47
A6 –4.90 –5.96 –1.64
Hydrostatic deformation potential (c-axis) az (eV) –7.1 –4.2 –3.4
Hydrostatic deformation potential (transverse) at (eV) –9.9 –4.2 –11.8
Shear deformation potential D1 (eV) –3.6 –3.6 –2.9
D2 (eV) 1.7 1.7 4.9
D3 (eV) 5.2 5.2 9.4
D4 (eV) –2.7 –2.7 –4.0
Elastic stiffness constant c13 (GPa) 106 92 108
c33 (GPa) 398 224 373
Electron effective mass (c-axis) 0.20 0.07 0.30
Electron effective mass (transverse) 0.21 0.07 0.32
z
e 0
m m
t
e 0
m m
Wu, J. Appl. Phys. 106, 011101 (2009).
Tsun-Hsin Wang/BLL/NCUE 16
1. Introduction
(1.3 Material parameters)
Parameters Symbol (unit) InGaN AlGaN
Minimum dopant dependent electron
mobility
(cm2/V-s) 386 132
Maximum dopant dependent electron
mobility
(cm2/V-s) 684 306
Referenced doping density of
impurity
Nref (1/cm3) 1.0 × 1017 1.0 × 1017
Slope of mobility versus logarithmic
doping density for electron
γ 1.37 0.29
Hole mobility (cm2/V-s) 10 10
Bowing parameter of bandgap energy BEG (eV) 2.1 0.24
Bowing parameter of spontaneous
polarization
BSP (C/m2) 0.038 0.09
min

max


Wu, J. Appl. Phys. 106, 011101 (2009).
Tsun-Hsin Wang/BLL/NCUE 17
1. Introduction
(1.4 Free parameters)
Parameters Value (unit)
Band offset ratio 0.67 : 0.33
SRH lifetime 10 (ns)
Auger coefficient 0.55 × 1017 (cm6/s)
Radiative coefficient 2.0 × 10‒11 (cm3/s)
Internal loss 20 (cm‒1)
Percentage of polarization charges 50%
Extraction efficiency 60%
Tsun-Hsin Wang/BLL/NCUE 18
1. Introduction
(1.5 Limits and criteria of numerical simulation)
 It is time-saving and cost-saving to evaluate the
fabrication process by way of technology
computer-aided design (TCAD) based on the well-
established physical models and carefully-verified
material parameters.
 However, the simulation results can’t exceed the
limits and criteria of the physical models. In other
words, it is not suitable to tune free parameters
roughly to fit any condition of the LEDs as well as
experimental data can’t be gotten beyond the
accuracy.
Tsun-Hsin Wang/BLL/NCUE 19
Outline
1. Introduction
2. Literature review
3. Polarization effects
4. Dual-wavelength emission
5. Conclusion
6. Q&A
Tsun-Hsin Wang/BLL/NCUE 20
2. Literature review
2.1 Landmark
developments
2.2 Recent progress
2.3 Industrial survey
2.4 Efficiency droop
2.5 Referenced device
structures Schubert et al., Science 308, 1274 (2005).
Tsun-Hsin Wang/BLL/NCUE 21
2. Literature review
(2.1 Landmark developments)
Pimputkar et al., Nat. Photonics 3, 180 (2009).
Tsun-Hsin Wang/BLL/NCUE 22
2. Literature review
(2.2 Recent progress)
Lee et al., Appl. Phys. Lett. 100, 061107 (2012).
Hwang et al., Appl. Phys. Lett. 99, 181115 (2011). Chen et al., Appl. Phys. Lett. 100, 241112 (2012).
Tsun-Hsin Wang/BLL/NCUE 23
2. Literature review
(2.3 Industrial survey)
Epistar Inc. in 2013.5. (http://www.epistar.com.tw)
Tsun-Hsin Wang/BLL/NCUE 24
2. Literature review
(2.4 Efficiency droop)
Cho et al., Laser Photonics Rev. 7, 408 (2013).
Current droop mechanisms
1. Defect-related mechanisms
2. Auger recombination
3. Electron leakage
Tsun-Hsin Wang/BLL/NCUE 25
2. Literature review
(2.4 Efficiency droop)
Kioupakis et al., Appl. Phys. Lett. 98, 161107 (2011).
Tsun-Hsin Wang/BLL/NCUE 26
2. Literature review
(2.5 Referenced device structures)
Blue InGaN LEDs
sapphire
u-GaN
n-GaN 5×1018 cm3 4500 nm
i-In0.21Ga0.79N/GaN 2 nm / 15 nm
p-Al0.15Ga0.85N 1.2×1018 cm3 20 nm
p contact
n contact
p-GaN 1.2×1018 cm3 500 nm
Kuo et al., Appl. Phys. Lett. 95, 01116 (2009).
Tsun-Hsin Wang/BLL/NCUE 27
2. Literature review
(2.5 Referenced device structures)
Green InGaN LEDs
sapphire
u-GaN
n-GaN 5×1018 cm3 3000 nm
i-In0.32Ga0.68N/GaN 2 nm / 10 nm
p-Al0.13Ga0.87N 5×1017 cm3 20 nm
p contact
n contact
p-GaN 5×1017 cm3 200 nm
Tsun-Hsin Wang/BLL/NCUE 28
Outline
1. Introduction
2. Literature review
3. Polarization effects
4. Dual-wavelength emission
5. Conclusion
6. Q&A
Tsun-Hsin Wang/BLL/NCUE 29
3. Polarization effects
3.1 GaN-InGaN-GaN barriers
3.2 Tailored configuration
3.3 InGaN-AlGaN-InGaN barriers
3.4 Shallow first well
3.5 Slightly-doped step-like electron blocking
layer (EBL)
3.6 Polarization-reversed EBL
3.7 Other approaches
3.8 Summary
More nonradiative
recombination
More radiative
recombination
Tsun-Hsin Wang/BLL/NCUE 30
3. Polarization effects
(3.1 GaN-InGaN-GaN barriers)
Kuo et al., Appl. Phys. Lett. 99, 091107 (2011).
Tsun-Hsin Wang/BLL/NCUE 31
3. Polarization effects
(3.1 GaN-InGaN-GaN barriers)
Tsun-Hsin Wang/BLL/NCUE 32
3. Polarization effects
(3.2 Tailored configuration)
Kuo et al., IEEE J. Quantum Electron. 48, 946 (2012).
Location
Tsun-Hsin Wang/BLL/NCUE 33
3. Polarization effects
(3.2 Tailored configuration)
Numbers
Tsun-Hsin Wang/BLL/NCUE 34
3. Polarization effects
(3.2 Tailored configuration)
Indium composition
Tsun-Hsin Wang/BLL/NCUE 35
3. Polarization effects
(3.3 InGaN-AlGaN-InGaN barriers)
Kuo et al., Appl. Phys. Lett. 100, 031112 (2012).
Tsun-Hsin Wang/BLL/NCUE 36
3. Polarization effects
(3.3 InGaN-AlGaN-InGaN barriers)
Tsun-Hsin Wang/BLL/NCUE 37
3. Polarization effects
(3.4 Shallow first well)
Wang et al., IEEE Photonics Technol. Lett. 24, 2084 (2012).
Tsun-Hsin Wang/BLL/NCUE 38
3. Polarization effects
(3.4 Shallow first well)
Tsun-Hsin Wang/BLL/NCUE 39
3. Polarization effects
(3.5 Slightly-doped step-like EBL)
Kuo et al., IEEE Photonics Technol. Lett. 24, 1506 (2012).
Tsun-Hsin Wang/BLL/NCUE 40
3. Polarization effects
(3.5 Slightly-doped step-like EBL)
Tsun-Hsin Wang/BLL/NCUE 41
3. Polarization effects
(3.6 Polarization-reversed EBL)
Tsun-Hsin Wang/BLL/NCUE 42
3. Polarization effects
(3.6 Polarization-reversed EBL)
Tsun-Hsin Wang/BLL/NCUE 43
3. Polarization effects
(3.6 Polarization-reversed EBL)
Tsun-Hsin Wang/BLL/NCUE 44
3. Polarization effects
(3.6 Polarization-reversed EBL)
Comparing the operation
of the reversed AlGaN-
GaN-InGaN EBL LEDs,
one can see that the IQE
of the LEDs is higher at
350 K at 300 mA than at
300 K because of the lower
electron current leakage.
Tsun-Hsin Wang/BLL/NCUE 45
3. Polarization effects
(3.7 Other approaches)
Tsun-Hsin Wang/BLL/NCUE 46
3. Polarization effects
(3.7 Other approaches)
Tsun-Hsin Wang/BLL/NCUE 47
3. Polarization effects
(3.8 Summary)
In this chapter, effective approaches toward the solution of efficiency
droop with
• GaN-InGaN-GaN barriers
• InGaN-AlGaN-InGaN barriers
• shallow first well
• slightly-doped step-like EBL
• polarization-reversed AlGaN-GaN-InGaN EBL
are discussed and compared.
1. With such designs, the progress of blue InGaN-based LEDs is
extensively improved in solid-state lighting under different
circumstances of epitaxial condition such as low-pressure or
atomic-pressure.
2. The physical origins of improved opto-electrical performance and
suppressed efficiency droop can be attributed to reduced electron
leakage and enhanced hole injection efficiency.
Tsun-Hsin Wang/BLL/NCUE 48
Outline
1. Introduction
2. Literature review
3. Polarization effects
4. Dual-wavelength emission
5. Conclusion
6. Q&A
Tsun-Hsin Wang/BLL/NCUE 49
4. Dual-wavelength emission
4.1 Effects of polarization state
4.2 Spectral competition
4.3 Nonradiative competition
4.4 Summary
Tsun-Hsin Wang/BLL/NCUE 50
4. Dual-wavelength emission
(4.1 Effects of polarization state)
Tsun-Hsin Wang/BLL/NCUE 51
4. Dual-wavelength emission
(4.1 Effects of polarization state)
Tsun-Hsin Wang/BLL/NCUE 52
4. Dual-wavelength emission
(4.2 Spectral competition) Wang et al., Appl. Phys. Lett. 102, 171112 (2013).
Tsun-Hsin Wang/BLL/NCUE 53
4. Dual-wavelength emission
(4.2 Spectral competition) Wang et al., Appl. Phys. Lett. 102, 171112 (2013).
Tsun-Hsin Wang/BLL/NCUE 54
4. Dual-wavelength emission
(4.3 Nonradiative competition)
Tsun-Hsin Wang/BLL/NCUE 55
4. Dual-wavelength emission
(4.3 Nonradiative competition)
Tsun-Hsin Wang/BLL/NCUE 56
4. Dual-wavelength emission
(4.3 Nonradiative competition)
Tsun-Hsin Wang/BLL/NCUE 57
4. Dual-wavelength emission
(4.4 Summary)
In conclusion, in addition to the issue
of crystalline quality that is generally
desired for good LED performance,
the efficient suppression of
piezoelectric polarization effect and
Auger recombination also play
important roles toward the
commercial realization of effective
dual-wavelength broad-band LEDs.
Tsun-Hsin Wang/BLL/NCUE 58
Outline
1. Introduction
2. Literature review
3. Polarization effects
4. Dual-wavelength emission
5. Conclusion
6. Q&A
Tsun-Hsin Wang/BLL/NCUE 59
5. Conclusion
5.1 Conclusion
5.2 Future works
5.3 Simulated input files
5.4 Publication list
Tsun-Hsin Wang/BLL/NCUE 60
5. Conclusion
(5.1 Conclusion)
In this dissertation, the spontaneous and piezoelectric
polarizations in InGaN LEDs leads to severe electron
leakage, insufficient efficiency of hole injection, serious
Auger recombination and other effects.
Therefore, InGaN LEDs with
• GaN-InGaN-GaN barriers,
• InGaN-AlGaN-InGaN barriers,
• shallow first well,
• slightly-doped step-like EBL, and
• polarization reversed AlGaN-GaN-InGaN EBL
are beneficial for improvement of optical and electrical
performance compared with conventional device
structures.
Tsun-Hsin Wang/BLL/NCUE 61
5. Conclusion
(5.1 Conclusion)
Furthermore, for the commercial
realization of monolithic phosphor-free
white InGaN LEDs, broad-band LED with
shallow first well and tailored QW
configuration is suggested in order to
overcome
• detrimental polarization state,
• spectral competition, and
• obstructive Auger recombination
in dual-wavelength emission.
Tsun-Hsin Wang/BLL/NCUE 62
5. Conclusion
(5.2 Future works)
1. An overall solution of efficiency droop and a
generally accepted model are still on demand. Multi-
functionally integrated device structure which has
better and better performance such as
• optical,
• electrical,
• thermal,
• spectral,
• spatial,
and other characteristics remains desirable.
Tsun-Hsin Wang/BLL/NCUE 63
5. Conclusion
(5.2 Future works)
2. Monolithic phosphor-free white InGaN LEDs are
still possible candidates of future generation in solid-
state lighting. The widely-ranged bandgap energies
of nitrides can be very advantageous if the issues of
• polarization effects and
• epitaxial processes
will be overcome in the future.
Tsun-Hsin Wang/BLL/NCUE 64
5. Conclusion
(5.3 Simulated input files)
*.sol
*.layer
*.plt
APSYS
Band
Carrier
Field
…
Tsun-Hsin Wang/BLL/NCUE 65
5. Conclusion
(5.4 Publication list)
1. Y.-K. Kuo, T.-H. Wang, J.-Y. Chang, and M.-C. Tsai,
“Advantages of InGaN light-emitting diodes with GaN-InGaN-
GaN barriers, ” Appl. Phys. Lett. 99, 091107 (2011). (APL's monthly
top 20 most-downloaded articles in September 2011. )
2. Y.-K. Kuo, T.-H. Wang, and J.-Y. Chang, “Advantages of blue
InGaN light-emitting diodes with InGaN-AlGaN-InGaN barriers,”
Appl. Phys. Lett. 100, 031112 (2012). (APL's monthly top 20 most-
downloaded articles in January and February 2012. ) (One of the most notable
APL articles published in 2012.)
3. Y.-K. Kuo, T.-H. Wang, and J.-Y. Chang, “Blue InGaN light-
emitting diodes with multiple GaN-InGaN barriers,” IEEE J.
Quantum Electron. 48, 946 (2012).
4. Y.-K. Kuo, T.-H. Wang, J.-Y. Chang, and J.-D. Chen, “Slightly-
doped step-like electron blocking layer in InGaN light-emitting
diodes,” IEEE Photonics Technol. Lett. 24, 1506 (2012).
Tsun-Hsin Wang/BLL/NCUE 66
5. Conclusion
(5.4 Publication list)
5. T.-H. Wang and Y.-K. Kuo, “Efficiency enhancement
of blue InGaN light-emitting diodes with shallow first
well,” IEEE Photonics Technol. Lett. 24, 2084 (2012).
6. Y.-A. Chang, Y.-R. Lin, J.-Y. Chang, T.-H. Wang, and
Y.-K. Kuo, “Design and characterization of
polarization-reversed AlInGaN based ultraviolet light-
emitting diode,” IEEE J. Quantum Electron. 49, 553
(2013).
7. T.-H. Wang and Y.-K. Kuo, “Spectral competition of
chirped dual-wavelength in monolithic InGaN
multiple-quantum well light-emitting diodes,” Appl.
Phys. Lett. 102, 171112 (2013).
Tsun-Hsin Wang/BLL/NCUE 67
Thank you for your attention!
Tsun-Hsin Wang/BLL/NCUE 68
Outline
1. Introduction
2. Literature review
3. Polarization effects
4. Dual-wavelength
5. Conclusion
6. Q&A
Tsun-Hsin Wang/BLL/NCUE 69
Q&A
1. Overall academic contribution
2. Physical models
3. Free parameters
4. Macro
5. Recent progress on LEDs
6. Curve fitting
7. Polarization charges
Tsun-Hsin Wang/BLL/NCUE 70
Overall academic contribution
Effective solutions to suppress polarization
problems in nitride optoelectronic devices
Possible solutions on carrier balance and
spectral competition for dual-wavelength
InGaN LEDs
Better comprehension of efficiency droop in
InGaN LEDs
Possible relationships of polarization effects
and thermal effects in InGaN LEDs
BACK TO Q&A
Tsun-Hsin Wang/BLL/NCUE 71
Physical models
Equations Parameters
Poisson equation: φ, n, p, S, W, g
Continuity equation: φ, n, p
Complex wave equation: n, p, S, W, g
Rate equation: n, p, W, λ, g
Gain equation: n, p, λ, g
φ: potential, n and p: electron and hole
concentration, S: photon number, W: optical
field intensity, λ: wavelength, g: gain.
APSYS by Crosslight Software Inc.
Tsun-Hsin Wang/BLL/NCUE 72
Physical models
Poisson equation: ∇2V=−ρ /ε, where ρ: volume charge
density, ε: dielectric constant.
(a)∇V 為電場。
(b)εdc 為相對介電常數。
(c)n、p 為電子與電洞濃度。
(d)ND(NA)為淺層donor(acceptor)摻雜的密度,fD(fA)為介面中
donor(acceptor)淺層能階的佔有率。(此項會造成介面結合的電子濃
度產生影響,NAfA 前面的負號為接收電子濃度產生)
(e)δj 為delta function 當作acceptor 時其值為0 當作donor 時其值為1,
Ntj 為介面中第j 個深層能階的密度,ftj 為第j 個深層能階的佔有率。(
此項和前兩項比較下其意義為相似) APSYS by Crosslight Software Inc.
Tsun-Hsin Wang/BLL/NCUE 73
Physical models
Continuity equation: ∇J+∂ρ/∂t=0, where J: current
density, t: time.
(a)電子的電流密度Jn = n×μn×∇Efn(其中μn 為電子的mobility,Efn 為電
子的Fermi-level),而電洞的電流密度Jp = n×μp×∇Efp 。
(b)Rn
tj 為通過邊界上第j 個能階時,每單位體積的電子結合律,而Rp
tj
為通過邊界上第j 個能階時,每單位體積的電洞結合律。(SRH)
(c)Rsp 為自發輻射率,Rst 為受激放射率。
(d)Rau=(Cnn+Cpp)(np-ni
2);Cn 和Cp 均為常數取決於材料本身,ni 指純
質的載子密度。(Auger recombination rate)
APSYS by Crosslight Software Inc.
Tsun-Hsin Wang/BLL/NCUE 74
Physical models
Complex wave equation: ∇2W+k2(ε−β2)W=0, where W:
optical wave function, k: wave vector, β: real eigen-
value.
(a)W為光子的波函數,|W|2為每單位體積找到光子的機率。
(b)k0 為波向量,ε為介電常數,β為real eigenvalue 實數本
徵值。
APSYS by Crosslight Software Inc.
Tsun-Hsin Wang/BLL/NCUE 75
Physical models
Rate equation: ∂S/∂t=c(g−α)/n, where c: speed of light,
n: refractive index, g: gain, α: loss, S: photon number.
(a) ng 為材料的折射率,gm 為增益模式(model
gain),αint 為初始的損失(loss), α em 為發射光子
產生的損失,S 為光子數。
(b) cm 為小部份自發輻射的常數。
APSYS by Crosslight Software Inc.
Tsun-Hsin Wang/BLL/NCUE 76
Physical models
Gain equation: g=α+[ln(1/R1R2)]2L, where R:
reflectance of mirrors, L: cavity length.
(a)γ為intra-band 的散射時間
(b)L(Ex-Eij
0)為Lorentzian shape function
(c)gij 為第i 能階到第j 能階的local gain,Eij 為第i 能階到
第j 能階的能差
(d)gij 內有包含輕電洞和重電洞的TE 和TM 模式
APSYS by Crosslight Software Inc.
BACK TO Q&A
Tsun-Hsin Wang/BLL/NCUE 77
Free parameters
 In order to access the recent and common
consensuses, only the papers published at Appl.
Phys. Lett. and J. Appl. Phys., first two most-
cited journals in applied physics, in 2010-2011
are discussed herein.
 Bowing parameters of Eg
 Band offset ratio
 Current density
 SRH
 Auger
 Loss
 Extraction efficiency
Tsun-Hsin Wang/BLL/NCUE 78
Free parameters
 Bowing parameter of
InGaN:
 M. César, Y. Ke, W. Ji, H. Guo, and Z.
Mi, Appl. Phys. Lett., 98, 202107, 2011.
 R. R. Pelá, C. Caetano, M. Marques, L. G.
Ferreira, J. Furthmüller, and L. K. Teles,
Appl. Phys. Lett., 98, 151907, 2011.
 I. Gorczyca, T. Suski, N. E. Christensen,
and A. Svane, Appl. Phys. Lett., 98,
241905, 2011.
 Conclusion: Set to be
1.4 eV in my macro.
Tsun-Hsin Wang/BLL/NCUE 79
Free parameters
 Band offset ratio of AlGaN:
0.65 : 0.35
 M. F. Schubert, Appl. Phys. Lett., 96, 031102,
2010.
 K. S. Kim, J. H. Kim, S. J. Jung, Y. J. Park, and
S. N. Cho, Appl. Phys. Lett., 96, 091104, 2010.
 Y. Liao, C. Thomidis, C. Kao, and T. D.
Moustakas, Appl. Phys. Lett., 98, 081110, 2011.
Tsun-Hsin Wang/BLL/NCUE 80
Free parameters
 Band offset ratio of AlGaN: 0.5 : 0.5
 W. Lee, M.-H. Kim, D. Zhu, A. N. Noemaun, J. K. Kim, and E. F. Schubert, J. Appl. Phys., 107,
063102, 2010.
 L. Zhang, K. Ding, N. X. Liu, T. B. Wei, X. L. Ji, P. Ma, J. C. Yan, J. X. Wang, Y. P. Zeng,
and J. M. Li, Appl. Phys. Lett., 98, 101110, 2011.
Tsun-Hsin Wang/BLL/NCUE 81
Free parameters
 Current density:
 D. Zhu, A. N. Noemaun, M. F. Schubert,
J. Cho, E. F. Schubert, M. H. Crawford,
and D. D. Koleske, Appl. Phys. Lett., 96,
121110, 2010.
Tsun-Hsin Wang/BLL/NCUE 82
Free parameters
 SRH lifetime:
 W. G. Scheibenzuber, U. T. Schwarz, L. Sulmoni, J. Dorsaz, J.-F. Carlin, and N.
Grandjean, J. Appl. Phys., 109, 093106, 2011.
 A. David and M. J. Grundmann, Appl. Phys. Lett., 96, 103504, 2010.
 Conclusion: 1 ns ~ 100 ns
Tsun-Hsin Wang/BLL/NCUE 83
Free parameters
 Auger coefficient:
 E. Kioupakis, P. Rinke, K. T. Delaney, and C. G.
Van de Walle, Appl. Phys. Lett., 98, 161107, 2011.
 Q. Dai, Q. Shan, J. Cho, E. F. Schubert, M. H.
Crawford, D. D. Koleske, M.-H. Kim, and Y. Park,
Appl. Phys. Lett., 98, 033506, 2011.
 Conclusion: 1028 ~ 31 cm6s1
Tsun-Hsin Wang/BLL/NCUE 84
Free parameters
 Internal loss:
 Y. Zhang, T.-T. Kao, J. Liu, Z.
Lochner, S.-S. Kim, J.-H. Ryou, R. D.
Dupuis, and S.-C. Shen, J. Appl. Phys.,
109, 083115, 2011.
 J. H. Zhu, S. M. Zhang, H. Wang, D.
G. Zhao, J. J. Zhu, Z. S. Liu, D. S.
Jiang, Y. X. Qiu, and H. Yang, J. Appl.
Phys., 109, 093117, 2011.
 Conclusion: 103 ~ 7 m1
Tsun-Hsin Wang/BLL/NCUE 85
Free parameters
 Extraction efficiency:
 S. Chhajed, W. Lee, J. Cho, E. F.
Schubert, and J. K. Kim, Appl. Phys.
Lett., 98, 071102, 2011.
 E. Matioli, E. Rangel, M. Iza, B.
Fleury, N. Pfaff, J. Speck, E. Hu, and
C. Weisbuch, Appl. Phys. Lett., 96,
031108, 2010.
 Conclusion: 25% ~
95%
BACK TO Q&A
Tsun-Hsin Wang/BLL/NCUE 86
Macro
Macro
Optical
Index
Absorption
Auger
SRH
Radiative
Thermal Kappa
Electrical
Mobility
Affinity
k.p
Bandgap
APSYS by Crosslight Software Inc.
Tsun-Hsin Wang/BLL/NCUE 87
Macro
APSYS by Crosslight Software Inc.
Crosslight.mac
APSYS
ingan
algan
InGaN/
InGaN
…
More.mac
BACK TO Q&A
Tsun-Hsin Wang/BLL/NCUE 88
Recent progress on LEDs
Patterned sapphire substrate , Nanodisks …
Graded superlattice EBL, graded EBL, w/o
EBL, …
Thermal Auger…
Blue and green, low-In + high-In, …
Structure
Droop
White
LEDs
Device
Tsun-Hsin Wang/BLL/NCUE 89
Recent progress on LEDs
Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N.
Tamura, S. Tanaka, and C. Wetzel, “Defect-reduced green GaInN/GaN
light-emitting diode on nanopatterned sapphire,” Appl. Phys. Lett. 98,
151102 (2011).
Tsun-Hsin Wang/BLL/NCUE 90
Recent progress on LEDs
J. Hader, J. V. Moloney, and S. W. Koch,
“Temperature-dependence of the internal
efficiency droop in GaN-based diodes,”
Appl. Phys. Lett. 99, 181127 (2011).
 With increasing temperature, a strongly
decreasing strength of the loss
mechanism responsible for droop is
found which is in contrast to the usually
assumed behavior of Auger losses.
 However, the experimental observations
can be well reproduced assuming density
activated defect recombination with a
temperature independent recombination
time.
Tsun-Hsin Wang/BLL/NCUE 91
Recent progress on LEDs
Y.-J. Lu, H.-W. Lin, H.-Y. Chen, Y.-C. Yang, and S.
Gwo, “Single InGaN nanodisk light emitting diodes
as full-color subwavelength light sources,” Appl. Phys.
Lett. 98, 233101 (2011).
 Subwavelength electroluminescent sources with
spatial, spectral, and polarization controlling
capabilities are critical elements for optical
imaging and lithography beyond the diffraction
limit.
Tsun-Hsin Wang/BLL/NCUE 92
Recent progress on LEDs
Tsun-Hsin Wang/BLL/NCUE 93
Recent progress on LEDs
Y. Y. Zhang and Y. A. Yin, “Performance enhancement of
blue light-emitting diodes with a special designed AlGaN/GaN
superlattice electron-blocking layer,” Appl. Phys. Lett. 99,
221103 (2011).
Tsun-Hsin Wang/BLL/NCUE 94
Recent progress on LEDs
N. Zhang, Z. Liu, T. Wei, L. Zhang, X. Wei, X. Wang, H. Lu,
J. Li, and J. Wang, “Effect of the graded electron blocking
layer on the emission properties of GaN-based green light-
emitting diodes,” Appl. Phys. Lett. 100, 053504 (2012).
Tsun-Hsin Wang/BLL/NCUE 95
Recent progress on LEDs
D.-Y. Lee, S.-H. Han, D.-J. Lee, J. W. Lee, D.-J. Kim, Y. S.
Kim, and S.-T. Kim, “Effect of an electron blocking layer on
the piezoelectric field in InGaN/GaN multiple quantum well
light-emitting diodes,” Appl. Phys. Lett. 100, 041119 (2012).
Tsun-Hsin Wang/BLL/NCUE 95
Tsun-Hsin Wang/BLL/NCUE 96
Recent progress on LEDs
H. Long, T. J. Yu, L. Liu, Z. J. Yang, H. Fang, and G. Y. Zhang, “Different
exciton behaviors in blue and green wells of dual-wavelength InGaN/GaN
MQWs structures,” J. Appl. Phys. 111, 053110 (2012).
 Staggered structures with blue and green quantum wells (QWs) were grown by
metal organic vapor phase epitaxy (MOVPE) and characterized by
photoluminescence (PL) and time resolved photoluminescence (TRPL) at various
temperatures from 10K to 300 K.
 High efficiency green light was observed, accompanying with decreased intensity
of blue light.
 Efficiency of the green band was lower than that of the blue band below 100 K,
but became two times greater than the efficiency of blue when temperature
increased to room temperature.
 Three-dimensional and two-dimensional exciton behaviors were observed by
TRPL measurements corresponding to blue and green bands, respectively.
 It is considered that carrier tunneling from blue wells is a key process for high
efficiency luminescence in green QWs.
Tsun-Hsin Wang/BLL/NCUE 97
Recent progress on LEDs
Tsun-Hsin Wang/BLL/NCUE 98
Recent progress on LEDs
L. Liu, L. Wang, N. Liu, W. Yang, D. Li, W. Chen, Z. C. Feng,
Y.-C. Lee (NTU), I. Ferguson, and X. Hu, “Investigation of the
light emission properties and carrier dynamics in dual-
wavelength InGaN/GaN multiple-quantum well light emitting
diodes,” J. Appl. Phys. 112, 083101 (2012).
 Three dual-wavelength InGaN/GaN multiple quantum well (MQW) light
emitting diodes (LEDs) with increasing indium content are grown by
metal-organic chemical vapor deposition, which contain six periods of
low-In-content MQWs and two periods of high-In-content MQWs.
 For the low-In-content MQWs of three studied samples, their internal
quantum efficiency (IQE) shows a rising trend as the emission wavelength
increases from 406 nm to 430 nm due to the suppression of carriers escape
from the wells to the barriers.
Tsun-Hsin Wang/BLL/NCUE 99
Recent progress on LEDs
BACK TO Q&A
Tsun-Hsin Wang/BLL/NCUE 100
Curve fitting
0
50
100
150
200
250
3.2
3.4
3.6
Auger/10
Original LED
Auger×10
Auger/10
Original LED
Auger×10
0 50 100 150 200 250
Output
power
(mW)
Voltage
(V)
Current (mA)
0
50
100
150
200
250
3.2
3.4
3.6
SRH/10
Original LED
SRH×10
0 50 100 150 200 250
Output
power
(mW)
Voltage
(V)
Current (mA)
0
50
100
150
200
250
3.2
3.4
3.6
Radiative/10
Original LED
Radiative×10
Radiative/10
Original LED
Radiative×10
0 50 100 150 200 250
Output
power
(mW)
Voltage
(V)
Current (mA)
0
50
100
150
200
250
3.2
3.4
3.6
Loss/10
Original LED
Loss×10
0 50 100 150 200 250
Output
power
(mW)
Voltage
(V)
Current (mA)
Tsun-Hsin Wang/BLL/NCUE 101
Curve fitting
BACK TO Q&A
0
50
100
150
200
250
3.2
3.4
3.6
Extraction-10%
Original LED
Extraction+10%
Extraction-10%
Original LED
Extraction+10%
0 50 100 150 200 250
Output
power
(mW)
Voltage
(V)
Current (mA)
0
50
100
150
200
250
3.2
3.4
3.6
Screening-10%
Original LED
Screening+10%
0 50 100 150 200 250
Output
power
(mW)
Voltage
(V)
Current (mA)
0
50
100
150
200
250
3.2
3.4
3.6
Offset-10%
Original LED
Offset+10%
Offset-10%
Original LED
Offset+10%
0 50 100 150 200 250
Output
power
(mW)
Voltage
(V)
Current (mA)
Tsun-Hsin Wang/BLL/NCUE 102
Polarization charges
BACK TO Q&A
Interface (top/bottom) Green LEDs (1/m2)
p-GaN/p-EBL –2.63×1016
p-EBL/GaN +2.63×1016
GaN/In0.32Ga0.68N +1.67×1017
Tsun-Hsin Wang/BLL/NCUE 103
Macro
BACK TO Q&A

More Related Content

Similar to 博士論文口試-Ph.D. Defense (2013-06-19)-TH Wang.ppt

A*STAR Webinar on The AI Revolution in Materials Science
A*STAR Webinar on The AI Revolution in Materials ScienceA*STAR Webinar on The AI Revolution in Materials Science
A*STAR Webinar on The AI Revolution in Materials Science
University of California, San Diego
 
A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...
A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...
A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...
Arkansas State University
 
Bharat 5th DRC ppt_ nuclear fusion theoretical calculations
Bharat 5th DRC ppt_ nuclear fusion theoretical calculationsBharat 5th DRC ppt_ nuclear fusion theoretical calculations
Bharat 5th DRC ppt_ nuclear fusion theoretical calculations
BharatKashyap30
 
X-RAY MEASUREMENTS OF THE PARTICLE ACCELERATION PROPERTIES AT INWARD SHOCKS I...
X-RAY MEASUREMENTS OF THE PARTICLE ACCELERATION PROPERTIES AT INWARD SHOCKS I...X-RAY MEASUREMENTS OF THE PARTICLE ACCELERATION PROPERTIES AT INWARD SHOCKS I...
X-RAY MEASUREMENTS OF THE PARTICLE ACCELERATION PROPERTIES AT INWARD SHOCKS I...
Sérgio Sacani
 
Modeling organic electronics with ADF
Modeling organic electronics with ADFModeling organic electronics with ADF
Modeling organic electronics with ADF
Software for Chemistry & Materials
 
Measurement-induced long-distance entanglement with optomechanical transducers
Measurement-induced long-distance entanglement with optomechanical transducersMeasurement-induced long-distance entanglement with optomechanical transducers
Measurement-induced long-distance entanglement with optomechanical transducers
Ondrej Cernotik
 
X-ray diffraction analysis for material Characterization
X-ray diffraction analysis for material CharacterizationX-ray diffraction analysis for material Characterization
X-ray diffraction analysis for material Characterization
Sajjad Ullah
 
Model of visual cortex
Model of visual cortexModel of visual cortex
Model of visual cortex
SSA KPI
 
Many-body Green functions theory for electronic and optical properties of or...
Many-body Green functions theory for  electronic and optical properties of or...Many-body Green functions theory for  electronic and optical properties of or...
Many-body Green functions theory for electronic and optical properties of or...
Claudio Attaccalite
 
Deep two-photon brain imaging with a red-shifted fluorometric Ca2+ indicator
Deep two-photon brain imaging with a red-shifted fluorometric Ca2+ indicatorDeep two-photon brain imaging with a red-shifted fluorometric Ca2+ indicator
Deep two-photon brain imaging with a red-shifted fluorometric Ca2+ indicator
PetteriTeikariPhD
 
Acceptor–donor–acceptor small molecules based on derivatives of 3,4-ethylened...
Acceptor–donor–acceptor small molecules based on derivatives of 3,4-ethylened...Acceptor–donor–acceptor small molecules based on derivatives of 3,4-ethylened...
Acceptor–donor–acceptor small molecules based on derivatives of 3,4-ethylened...
Boniface Y. Antwi
 
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
Alexander Decker
 
Spin-Seeback Effect: a review
Spin-Seeback Effect: a reviewSpin-Seeback Effect: a review
Spin-Seeback Effect: a review
Dongwook Go
 
ThesisPresentation
ThesisPresentationThesisPresentation
ThesisPresentation
Kendi Muchungi PhD
 
Biological applications of optical tweezers
Biological applications of optical tweezersBiological applications of optical tweezers
Biological applications of optical tweezers
Apurba Paul
 
33 Measurement of beam-recoil observables Ox, Oz and target asymmetry T for t...
33 Measurement of beam-recoil observables Ox, Oz and target asymmetry T for t...33 Measurement of beam-recoil observables Ox, Oz and target asymmetry T for t...
33 Measurement of beam-recoil observables Ox, Oz and target asymmetry T for t...
Cristian Randieri PhD
 
Unraveling interfacial processes by scanning (electrochemical) probe microscopy
Unraveling interfacial processes by scanning  (electrochemical) probe microscopyUnraveling interfacial processes by scanning  (electrochemical) probe microscopy
Unraveling interfacial processes by scanning (electrochemical) probe microscopy
BMRS Meeting
 
Quantum force sensing with optomechanical transducers
Quantum force sensing with optomechanical transducersQuantum force sensing with optomechanical transducers
Quantum force sensing with optomechanical transducers
Ondrej Cernotik
 
Non linear electron dynamics in solids
Non linear electron dynamics in solidsNon linear electron dynamics in solids
Non linear electron dynamics in solids
Claudio Attaccalite
 
Theoretical and Applied Phase-Field: Glimpses of the activities in India
Theoretical and Applied Phase-Field: Glimpses of the activities in IndiaTheoretical and Applied Phase-Field: Glimpses of the activities in India
Theoretical and Applied Phase-Field: Glimpses of the activities in India
PFHub PFHub
 

Similar to 博士論文口試-Ph.D. Defense (2013-06-19)-TH Wang.ppt (20)

A*STAR Webinar on The AI Revolution in Materials Science
A*STAR Webinar on The AI Revolution in Materials ScienceA*STAR Webinar on The AI Revolution in Materials Science
A*STAR Webinar on The AI Revolution in Materials Science
 
A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...
A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...
A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...
 
Bharat 5th DRC ppt_ nuclear fusion theoretical calculations
Bharat 5th DRC ppt_ nuclear fusion theoretical calculationsBharat 5th DRC ppt_ nuclear fusion theoretical calculations
Bharat 5th DRC ppt_ nuclear fusion theoretical calculations
 
X-RAY MEASUREMENTS OF THE PARTICLE ACCELERATION PROPERTIES AT INWARD SHOCKS I...
X-RAY MEASUREMENTS OF THE PARTICLE ACCELERATION PROPERTIES AT INWARD SHOCKS I...X-RAY MEASUREMENTS OF THE PARTICLE ACCELERATION PROPERTIES AT INWARD SHOCKS I...
X-RAY MEASUREMENTS OF THE PARTICLE ACCELERATION PROPERTIES AT INWARD SHOCKS I...
 
Modeling organic electronics with ADF
Modeling organic electronics with ADFModeling organic electronics with ADF
Modeling organic electronics with ADF
 
Measurement-induced long-distance entanglement with optomechanical transducers
Measurement-induced long-distance entanglement with optomechanical transducersMeasurement-induced long-distance entanglement with optomechanical transducers
Measurement-induced long-distance entanglement with optomechanical transducers
 
X-ray diffraction analysis for material Characterization
X-ray diffraction analysis for material CharacterizationX-ray diffraction analysis for material Characterization
X-ray diffraction analysis for material Characterization
 
Model of visual cortex
Model of visual cortexModel of visual cortex
Model of visual cortex
 
Many-body Green functions theory for electronic and optical properties of or...
Many-body Green functions theory for  electronic and optical properties of or...Many-body Green functions theory for  electronic and optical properties of or...
Many-body Green functions theory for electronic and optical properties of or...
 
Deep two-photon brain imaging with a red-shifted fluorometric Ca2+ indicator
Deep two-photon brain imaging with a red-shifted fluorometric Ca2+ indicatorDeep two-photon brain imaging with a red-shifted fluorometric Ca2+ indicator
Deep two-photon brain imaging with a red-shifted fluorometric Ca2+ indicator
 
Acceptor–donor–acceptor small molecules based on derivatives of 3,4-ethylened...
Acceptor–donor–acceptor small molecules based on derivatives of 3,4-ethylened...Acceptor–donor–acceptor small molecules based on derivatives of 3,4-ethylened...
Acceptor–donor–acceptor small molecules based on derivatives of 3,4-ethylened...
 
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
 
Spin-Seeback Effect: a review
Spin-Seeback Effect: a reviewSpin-Seeback Effect: a review
Spin-Seeback Effect: a review
 
ThesisPresentation
ThesisPresentationThesisPresentation
ThesisPresentation
 
Biological applications of optical tweezers
Biological applications of optical tweezersBiological applications of optical tweezers
Biological applications of optical tweezers
 
33 Measurement of beam-recoil observables Ox, Oz and target asymmetry T for t...
33 Measurement of beam-recoil observables Ox, Oz and target asymmetry T for t...33 Measurement of beam-recoil observables Ox, Oz and target asymmetry T for t...
33 Measurement of beam-recoil observables Ox, Oz and target asymmetry T for t...
 
Unraveling interfacial processes by scanning (electrochemical) probe microscopy
Unraveling interfacial processes by scanning  (electrochemical) probe microscopyUnraveling interfacial processes by scanning  (electrochemical) probe microscopy
Unraveling interfacial processes by scanning (electrochemical) probe microscopy
 
Quantum force sensing with optomechanical transducers
Quantum force sensing with optomechanical transducersQuantum force sensing with optomechanical transducers
Quantum force sensing with optomechanical transducers
 
Non linear electron dynamics in solids
Non linear electron dynamics in solidsNon linear electron dynamics in solids
Non linear electron dynamics in solids
 
Theoretical and Applied Phase-Field: Glimpses of the activities in India
Theoretical and Applied Phase-Field: Glimpses of the activities in IndiaTheoretical and Applied Phase-Field: Glimpses of the activities in India
Theoretical and Applied Phase-Field: Glimpses of the activities in India
 

Recently uploaded

waterlessdyeingtechnolgyusing carbon dioxide chemicalspdf
waterlessdyeingtechnolgyusing carbon dioxide chemicalspdfwaterlessdyeingtechnolgyusing carbon dioxide chemicalspdf
waterlessdyeingtechnolgyusing carbon dioxide chemicalspdf
LengamoLAppostilic
 
molar-distalization in orthodontics-seminar.pptx
molar-distalization in orthodontics-seminar.pptxmolar-distalization in orthodontics-seminar.pptx
molar-distalization in orthodontics-seminar.pptx
Anagha Prasad
 
Applied Science: Thermodynamics, Laws & Methodology.pdf
Applied Science: Thermodynamics, Laws & Methodology.pdfApplied Science: Thermodynamics, Laws & Methodology.pdf
Applied Science: Thermodynamics, Laws & Methodology.pdf
University of Hertfordshire
 
EWOCS-I: The catalog of X-ray sources in Westerlund 1 from the Extended Weste...
EWOCS-I: The catalog of X-ray sources in Westerlund 1 from the Extended Weste...EWOCS-I: The catalog of X-ray sources in Westerlund 1 from the Extended Weste...
EWOCS-I: The catalog of X-ray sources in Westerlund 1 from the Extended Weste...
Sérgio Sacani
 
Micronuclei test.M.sc.zoology.fisheries.
Micronuclei test.M.sc.zoology.fisheries.Micronuclei test.M.sc.zoology.fisheries.
Micronuclei test.M.sc.zoology.fisheries.
Aditi Bajpai
 
Randomised Optimisation Algorithms in DAPHNE
Randomised Optimisation Algorithms in DAPHNERandomised Optimisation Algorithms in DAPHNE
Randomised Optimisation Algorithms in DAPHNE
University of Maribor
 
Authoring a personal GPT for your research and practice: How we created the Q...
Authoring a personal GPT for your research and practice: How we created the Q...Authoring a personal GPT for your research and practice: How we created the Q...
Authoring a personal GPT for your research and practice: How we created the Q...
Leonel Morgado
 
11.1 Role of physical biological in deterioration of grains.pdf
11.1 Role of physical biological in deterioration of grains.pdf11.1 Role of physical biological in deterioration of grains.pdf
11.1 Role of physical biological in deterioration of grains.pdf
PirithiRaju
 
Mending Clothing to Support Sustainable Fashion_CIMaR 2024.pdf
Mending Clothing to Support Sustainable Fashion_CIMaR 2024.pdfMending Clothing to Support Sustainable Fashion_CIMaR 2024.pdf
Mending Clothing to Support Sustainable Fashion_CIMaR 2024.pdf
Selcen Ozturkcan
 
快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样
快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样
快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样
hozt8xgk
 
The debris of the ‘last major merger’ is dynamically young
The debris of the ‘last major merger’ is dynamically youngThe debris of the ‘last major merger’ is dynamically young
The debris of the ‘last major merger’ is dynamically young
Sérgio Sacani
 
Sexuality - Issues, Attitude and Behaviour - Applied Social Psychology - Psyc...
Sexuality - Issues, Attitude and Behaviour - Applied Social Psychology - Psyc...Sexuality - Issues, Attitude and Behaviour - Applied Social Psychology - Psyc...
Sexuality - Issues, Attitude and Behaviour - Applied Social Psychology - Psyc...
PsychoTech Services
 
(June 12, 2024) Webinar: Development of PET theranostics targeting the molecu...
(June 12, 2024) Webinar: Development of PET theranostics targeting the molecu...(June 12, 2024) Webinar: Development of PET theranostics targeting the molecu...
(June 12, 2024) Webinar: Development of PET theranostics targeting the molecu...
Scintica Instrumentation
 
Basics of crystallography, crystal systems, classes and different forms
Basics of crystallography, crystal systems, classes and different formsBasics of crystallography, crystal systems, classes and different forms
Basics of crystallography, crystal systems, classes and different forms
MaheshaNanjegowda
 
Sciences of Europe journal No 142 (2024)
Sciences of Europe journal No 142 (2024)Sciences of Europe journal No 142 (2024)
Sciences of Europe journal No 142 (2024)
Sciences of Europe
 
Juaristi, Jon. - El canon espanol. El legado de la cultura española a la civi...
Juaristi, Jon. - El canon espanol. El legado de la cultura española a la civi...Juaristi, Jon. - El canon espanol. El legado de la cultura española a la civi...
Juaristi, Jon. - El canon espanol. El legado de la cultura española a la civi...
frank0071
 
Gadgets for management of stored product pests_Dr.UPR.pdf
Gadgets for management of stored product pests_Dr.UPR.pdfGadgets for management of stored product pests_Dr.UPR.pdf
Gadgets for management of stored product pests_Dr.UPR.pdf
PirithiRaju
 
GBSN - Biochemistry (Unit 6) Chemistry of Proteins
GBSN - Biochemistry (Unit 6) Chemistry of ProteinsGBSN - Biochemistry (Unit 6) Chemistry of Proteins
GBSN - Biochemistry (Unit 6) Chemistry of Proteins
Areesha Ahmad
 
The cost of acquiring information by natural selection
The cost of acquiring information by natural selectionThe cost of acquiring information by natural selection
The cost of acquiring information by natural selection
Carl Bergstrom
 
ESR spectroscopy in liquid food and beverages.pptx
ESR spectroscopy in liquid food and beverages.pptxESR spectroscopy in liquid food and beverages.pptx
ESR spectroscopy in liquid food and beverages.pptx
PRIYANKA PATEL
 

Recently uploaded (20)

waterlessdyeingtechnolgyusing carbon dioxide chemicalspdf
waterlessdyeingtechnolgyusing carbon dioxide chemicalspdfwaterlessdyeingtechnolgyusing carbon dioxide chemicalspdf
waterlessdyeingtechnolgyusing carbon dioxide chemicalspdf
 
molar-distalization in orthodontics-seminar.pptx
molar-distalization in orthodontics-seminar.pptxmolar-distalization in orthodontics-seminar.pptx
molar-distalization in orthodontics-seminar.pptx
 
Applied Science: Thermodynamics, Laws & Methodology.pdf
Applied Science: Thermodynamics, Laws & Methodology.pdfApplied Science: Thermodynamics, Laws & Methodology.pdf
Applied Science: Thermodynamics, Laws & Methodology.pdf
 
EWOCS-I: The catalog of X-ray sources in Westerlund 1 from the Extended Weste...
EWOCS-I: The catalog of X-ray sources in Westerlund 1 from the Extended Weste...EWOCS-I: The catalog of X-ray sources in Westerlund 1 from the Extended Weste...
EWOCS-I: The catalog of X-ray sources in Westerlund 1 from the Extended Weste...
 
Micronuclei test.M.sc.zoology.fisheries.
Micronuclei test.M.sc.zoology.fisheries.Micronuclei test.M.sc.zoology.fisheries.
Micronuclei test.M.sc.zoology.fisheries.
 
Randomised Optimisation Algorithms in DAPHNE
Randomised Optimisation Algorithms in DAPHNERandomised Optimisation Algorithms in DAPHNE
Randomised Optimisation Algorithms in DAPHNE
 
Authoring a personal GPT for your research and practice: How we created the Q...
Authoring a personal GPT for your research and practice: How we created the Q...Authoring a personal GPT for your research and practice: How we created the Q...
Authoring a personal GPT for your research and practice: How we created the Q...
 
11.1 Role of physical biological in deterioration of grains.pdf
11.1 Role of physical biological in deterioration of grains.pdf11.1 Role of physical biological in deterioration of grains.pdf
11.1 Role of physical biological in deterioration of grains.pdf
 
Mending Clothing to Support Sustainable Fashion_CIMaR 2024.pdf
Mending Clothing to Support Sustainable Fashion_CIMaR 2024.pdfMending Clothing to Support Sustainable Fashion_CIMaR 2024.pdf
Mending Clothing to Support Sustainable Fashion_CIMaR 2024.pdf
 
快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样
快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样
快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样
 
The debris of the ‘last major merger’ is dynamically young
The debris of the ‘last major merger’ is dynamically youngThe debris of the ‘last major merger’ is dynamically young
The debris of the ‘last major merger’ is dynamically young
 
Sexuality - Issues, Attitude and Behaviour - Applied Social Psychology - Psyc...
Sexuality - Issues, Attitude and Behaviour - Applied Social Psychology - Psyc...Sexuality - Issues, Attitude and Behaviour - Applied Social Psychology - Psyc...
Sexuality - Issues, Attitude and Behaviour - Applied Social Psychology - Psyc...
 
(June 12, 2024) Webinar: Development of PET theranostics targeting the molecu...
(June 12, 2024) Webinar: Development of PET theranostics targeting the molecu...(June 12, 2024) Webinar: Development of PET theranostics targeting the molecu...
(June 12, 2024) Webinar: Development of PET theranostics targeting the molecu...
 
Basics of crystallography, crystal systems, classes and different forms
Basics of crystallography, crystal systems, classes and different formsBasics of crystallography, crystal systems, classes and different forms
Basics of crystallography, crystal systems, classes and different forms
 
Sciences of Europe journal No 142 (2024)
Sciences of Europe journal No 142 (2024)Sciences of Europe journal No 142 (2024)
Sciences of Europe journal No 142 (2024)
 
Juaristi, Jon. - El canon espanol. El legado de la cultura española a la civi...
Juaristi, Jon. - El canon espanol. El legado de la cultura española a la civi...Juaristi, Jon. - El canon espanol. El legado de la cultura española a la civi...
Juaristi, Jon. - El canon espanol. El legado de la cultura española a la civi...
 
Gadgets for management of stored product pests_Dr.UPR.pdf
Gadgets for management of stored product pests_Dr.UPR.pdfGadgets for management of stored product pests_Dr.UPR.pdf
Gadgets for management of stored product pests_Dr.UPR.pdf
 
GBSN - Biochemistry (Unit 6) Chemistry of Proteins
GBSN - Biochemistry (Unit 6) Chemistry of ProteinsGBSN - Biochemistry (Unit 6) Chemistry of Proteins
GBSN - Biochemistry (Unit 6) Chemistry of Proteins
 
The cost of acquiring information by natural selection
The cost of acquiring information by natural selectionThe cost of acquiring information by natural selection
The cost of acquiring information by natural selection
 
ESR spectroscopy in liquid food and beverages.pptx
ESR spectroscopy in liquid food and beverages.pptxESR spectroscopy in liquid food and beverages.pptx
ESR spectroscopy in liquid food and beverages.pptx
 

博士論文口試-Ph.D. Defense (2013-06-19)-TH Wang.ppt

  • 1. Numerical investigation of polarization effects and dual-wavelength emission in InGaN light-emitting diodes Student: Tsun-Hsin Wang Advisor: Prof. Yen-Kuang Kuo Date: 2013-06-22 Ph.D. Defense
  • 2. Tsun-Hsin Wang/BLL/NCUE 2 Outline 1. Introduction 2. Literature review 3. Polarization effects 4. Dual-wavelength emission 5. Conclusion 6. Q&A
  • 3. Tsun-Hsin Wang/BLL/NCUE 3 Outline 1. Introduction 2. Literature review 3. Polarization effects 4. Dual-wavelength emission 5. Conclusion 6. Q&A
  • 4. Tsun-Hsin Wang/BLL/NCUE 4 1. Introduction 1.1 Dissertation proposal 1.2 Physical models and applied equations 1.3 Material parameters 1.4 Free parameters 1.5 Limit and criteria of numerical simulation
  • 5. Tsun-Hsin Wang/BLL/NCUE 5 1. Introduction (1.1 Dissertation proposal) Research motivation Proposed approaches InGaN light-emitting diodes (LEDs) with GaN-InGaN-GaN barriers Monolithic white InGaN LEDs Proposed future works Publication list (2011-10-01)
  • 6. Tsun-Hsin Wang/BLL/NCUE 6 1. Introduction (1.2 Physical models and applied equations) ( / ) ( ) ( ) ( ) ( ) D A f p n p p p B n n n B e p n N N N p e J e R G t n e J e R G t J e p k T p J e N n N k T n                                        Models Poisson’s equation Current continuity equations Drift and diffusion models Chen et al., Appl. Phys. B- Lasers Opt. 98, 779 (2010).
  • 7. Tsun-Hsin Wang/BLL/NCUE 7 1. Introduction (1.2 Physical models and applied equations) Green InGaN LEDs Mobility in cm2/V-s max min min 1.37 17 0.29 17 ( ) 1 ( ) 298 ( , ) 386 1 ( ) 1.0 10 174 ( , ) 132 1 ( ) 1.0 1 : 0 n ref n n N N N InGaN N N AlGaN N Elec N tron                    Wu, J. Appl. Phys. 106, 011101 (2009). Caughey, Proc. IEEE 55, 2192 (1967). ( ) 10 : ( ) p p Ho InGaN A le lGaN    
  • 8. Tsun-Hsin Wang/BLL/NCUE 8 1. Introduction (1.2 Physical models and applied equations) Polarization in C/m2 1 ( ) ( ) (1 ) ( ) (1 ) ( ) 0.042 0.034 (1 ) 0.038 (1 ) sp x x sp sp sp P In Ga N x P InN x P GaN x x B InGaN x x x x                     1 1 1 ( ) ( ) ( ) total x x sp x x pz x x P In Ga N P In Ga N P In Ga N      1 ( ) ( ) (1 ) ( ) (1 ) ( ) 0.090 0.034 (1 ) 0.090 (1 ) sp x x sp sp sp P Al Ga N x P AlN x P GaN x x B AlGaN x x x x                    1 1 1 ( ) ( ) ( ) total x x sp x x pz x x P Al Ga N P Al Ga N P Al Ga N      Wu, J. Appl. Phys. 106, 011101 (2009). Fiorentini et al., Appl. Phys. Lett. 80, 1204 (2002).
  • 9. Tsun-Hsin Wang/BLL/NCUE 9 1. Introduction (1.2 Physical models and applied equations) Polarization in C/m2 0 xx yy a a a      13 33 2 zz xx C C     1 ( ) ( ) (1 ) ( ) pz x x pz pz P Al Ga N x P AlN x P GaN       2 ( ) 1.347 7.559 pz P InN        2 ( ) 1.808 7.888 pz P AlN        1 ( ) ( ) (1 ) ( ) pz x x pz pz P In Ga N x P InN x P GaN       Wu, J. Appl. Phys. 106, 011101 (2009). 2 ( ) 0.918 9.541 pz P GaN       
  • 10. Tsun-Hsin Wang/BLL/NCUE 10 1. Introduction (1.2 Physical models and applied equations) Bandgap energy (binary) in eV Wu, J. Appl. Phys. 106, 011101 (2009). 2 3 2 1.799 10 ( , ) ( ,0) 6.25 1462 AlN g g AlN T T E AlN T E AlN T T            Varshni, Physica 34, 149 (1967). 2 3 2 0.909 10 ( , ) ( ,0) 3.51 830 GaN g g GaN T T E GaN T E GaN T T            2 3 2 0.414 10 ( , ) ( ,0) 0.69 454 InN g g InN T T E InN T E InN T T           
  • 11. Tsun-Hsin Wang/BLL/NCUE 11 1. Introduction (1.2 Physical models and applied equations) Bandgap energy (ternary) in eV 1 ( , ) ( , ) (1 ) ( , ) (1 ) ( ) 0.69 3.51 (1 ) 2.1 (1 ) [ 0 ] g x x g g g E In Ga N T x E InN T x E GaN T x x B InGaN x x T x K x                     1 ( , ) ( , ) (1 ) ( , ) (1 ) ( ) 6.25 3.51 (1 ) 0.24 (1 ) [ ] 0 g x x g g g E Al Ga N T x E AlN T x E GaN T x x B AlGaN x x x x T K                     Wu, J. Appl. Phys. 106, 011101 (2009).
  • 12. Tsun-Hsin Wang/BLL/NCUE 12 1. Introduction (1.2 Physical models and applied equations) Recombination rate 2 3 2 2 3 3 2 3 Recombination=Radiative+Nonradiative Nonradiative=Shockley-Read-Hall (SRH)+Auger 1 SRH Radiative Auger C SRH C C C C Radiative IQE C C C C Auger C C C A n A n B n C n B n A n B n C n C n A n B n C n                                 Cho et al., Laser Photonics Rev. 7, 408 (2013).
  • 13. Tsun-Hsin Wang/BLL/NCUE 13 1. Introduction (1.2 Physical models and applied equations) Efficiency External quantum efficiency (EQE) =Internal quantum efficiency (IQE) Extraction efficiency (EE) Injection efficiency (IE) (max) (min) Efficiency droop 100% (max) EQE IQE EE IE IQE IQE IQE                Cho et al., Laser Photonics Rev. 7, 408 (2013).
  • 14. Tsun-Hsin Wang/BLL/NCUE 14 1. Introduction (1.3 Material parameters) 6 × 6 k∙p model 6 6 0 0 H L H H H         t t H t t t t F K iH H K G iH iH iH                  t t L t t t t F K iH H K G iH iH iH                  1 2 F         1 2 G         2 2 2 2 1 2 1 2 0 [ ( )] ( ) 2 z x y zz xx yy Ak A k k D D m           2 2 2 2 3 4 3 4 0 [ ( )] ( ) 2 z x y zz xx yy A k A k k D D m           2 2 2 5 0 ( ) 2 t x y K A k k m   2 2 2 6 0 2 t z x y H A k k k m   3 2    Zhao et al., IEEE J. Quantum Electron. 45, 66 (2009).
  • 15. Tsun-Hsin Wang/BLL/NCUE 15 1. Introduction (1.3 Material parameters) Parameters Symbol (unit) GaN InN AlN Lattice constant a0 (Å) 3.189 3.533 3.112 Lattice constant (c-axis) c0 (Å) 5.185 5.693 4.982 Lattice mismatch to GaN template ε 0 2.47% –9.74% Bandgap energy (0 K) Eg(0) (eV) 3.51 0.69 6.25 Varshni parameter α (meV/K) 0.909 0.414 1.799 Varshni parameter β (K) 830 454 1462 Spontaneous polarization PSP (C/m2) –0.034 –0.042 0.090 Piezoelectric polarization PPZ (C/m2) 0 –0.451 0.205 Crystal-field split energy Δcr (eV) 0.010 0.040 –0.169 Spin-orbit split energy Δso (eV) 0.017 0.005 0.019 Hole effective mass parameter A1 –7.21 –8.21 –3.86 A2 –0.44 –0.68 –0.25 A3 6.68 7.57 3.58 A4 –3.46 –5.23 –1.32 A5 –3.40 –5.11 –1.47 A6 –4.90 –5.96 –1.64 Hydrostatic deformation potential (c-axis) az (eV) –7.1 –4.2 –3.4 Hydrostatic deformation potential (transverse) at (eV) –9.9 –4.2 –11.8 Shear deformation potential D1 (eV) –3.6 –3.6 –2.9 D2 (eV) 1.7 1.7 4.9 D3 (eV) 5.2 5.2 9.4 D4 (eV) –2.7 –2.7 –4.0 Elastic stiffness constant c13 (GPa) 106 92 108 c33 (GPa) 398 224 373 Electron effective mass (c-axis) 0.20 0.07 0.30 Electron effective mass (transverse) 0.21 0.07 0.32 z e 0 m m t e 0 m m Wu, J. Appl. Phys. 106, 011101 (2009).
  • 16. Tsun-Hsin Wang/BLL/NCUE 16 1. Introduction (1.3 Material parameters) Parameters Symbol (unit) InGaN AlGaN Minimum dopant dependent electron mobility (cm2/V-s) 386 132 Maximum dopant dependent electron mobility (cm2/V-s) 684 306 Referenced doping density of impurity Nref (1/cm3) 1.0 × 1017 1.0 × 1017 Slope of mobility versus logarithmic doping density for electron γ 1.37 0.29 Hole mobility (cm2/V-s) 10 10 Bowing parameter of bandgap energy BEG (eV) 2.1 0.24 Bowing parameter of spontaneous polarization BSP (C/m2) 0.038 0.09 min  max   Wu, J. Appl. Phys. 106, 011101 (2009).
  • 17. Tsun-Hsin Wang/BLL/NCUE 17 1. Introduction (1.4 Free parameters) Parameters Value (unit) Band offset ratio 0.67 : 0.33 SRH lifetime 10 (ns) Auger coefficient 0.55 × 1017 (cm6/s) Radiative coefficient 2.0 × 10‒11 (cm3/s) Internal loss 20 (cm‒1) Percentage of polarization charges 50% Extraction efficiency 60%
  • 18. Tsun-Hsin Wang/BLL/NCUE 18 1. Introduction (1.5 Limits and criteria of numerical simulation)  It is time-saving and cost-saving to evaluate the fabrication process by way of technology computer-aided design (TCAD) based on the well- established physical models and carefully-verified material parameters.  However, the simulation results can’t exceed the limits and criteria of the physical models. In other words, it is not suitable to tune free parameters roughly to fit any condition of the LEDs as well as experimental data can’t be gotten beyond the accuracy.
  • 19. Tsun-Hsin Wang/BLL/NCUE 19 Outline 1. Introduction 2. Literature review 3. Polarization effects 4. Dual-wavelength emission 5. Conclusion 6. Q&A
  • 20. Tsun-Hsin Wang/BLL/NCUE 20 2. Literature review 2.1 Landmark developments 2.2 Recent progress 2.3 Industrial survey 2.4 Efficiency droop 2.5 Referenced device structures Schubert et al., Science 308, 1274 (2005).
  • 21. Tsun-Hsin Wang/BLL/NCUE 21 2. Literature review (2.1 Landmark developments) Pimputkar et al., Nat. Photonics 3, 180 (2009).
  • 22. Tsun-Hsin Wang/BLL/NCUE 22 2. Literature review (2.2 Recent progress) Lee et al., Appl. Phys. Lett. 100, 061107 (2012). Hwang et al., Appl. Phys. Lett. 99, 181115 (2011). Chen et al., Appl. Phys. Lett. 100, 241112 (2012).
  • 23. Tsun-Hsin Wang/BLL/NCUE 23 2. Literature review (2.3 Industrial survey) Epistar Inc. in 2013.5. (http://www.epistar.com.tw)
  • 24. Tsun-Hsin Wang/BLL/NCUE 24 2. Literature review (2.4 Efficiency droop) Cho et al., Laser Photonics Rev. 7, 408 (2013). Current droop mechanisms 1. Defect-related mechanisms 2. Auger recombination 3. Electron leakage
  • 25. Tsun-Hsin Wang/BLL/NCUE 25 2. Literature review (2.4 Efficiency droop) Kioupakis et al., Appl. Phys. Lett. 98, 161107 (2011).
  • 26. Tsun-Hsin Wang/BLL/NCUE 26 2. Literature review (2.5 Referenced device structures) Blue InGaN LEDs sapphire u-GaN n-GaN 5×1018 cm3 4500 nm i-In0.21Ga0.79N/GaN 2 nm / 15 nm p-Al0.15Ga0.85N 1.2×1018 cm3 20 nm p contact n contact p-GaN 1.2×1018 cm3 500 nm Kuo et al., Appl. Phys. Lett. 95, 01116 (2009).
  • 27. Tsun-Hsin Wang/BLL/NCUE 27 2. Literature review (2.5 Referenced device structures) Green InGaN LEDs sapphire u-GaN n-GaN 5×1018 cm3 3000 nm i-In0.32Ga0.68N/GaN 2 nm / 10 nm p-Al0.13Ga0.87N 5×1017 cm3 20 nm p contact n contact p-GaN 5×1017 cm3 200 nm
  • 28. Tsun-Hsin Wang/BLL/NCUE 28 Outline 1. Introduction 2. Literature review 3. Polarization effects 4. Dual-wavelength emission 5. Conclusion 6. Q&A
  • 29. Tsun-Hsin Wang/BLL/NCUE 29 3. Polarization effects 3.1 GaN-InGaN-GaN barriers 3.2 Tailored configuration 3.3 InGaN-AlGaN-InGaN barriers 3.4 Shallow first well 3.5 Slightly-doped step-like electron blocking layer (EBL) 3.6 Polarization-reversed EBL 3.7 Other approaches 3.8 Summary More nonradiative recombination More radiative recombination
  • 30. Tsun-Hsin Wang/BLL/NCUE 30 3. Polarization effects (3.1 GaN-InGaN-GaN barriers) Kuo et al., Appl. Phys. Lett. 99, 091107 (2011).
  • 31. Tsun-Hsin Wang/BLL/NCUE 31 3. Polarization effects (3.1 GaN-InGaN-GaN barriers)
  • 32. Tsun-Hsin Wang/BLL/NCUE 32 3. Polarization effects (3.2 Tailored configuration) Kuo et al., IEEE J. Quantum Electron. 48, 946 (2012). Location
  • 33. Tsun-Hsin Wang/BLL/NCUE 33 3. Polarization effects (3.2 Tailored configuration) Numbers
  • 34. Tsun-Hsin Wang/BLL/NCUE 34 3. Polarization effects (3.2 Tailored configuration) Indium composition
  • 35. Tsun-Hsin Wang/BLL/NCUE 35 3. Polarization effects (3.3 InGaN-AlGaN-InGaN barriers) Kuo et al., Appl. Phys. Lett. 100, 031112 (2012).
  • 36. Tsun-Hsin Wang/BLL/NCUE 36 3. Polarization effects (3.3 InGaN-AlGaN-InGaN barriers)
  • 37. Tsun-Hsin Wang/BLL/NCUE 37 3. Polarization effects (3.4 Shallow first well) Wang et al., IEEE Photonics Technol. Lett. 24, 2084 (2012).
  • 38. Tsun-Hsin Wang/BLL/NCUE 38 3. Polarization effects (3.4 Shallow first well)
  • 39. Tsun-Hsin Wang/BLL/NCUE 39 3. Polarization effects (3.5 Slightly-doped step-like EBL) Kuo et al., IEEE Photonics Technol. Lett. 24, 1506 (2012).
  • 40. Tsun-Hsin Wang/BLL/NCUE 40 3. Polarization effects (3.5 Slightly-doped step-like EBL)
  • 41. Tsun-Hsin Wang/BLL/NCUE 41 3. Polarization effects (3.6 Polarization-reversed EBL)
  • 42. Tsun-Hsin Wang/BLL/NCUE 42 3. Polarization effects (3.6 Polarization-reversed EBL)
  • 43. Tsun-Hsin Wang/BLL/NCUE 43 3. Polarization effects (3.6 Polarization-reversed EBL)
  • 44. Tsun-Hsin Wang/BLL/NCUE 44 3. Polarization effects (3.6 Polarization-reversed EBL) Comparing the operation of the reversed AlGaN- GaN-InGaN EBL LEDs, one can see that the IQE of the LEDs is higher at 350 K at 300 mA than at 300 K because of the lower electron current leakage.
  • 45. Tsun-Hsin Wang/BLL/NCUE 45 3. Polarization effects (3.7 Other approaches)
  • 46. Tsun-Hsin Wang/BLL/NCUE 46 3. Polarization effects (3.7 Other approaches)
  • 47. Tsun-Hsin Wang/BLL/NCUE 47 3. Polarization effects (3.8 Summary) In this chapter, effective approaches toward the solution of efficiency droop with • GaN-InGaN-GaN barriers • InGaN-AlGaN-InGaN barriers • shallow first well • slightly-doped step-like EBL • polarization-reversed AlGaN-GaN-InGaN EBL are discussed and compared. 1. With such designs, the progress of blue InGaN-based LEDs is extensively improved in solid-state lighting under different circumstances of epitaxial condition such as low-pressure or atomic-pressure. 2. The physical origins of improved opto-electrical performance and suppressed efficiency droop can be attributed to reduced electron leakage and enhanced hole injection efficiency.
  • 48. Tsun-Hsin Wang/BLL/NCUE 48 Outline 1. Introduction 2. Literature review 3. Polarization effects 4. Dual-wavelength emission 5. Conclusion 6. Q&A
  • 49. Tsun-Hsin Wang/BLL/NCUE 49 4. Dual-wavelength emission 4.1 Effects of polarization state 4.2 Spectral competition 4.3 Nonradiative competition 4.4 Summary
  • 50. Tsun-Hsin Wang/BLL/NCUE 50 4. Dual-wavelength emission (4.1 Effects of polarization state)
  • 51. Tsun-Hsin Wang/BLL/NCUE 51 4. Dual-wavelength emission (4.1 Effects of polarization state)
  • 52. Tsun-Hsin Wang/BLL/NCUE 52 4. Dual-wavelength emission (4.2 Spectral competition) Wang et al., Appl. Phys. Lett. 102, 171112 (2013).
  • 53. Tsun-Hsin Wang/BLL/NCUE 53 4. Dual-wavelength emission (4.2 Spectral competition) Wang et al., Appl. Phys. Lett. 102, 171112 (2013).
  • 54. Tsun-Hsin Wang/BLL/NCUE 54 4. Dual-wavelength emission (4.3 Nonradiative competition)
  • 55. Tsun-Hsin Wang/BLL/NCUE 55 4. Dual-wavelength emission (4.3 Nonradiative competition)
  • 56. Tsun-Hsin Wang/BLL/NCUE 56 4. Dual-wavelength emission (4.3 Nonradiative competition)
  • 57. Tsun-Hsin Wang/BLL/NCUE 57 4. Dual-wavelength emission (4.4 Summary) In conclusion, in addition to the issue of crystalline quality that is generally desired for good LED performance, the efficient suppression of piezoelectric polarization effect and Auger recombination also play important roles toward the commercial realization of effective dual-wavelength broad-band LEDs.
  • 58. Tsun-Hsin Wang/BLL/NCUE 58 Outline 1. Introduction 2. Literature review 3. Polarization effects 4. Dual-wavelength emission 5. Conclusion 6. Q&A
  • 59. Tsun-Hsin Wang/BLL/NCUE 59 5. Conclusion 5.1 Conclusion 5.2 Future works 5.3 Simulated input files 5.4 Publication list
  • 60. Tsun-Hsin Wang/BLL/NCUE 60 5. Conclusion (5.1 Conclusion) In this dissertation, the spontaneous and piezoelectric polarizations in InGaN LEDs leads to severe electron leakage, insufficient efficiency of hole injection, serious Auger recombination and other effects. Therefore, InGaN LEDs with • GaN-InGaN-GaN barriers, • InGaN-AlGaN-InGaN barriers, • shallow first well, • slightly-doped step-like EBL, and • polarization reversed AlGaN-GaN-InGaN EBL are beneficial for improvement of optical and electrical performance compared with conventional device structures.
  • 61. Tsun-Hsin Wang/BLL/NCUE 61 5. Conclusion (5.1 Conclusion) Furthermore, for the commercial realization of monolithic phosphor-free white InGaN LEDs, broad-band LED with shallow first well and tailored QW configuration is suggested in order to overcome • detrimental polarization state, • spectral competition, and • obstructive Auger recombination in dual-wavelength emission.
  • 62. Tsun-Hsin Wang/BLL/NCUE 62 5. Conclusion (5.2 Future works) 1. An overall solution of efficiency droop and a generally accepted model are still on demand. Multi- functionally integrated device structure which has better and better performance such as • optical, • electrical, • thermal, • spectral, • spatial, and other characteristics remains desirable.
  • 63. Tsun-Hsin Wang/BLL/NCUE 63 5. Conclusion (5.2 Future works) 2. Monolithic phosphor-free white InGaN LEDs are still possible candidates of future generation in solid- state lighting. The widely-ranged bandgap energies of nitrides can be very advantageous if the issues of • polarization effects and • epitaxial processes will be overcome in the future.
  • 64. Tsun-Hsin Wang/BLL/NCUE 64 5. Conclusion (5.3 Simulated input files) *.sol *.layer *.plt APSYS Band Carrier Field …
  • 65. Tsun-Hsin Wang/BLL/NCUE 65 5. Conclusion (5.4 Publication list) 1. Y.-K. Kuo, T.-H. Wang, J.-Y. Chang, and M.-C. Tsai, “Advantages of InGaN light-emitting diodes with GaN-InGaN- GaN barriers, ” Appl. Phys. Lett. 99, 091107 (2011). (APL's monthly top 20 most-downloaded articles in September 2011. ) 2. Y.-K. Kuo, T.-H. Wang, and J.-Y. Chang, “Advantages of blue InGaN light-emitting diodes with InGaN-AlGaN-InGaN barriers,” Appl. Phys. Lett. 100, 031112 (2012). (APL's monthly top 20 most- downloaded articles in January and February 2012. ) (One of the most notable APL articles published in 2012.) 3. Y.-K. Kuo, T.-H. Wang, and J.-Y. Chang, “Blue InGaN light- emitting diodes with multiple GaN-InGaN barriers,” IEEE J. Quantum Electron. 48, 946 (2012). 4. Y.-K. Kuo, T.-H. Wang, J.-Y. Chang, and J.-D. Chen, “Slightly- doped step-like electron blocking layer in InGaN light-emitting diodes,” IEEE Photonics Technol. Lett. 24, 1506 (2012).
  • 66. Tsun-Hsin Wang/BLL/NCUE 66 5. Conclusion (5.4 Publication list) 5. T.-H. Wang and Y.-K. Kuo, “Efficiency enhancement of blue InGaN light-emitting diodes with shallow first well,” IEEE Photonics Technol. Lett. 24, 2084 (2012). 6. Y.-A. Chang, Y.-R. Lin, J.-Y. Chang, T.-H. Wang, and Y.-K. Kuo, “Design and characterization of polarization-reversed AlInGaN based ultraviolet light- emitting diode,” IEEE J. Quantum Electron. 49, 553 (2013). 7. T.-H. Wang and Y.-K. Kuo, “Spectral competition of chirped dual-wavelength in monolithic InGaN multiple-quantum well light-emitting diodes,” Appl. Phys. Lett. 102, 171112 (2013).
  • 67. Tsun-Hsin Wang/BLL/NCUE 67 Thank you for your attention!
  • 68. Tsun-Hsin Wang/BLL/NCUE 68 Outline 1. Introduction 2. Literature review 3. Polarization effects 4. Dual-wavelength 5. Conclusion 6. Q&A
  • 69. Tsun-Hsin Wang/BLL/NCUE 69 Q&A 1. Overall academic contribution 2. Physical models 3. Free parameters 4. Macro 5. Recent progress on LEDs 6. Curve fitting 7. Polarization charges
  • 70. Tsun-Hsin Wang/BLL/NCUE 70 Overall academic contribution Effective solutions to suppress polarization problems in nitride optoelectronic devices Possible solutions on carrier balance and spectral competition for dual-wavelength InGaN LEDs Better comprehension of efficiency droop in InGaN LEDs Possible relationships of polarization effects and thermal effects in InGaN LEDs BACK TO Q&A
  • 71. Tsun-Hsin Wang/BLL/NCUE 71 Physical models Equations Parameters Poisson equation: φ, n, p, S, W, g Continuity equation: φ, n, p Complex wave equation: n, p, S, W, g Rate equation: n, p, W, λ, g Gain equation: n, p, λ, g φ: potential, n and p: electron and hole concentration, S: photon number, W: optical field intensity, λ: wavelength, g: gain. APSYS by Crosslight Software Inc.
  • 72. Tsun-Hsin Wang/BLL/NCUE 72 Physical models Poisson equation: ∇2V=−ρ /ε, where ρ: volume charge density, ε: dielectric constant. (a)∇V 為電場。 (b)εdc 為相對介電常數。 (c)n、p 為電子與電洞濃度。 (d)ND(NA)為淺層donor(acceptor)摻雜的密度,fD(fA)為介面中 donor(acceptor)淺層能階的佔有率。(此項會造成介面結合的電子濃 度產生影響,NAfA 前面的負號為接收電子濃度產生) (e)δj 為delta function 當作acceptor 時其值為0 當作donor 時其值為1, Ntj 為介面中第j 個深層能階的密度,ftj 為第j 個深層能階的佔有率。( 此項和前兩項比較下其意義為相似) APSYS by Crosslight Software Inc.
  • 73. Tsun-Hsin Wang/BLL/NCUE 73 Physical models Continuity equation: ∇J+∂ρ/∂t=0, where J: current density, t: time. (a)電子的電流密度Jn = n×μn×∇Efn(其中μn 為電子的mobility,Efn 為電 子的Fermi-level),而電洞的電流密度Jp = n×μp×∇Efp 。 (b)Rn tj 為通過邊界上第j 個能階時,每單位體積的電子結合律,而Rp tj 為通過邊界上第j 個能階時,每單位體積的電洞結合律。(SRH) (c)Rsp 為自發輻射率,Rst 為受激放射率。 (d)Rau=(Cnn+Cpp)(np-ni 2);Cn 和Cp 均為常數取決於材料本身,ni 指純 質的載子密度。(Auger recombination rate) APSYS by Crosslight Software Inc.
  • 74. Tsun-Hsin Wang/BLL/NCUE 74 Physical models Complex wave equation: ∇2W+k2(ε−β2)W=0, where W: optical wave function, k: wave vector, β: real eigen- value. (a)W為光子的波函數,|W|2為每單位體積找到光子的機率。 (b)k0 為波向量,ε為介電常數,β為real eigenvalue 實數本 徵值。 APSYS by Crosslight Software Inc.
  • 75. Tsun-Hsin Wang/BLL/NCUE 75 Physical models Rate equation: ∂S/∂t=c(g−α)/n, where c: speed of light, n: refractive index, g: gain, α: loss, S: photon number. (a) ng 為材料的折射率,gm 為增益模式(model gain),αint 為初始的損失(loss), α em 為發射光子 產生的損失,S 為光子數。 (b) cm 為小部份自發輻射的常數。 APSYS by Crosslight Software Inc.
  • 76. Tsun-Hsin Wang/BLL/NCUE 76 Physical models Gain equation: g=α+[ln(1/R1R2)]2L, where R: reflectance of mirrors, L: cavity length. (a)γ為intra-band 的散射時間 (b)L(Ex-Eij 0)為Lorentzian shape function (c)gij 為第i 能階到第j 能階的local gain,Eij 為第i 能階到 第j 能階的能差 (d)gij 內有包含輕電洞和重電洞的TE 和TM 模式 APSYS by Crosslight Software Inc. BACK TO Q&A
  • 77. Tsun-Hsin Wang/BLL/NCUE 77 Free parameters  In order to access the recent and common consensuses, only the papers published at Appl. Phys. Lett. and J. Appl. Phys., first two most- cited journals in applied physics, in 2010-2011 are discussed herein.  Bowing parameters of Eg  Band offset ratio  Current density  SRH  Auger  Loss  Extraction efficiency
  • 78. Tsun-Hsin Wang/BLL/NCUE 78 Free parameters  Bowing parameter of InGaN:  M. César, Y. Ke, W. Ji, H. Guo, and Z. Mi, Appl. Phys. Lett., 98, 202107, 2011.  R. R. Pelá, C. Caetano, M. Marques, L. G. Ferreira, J. Furthmüller, and L. K. Teles, Appl. Phys. Lett., 98, 151907, 2011.  I. Gorczyca, T. Suski, N. E. Christensen, and A. Svane, Appl. Phys. Lett., 98, 241905, 2011.  Conclusion: Set to be 1.4 eV in my macro.
  • 79. Tsun-Hsin Wang/BLL/NCUE 79 Free parameters  Band offset ratio of AlGaN: 0.65 : 0.35  M. F. Schubert, Appl. Phys. Lett., 96, 031102, 2010.  K. S. Kim, J. H. Kim, S. J. Jung, Y. J. Park, and S. N. Cho, Appl. Phys. Lett., 96, 091104, 2010.  Y. Liao, C. Thomidis, C. Kao, and T. D. Moustakas, Appl. Phys. Lett., 98, 081110, 2011.
  • 80. Tsun-Hsin Wang/BLL/NCUE 80 Free parameters  Band offset ratio of AlGaN: 0.5 : 0.5  W. Lee, M.-H. Kim, D. Zhu, A. N. Noemaun, J. K. Kim, and E. F. Schubert, J. Appl. Phys., 107, 063102, 2010.  L. Zhang, K. Ding, N. X. Liu, T. B. Wei, X. L. Ji, P. Ma, J. C. Yan, J. X. Wang, Y. P. Zeng, and J. M. Li, Appl. Phys. Lett., 98, 101110, 2011.
  • 81. Tsun-Hsin Wang/BLL/NCUE 81 Free parameters  Current density:  D. Zhu, A. N. Noemaun, M. F. Schubert, J. Cho, E. F. Schubert, M. H. Crawford, and D. D. Koleske, Appl. Phys. Lett., 96, 121110, 2010.
  • 82. Tsun-Hsin Wang/BLL/NCUE 82 Free parameters  SRH lifetime:  W. G. Scheibenzuber, U. T. Schwarz, L. Sulmoni, J. Dorsaz, J.-F. Carlin, and N. Grandjean, J. Appl. Phys., 109, 093106, 2011.  A. David and M. J. Grundmann, Appl. Phys. Lett., 96, 103504, 2010.  Conclusion: 1 ns ~ 100 ns
  • 83. Tsun-Hsin Wang/BLL/NCUE 83 Free parameters  Auger coefficient:  E. Kioupakis, P. Rinke, K. T. Delaney, and C. G. Van de Walle, Appl. Phys. Lett., 98, 161107, 2011.  Q. Dai, Q. Shan, J. Cho, E. F. Schubert, M. H. Crawford, D. D. Koleske, M.-H. Kim, and Y. Park, Appl. Phys. Lett., 98, 033506, 2011.  Conclusion: 1028 ~ 31 cm6s1
  • 84. Tsun-Hsin Wang/BLL/NCUE 84 Free parameters  Internal loss:  Y. Zhang, T.-T. Kao, J. Liu, Z. Lochner, S.-S. Kim, J.-H. Ryou, R. D. Dupuis, and S.-C. Shen, J. Appl. Phys., 109, 083115, 2011.  J. H. Zhu, S. M. Zhang, H. Wang, D. G. Zhao, J. J. Zhu, Z. S. Liu, D. S. Jiang, Y. X. Qiu, and H. Yang, J. Appl. Phys., 109, 093117, 2011.  Conclusion: 103 ~ 7 m1
  • 85. Tsun-Hsin Wang/BLL/NCUE 85 Free parameters  Extraction efficiency:  S. Chhajed, W. Lee, J. Cho, E. F. Schubert, and J. K. Kim, Appl. Phys. Lett., 98, 071102, 2011.  E. Matioli, E. Rangel, M. Iza, B. Fleury, N. Pfaff, J. Speck, E. Hu, and C. Weisbuch, Appl. Phys. Lett., 96, 031108, 2010.  Conclusion: 25% ~ 95% BACK TO Q&A
  • 86. Tsun-Hsin Wang/BLL/NCUE 86 Macro Macro Optical Index Absorption Auger SRH Radiative Thermal Kappa Electrical Mobility Affinity k.p Bandgap APSYS by Crosslight Software Inc.
  • 87. Tsun-Hsin Wang/BLL/NCUE 87 Macro APSYS by Crosslight Software Inc. Crosslight.mac APSYS ingan algan InGaN/ InGaN … More.mac BACK TO Q&A
  • 88. Tsun-Hsin Wang/BLL/NCUE 88 Recent progress on LEDs Patterned sapphire substrate , Nanodisks … Graded superlattice EBL, graded EBL, w/o EBL, … Thermal Auger… Blue and green, low-In + high-In, … Structure Droop White LEDs Device
  • 89. Tsun-Hsin Wang/BLL/NCUE 89 Recent progress on LEDs Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, and C. Wetzel, “Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire,” Appl. Phys. Lett. 98, 151102 (2011).
  • 90. Tsun-Hsin Wang/BLL/NCUE 90 Recent progress on LEDs J. Hader, J. V. Moloney, and S. W. Koch, “Temperature-dependence of the internal efficiency droop in GaN-based diodes,” Appl. Phys. Lett. 99, 181127 (2011).  With increasing temperature, a strongly decreasing strength of the loss mechanism responsible for droop is found which is in contrast to the usually assumed behavior of Auger losses.  However, the experimental observations can be well reproduced assuming density activated defect recombination with a temperature independent recombination time.
  • 91. Tsun-Hsin Wang/BLL/NCUE 91 Recent progress on LEDs Y.-J. Lu, H.-W. Lin, H.-Y. Chen, Y.-C. Yang, and S. Gwo, “Single InGaN nanodisk light emitting diodes as full-color subwavelength light sources,” Appl. Phys. Lett. 98, 233101 (2011).  Subwavelength electroluminescent sources with spatial, spectral, and polarization controlling capabilities are critical elements for optical imaging and lithography beyond the diffraction limit.
  • 93. Tsun-Hsin Wang/BLL/NCUE 93 Recent progress on LEDs Y. Y. Zhang and Y. A. Yin, “Performance enhancement of blue light-emitting diodes with a special designed AlGaN/GaN superlattice electron-blocking layer,” Appl. Phys. Lett. 99, 221103 (2011).
  • 94. Tsun-Hsin Wang/BLL/NCUE 94 Recent progress on LEDs N. Zhang, Z. Liu, T. Wei, L. Zhang, X. Wei, X. Wang, H. Lu, J. Li, and J. Wang, “Effect of the graded electron blocking layer on the emission properties of GaN-based green light- emitting diodes,” Appl. Phys. Lett. 100, 053504 (2012).
  • 95. Tsun-Hsin Wang/BLL/NCUE 95 Recent progress on LEDs D.-Y. Lee, S.-H. Han, D.-J. Lee, J. W. Lee, D.-J. Kim, Y. S. Kim, and S.-T. Kim, “Effect of an electron blocking layer on the piezoelectric field in InGaN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 100, 041119 (2012). Tsun-Hsin Wang/BLL/NCUE 95
  • 96. Tsun-Hsin Wang/BLL/NCUE 96 Recent progress on LEDs H. Long, T. J. Yu, L. Liu, Z. J. Yang, H. Fang, and G. Y. Zhang, “Different exciton behaviors in blue and green wells of dual-wavelength InGaN/GaN MQWs structures,” J. Appl. Phys. 111, 053110 (2012).  Staggered structures with blue and green quantum wells (QWs) were grown by metal organic vapor phase epitaxy (MOVPE) and characterized by photoluminescence (PL) and time resolved photoluminescence (TRPL) at various temperatures from 10K to 300 K.  High efficiency green light was observed, accompanying with decreased intensity of blue light.  Efficiency of the green band was lower than that of the blue band below 100 K, but became two times greater than the efficiency of blue when temperature increased to room temperature.  Three-dimensional and two-dimensional exciton behaviors were observed by TRPL measurements corresponding to blue and green bands, respectively.  It is considered that carrier tunneling from blue wells is a key process for high efficiency luminescence in green QWs.
  • 98. Tsun-Hsin Wang/BLL/NCUE 98 Recent progress on LEDs L. Liu, L. Wang, N. Liu, W. Yang, D. Li, W. Chen, Z. C. Feng, Y.-C. Lee (NTU), I. Ferguson, and X. Hu, “Investigation of the light emission properties and carrier dynamics in dual- wavelength InGaN/GaN multiple-quantum well light emitting diodes,” J. Appl. Phys. 112, 083101 (2012).  Three dual-wavelength InGaN/GaN multiple quantum well (MQW) light emitting diodes (LEDs) with increasing indium content are grown by metal-organic chemical vapor deposition, which contain six periods of low-In-content MQWs and two periods of high-In-content MQWs.  For the low-In-content MQWs of three studied samples, their internal quantum efficiency (IQE) shows a rising trend as the emission wavelength increases from 406 nm to 430 nm due to the suppression of carriers escape from the wells to the barriers.
  • 99. Tsun-Hsin Wang/BLL/NCUE 99 Recent progress on LEDs BACK TO Q&A
  • 100. Tsun-Hsin Wang/BLL/NCUE 100 Curve fitting 0 50 100 150 200 250 3.2 3.4 3.6 Auger/10 Original LED Auger×10 Auger/10 Original LED Auger×10 0 50 100 150 200 250 Output power (mW) Voltage (V) Current (mA) 0 50 100 150 200 250 3.2 3.4 3.6 SRH/10 Original LED SRH×10 0 50 100 150 200 250 Output power (mW) Voltage (V) Current (mA) 0 50 100 150 200 250 3.2 3.4 3.6 Radiative/10 Original LED Radiative×10 Radiative/10 Original LED Radiative×10 0 50 100 150 200 250 Output power (mW) Voltage (V) Current (mA) 0 50 100 150 200 250 3.2 3.4 3.6 Loss/10 Original LED Loss×10 0 50 100 150 200 250 Output power (mW) Voltage (V) Current (mA)
  • 101. Tsun-Hsin Wang/BLL/NCUE 101 Curve fitting BACK TO Q&A 0 50 100 150 200 250 3.2 3.4 3.6 Extraction-10% Original LED Extraction+10% Extraction-10% Original LED Extraction+10% 0 50 100 150 200 250 Output power (mW) Voltage (V) Current (mA) 0 50 100 150 200 250 3.2 3.4 3.6 Screening-10% Original LED Screening+10% 0 50 100 150 200 250 Output power (mW) Voltage (V) Current (mA) 0 50 100 150 200 250 3.2 3.4 3.6 Offset-10% Original LED Offset+10% Offset-10% Original LED Offset+10% 0 50 100 150 200 250 Output power (mW) Voltage (V) Current (mA)
  • 102. Tsun-Hsin Wang/BLL/NCUE 102 Polarization charges BACK TO Q&A Interface (top/bottom) Green LEDs (1/m2) p-GaN/p-EBL –2.63×1016 p-EBL/GaN +2.63×1016 GaN/In0.32Ga0.68N +1.67×1017

Editor's Notes

  1. 1