SlideShare a Scribd company logo
Dr. Chia-Liang Sun (孫嘉良 博士)
Department of Chemical and Materials Engineering
Chang Gung University
Tao-Yuan 333, Taiwan
E-mail (1): sunchialiang@gmail.com ; E-mail (2): clsun@mail.cgu.edu.tw
Lab home page: http://www.suncl.idv.tw
Lab Facebook page: http://www.facebook.com/sunclgroup
Synthesis of a variety of
graphene oxide
nanoribbons for
electrochemical
detection of dopamine
Outline
 About CGU
 sp2 nanocarbons
 Graphene-based materials for biosensor
applications
 Conclusions
SunCL, CGU, Taiwan 22014/Nov./3
Outline
 About CGU
 sp2 nanocarbons
 Graphene-based materials for biosensor
applications
 Conclusions
SunCL, CGU, Taiwan 32014/Nov./3
History of CGU
2014/Nov./3 SunCL, CGU, Taiwan4
 CGU was established in 1987 as the Chang Gung Medical
College. In July 1997, the school name was changed to
“Chang Gung University”.
CGU logo
Yung-Ching WANG
(1917 ~2008, 91 years)
http://www.chinataiwan.org/wh/tbtj/200811/W020081121338205248484.jpg
Chang Gung Memorial Hospital (CGMH)
2014/Nov./3 SunCL, CGU, Taiwan5
Formosa Plastics Group
2014/Nov./3 SunCL, CGU, Taiwan6
2014/Nov./3 SunCL, CGU, Taiwan7
Achievements of CGU
 CGU is one of the top 12 research universities in Taiwan and the
only private university in these 12 universities.
 CGU is locally ranked around No. 5 inside Taiwan according to
University Academic Ranking of World Universities (the ARWU)
that published by the Shanghai Jiao Tong University in 2014.
Outline
 About CGU
 sp2 nanocarbons
 Graphene-based materials for biosensor
applications
 Conclusions
SunCL, CGU, Taiwan 82014/Nov./3
SunCL, CGU, Taiwan 92014/Nov./3
1995 2000 2005 2010 2015
0
10000
20000
30000
40000
Papernumber
Publication year
Fullerene
Carbon nanotube
Graphene
Graphene nanoribbon
SunCL, CGU, Taiwan 102014/Nov./3
C60
H
P
P: pentagon, 5-membered
ring, 12
H : hexagon, 6-membered
ring, 20
SunCL, CGU, Taiwan 112014/Nov./3
SunCL, CGU, Taiwan 122014/Nov./3
Andre Geim Konstantin Novoselov
"for groundbreaking experiments regarding the two-dimensional
material graphene"
SunCL, CGU, Taiwan 132014/Nov./3
A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).
SunCL, CGU, Taiwan 142014/Nov./3
SunCL, CGU, Taiwan 152014/Nov./3
SunCL, CGU, Taiwan 162014/Nov./3
SunCL, CGU, Taiwan 172014/Nov./3
SunCL, CGU, Taiwan 182014/Nov./3
SunCL, CGU, Taiwan 192014/Nov./3
SunCL, CGU, Taiwan 202014/Nov./3
Outline
 About CGU
 sp2 nanocarbons
 Graphene-based materials for
biosensor applications
 Conclusions
SunCL, CGU, Taiwan 212014/Nov./3
SunCL, CGU, Taiwan 222014/Nov./3
SunCL, CGU, Taiwan 232014/Nov./3
C.L. Sun et al.,
Biosens. Bioelectron.
26, 3450 (2011).
SunCL, CGU, Taiwan 242014/Nov./3
20nm
0.5 1.0 1.5 2.0 2.5 3.0 3.5
0
5
10
15
20
25
30
Percentpageofparticles%
Diameter ( nm)
MD 1.735nm
(b)
50nm
(c)
20nm
(d)
250nm
(a)
C.L. Sun et al.,
Biosens. Bioelectron.
26, 3450 (2011).
SunCL, CGU, Taiwan 252014/Nov./3
-0.2 0.0 0.2 0.4 0.6 0.8
-300
-150
0
150
300
450
GC
Graphene
Graphene/Pt
Current(A)
Potential (V) vs. Ag/AgCl
DA(b)
-0.2 0.0 0.2 0.4 0.6 0.8
-200
-100
0
100
200
300 GC
Graphene
Graphene/Pt
Current(A)
Potential (V) vs. Ag/AgCl
AA DA UA
-0.2 0.0 0.2 0.4 0.6
150
200
250
300
350
400
-0.2 0.0 0.2 0.4 0.6
0
10
20
30
40
50
Current(A)
Potential (V) vs. Ag/AgCl
Graphene/Pt
Graphene
AA
DA
UA
0 200 400 600 800
0
2
4
6
8
40 50 60
-3.5
-3.0
0.12
Current(A)
Time (s)
0.03
0.06
0.24
0.48
0.96
(b)
C.L. Sun et al., Biosens. Bioelectron. 26, 3450 (2011).
SunCL, CGU, Taiwan 262014/Nov./3
Y.W. Hsu et al., Electrochim.
Acta 82, 152 (2012).
SunCL, CGU, Taiwan 272014/Nov./3
(a) (b)
(c)
(202)
(002)
(111)
(111)
(200)
━
━
(d)
0 2 4 6 8 10
C
O
Si
Cu
Cu
Cu
Energy / keV
Intensity/a.u.
Y.W. Hsu et al., Electrochim.
Acta 82, 152 (2012).
SunCL, CGU, Taiwan 282014/Nov./3
0.0 0.2 0.4 0.6 0.8
0
100
200
300
400
500
600
(a)
Potential vs. (Ag/AgCl) / V
Current/A
Graphene
CuO
CuOG
0.0 0.2 0.4 0.6 0.8
0
200
400
600
800
1000
(b)
Potential vs. (Ag/AgCl) / V
Current/A
0.1 molL
-1
NaOH
2 mmolL
-1
Glucose
4 mmolL
-1
Glucose
6 mmolL
-1
Glucose
8 mmolL
-1
Glucose
10 mmolL
-1
Glucose
12 mmolL
-1
Glucose
14 mmolL
-1
Glucose
Y.W. Hsu et al., Electrochim.
Acta 82, 152 (2012).
SunCL, CGU, Taiwan 292014/Nov./3
11 12 13 14
0
20
40
60
80
100
pH
Diameter/nm
0
200
400
600
800
1000
1200
Sensitivity/Ammol
-1
Lcm
-2
0 10 20 30 40 50 60 70
0
20
40
60
80
100
Diameter / nm
Number
MD: 15.75 nm
0 10 20 30 40 50 60 70
0
20
40
60
80
100
Number
Diameter / nm
MD: 5.17 nm
(a)
(b)
(c)
200 400 600 800 1000 1200
0
150
300
450
600
Time / s
Current/A
3 mmolL
-1
Glucose
2 mmolL
-1
Glucose
0.1 mmolL
-1
Sucrose
0.1 mmolL
-1
Lactose
0.1 mmolL
-1
Fructose
0.1 mmolL
-1
UA
0.1 mmolL
-1
DA
0.1 mmolL
-1
AA
1 mmolL
-1
Glucose
(d)
Y.W. Hsu et al., Electrochim.
Acta 82, 152 (2012).
SunCL, CGU, Taiwan 302014/Nov./3
1995 2000 2005 2010
0
5000
10000
15000
20000
25000
30000
35000
Papernumber
Publication year
Fullerene
Carbon nanotube
Graphene
Graphene nanoribbon
SunCL, CGU, Taiwan 312014/Nov./3
M. Terrones et al., ACS Nano 4, 1775 (2010).
SunCL, CGU, Taiwan 322014/Nov./3
D.V. Kosynlin et al.,
Nature 458, 872 (2009).
SunCL, CGU, Taiwan 332014/Nov./3
D.V. Kosynlin et
al., Nature 458,
872 (2009).
SunCL, CGU, Taiwan 342014/Nov./3
C.L. Sun et al.,
ACS Nano 5,
7788 (2011).
SunCL, CGU, Taiwan 352014/Nov./3
Patents issued and pending
 US 8900542 B2 METHOD FOR FORMING
GRAPHENE NANORIBBONS (USA)
 2012-158514METHOD FOR FORMING
GRAPHENE NANORIBBON (Japan) (Date:
2012/01/27; No.: 特願2012-15529)
 201110360884.8石墨烯纳米带制作方法 (中國大陸)
(Date: 2011/11/25; No.: 201110360884.8)
 I 429586石墨烯奈米帶製作方法 (Taiwan)
SunCL, CGU, Taiwan 362014/Nov./3
c d
100 nm
100 nm
100 nm
200nm
c
b
d
a
C.L. Sun et al.,
ACS Nano 5,
7788 (2011).
SunCL, CGU, Taiwan 372014/Nov./3
280 290 300 310
0.00
0.01
0.02
0.03
Absorption(nm
-1
)
Photon Energy (eV)
GONR
MWCNT
(d)(c)
Composite map
GONR(b)
1.0
20.8
500 nm500 nm 2.0
MWCNT(a)
53.4
C.L. Sun et al.,
ACS Nano 5,
7788 (2011).
SunCL, CGU, Taiwan 382014/Nov./3
-0.2 0.0 0.2 0.4 0.6
-200
-100
0
100
200
300
Current(A)
Potential (V vs. Ag/AgCl)
GONR
Graphene
CNT
Glassy Carbon
C.L. Sun et al.,
ACS Nano 5,
7788 (2011).
SunCL, CGU, Taiwan 392014/Nov./3
Summary of previously published results for the detection of AA,
UA and DA using cyclic voltammetry with different electrodes
Electrode
Scan rate
(V/s)
Reference
electrode
Surface
area (cm2)
Current (μA)
Current density
(μA/cm2)
Ref
AA DA UA AA DA UA
MWCNT/GCE 0.05 Ag/AgCl 0.07 ﹣ 0.7(0.05 mM) ﹣ ﹣ 10 ﹣ [S6]
Graphene/GCE 0.05 Ag/AgCl 0.07 140 (3 mM) 50 (3 mM) 70 (3 mM) 2000 714.3 1000 [S7]
Chitosan-
graphene/GCE
0.05 Ag/AgCl 0.07 17 (2 mM) 12 (1 mM) 10 (0.5 mM) 242.9 171.4 142.9 [S1]
Pd/CNF-CPE 0.05 Ag/AgCl 0.0113 7 (2 mM) 15 (2 mM) 12.5 (2 mM) 619.5 1327 1106 [S8]
Pt-MWCNTs/GCE 0.05 Ag/AgCl - 22 (0.5 mM) 60 (0.5 mM)
155 (0.5
mM)
- - - [S2]
SWNT/PSS/GCE 0.1 SCE 0.07 - 35 (0.03 mM) - - 500 - [S3]
PAA-MWCNTs/SPE 0.1 Ag/AgCl 0.07 4 (0.2 mM) -
25 (0.015
mM)
57.1 - 357.1 [S9]
PAY/MWCNTs/GCE 0.02 Ag/AgCl 0.07
8 (0.0002
mM)
3 (0.3 mM) - 114.3 42.9 - [S10]
Pt/PFIL/GS/GCE 0.1 Ag/AgCl 0.07 49 (2 mM) 57 (1 mM) - 700 814.3 - [S11]
Pt/Graphene/GCE 0.05 Ag/AgCl 0.196 95 (1 mM) 272 (1 mM) 371 (1 mM) 484.7 1387.7 1892.8 [S12]
GONR(200W)/GCE 0.05 Ag/AgCl 0.196 67 (1 mM) 402.3 (1 mM)
426.9 (1
mM)
341.8 2053 2178
This
work
C.L. Sun et al.,
ACS Nano 5,
7788 (2011).
SunCL, CGU, Taiwan 402014/Nov./3
2 4 6 8
0
1
2
3
IAA=0.1188+0.2938CAA
R=0.9824Current(A)
Concentration (M)
(a)
2 4 6 8 10
2
4
6
IDA=0.2481+0.4694CDA
R=0.9989
Current(A)
Concentration (M)
(b)
0 2 4 6 8 10
0
1
2 IUA=-0.0023+0.2154CUA
R=0.9979
Current(A)
Concentration (M)
(c)
-0.2 0.0 0.2 0.4 0.6
0
100
200
300
Current(A)
Potential (V vs. Ag/AgCl)
GONR(200W)/GC
AA
DA
UA
229.9mV
126.7
mV
C.L. Sun et al.,
ACS Nano 5,
7788 (2011).
SunCL, CGU, Taiwan 412014/Nov./3
Summary of previously published results for the detection of AA, UA
and DA using amperometric measurements with different electrodes
Electrode
Dynamic range (μM)
Limit of detection
(μM) Ref
AA DA UA AA DA UA
PAY/MWCNTs/GCE 1 – 56 ﹣ ﹣ 0.2 ﹣ ﹣ [S10]
Pt/Graphene/GCE
0.15-
34.4
0.03-8.13
0.05-
11.85
0.15 0.03 0.05 [S12]
Gold nanoparticles/Graphene/GCE ﹣ ﹣ 2– 62 ﹣ ﹣ 0.2 [S13]
Polystyrene sulfonate wrapped
MWCNT/graphite cylinder
50–
1000
50 – 350 50 –800 0.5 0.15 0.8 [S14]
Polyaniline- poly(acrylic acid)
network/SCE
1 –
9300
﹣ ﹣ 1 ﹣ ﹣ [S15]
OMC–Fc/GCE ﹣ ﹣ 60–390 ﹣ ﹣ 1.8 [S4]
GONR(200W)/GCE 0.1-8.5 0.15-12.2
0.15-
11.45
0.06 0.08 0.07 This work
SunCL, CGU, Taiwan 422014/Nov./3
(a) (b)
(c) (d)
C.L. Sun et al., Biosens. Bioelectron. 67, 327 (2015).
Short GONRs
SunCL, CGU, Taiwan 432014/Nov./3
15
20 as-recieved MWCNTs
cut MWCNTs
tion(a.u.)
(a)
(b)
0 10 20 30 40 50
0
2
4
6
8
10
12
14
Lengthorsize(m)
Reaction time (hrs)
TEM
Zetasizer
0 5 10 15 20
0
5
10
15
20 as-recieved MWCNTs
cut MWCNTs
Distribution(a.u.)
Length (m)
(b)
0 10 20 30 40 50
0
2
4
6
8
Lengthorsiz
Reaction time (hrs)
C.L. Sun et al., Biosens. Bioelectron. 67, 327 (2015).
SunCL, CGU, Taiwan 442014/Nov./3
-0.2 0.0 0.2 0.4 0.6
-150
-100
-50
0
50
100
150
Current(A)
Potential (V vs. Ag/AgCl)
GC
Grephene/GC
MWCNT/GC
Short MWCNT/GC
GONR/GC
Short GONR/GC
AA
-0.2 0.0 0.2 0.4 0.6
-150
-100
-50
0
50
100
150
200
250
300
350
400
Current(A)
Potential (V vs. Ag/AgCl)
GC
Grephene/GC
MWCNT/GC
Short MWCNT/GC
GONR/GC
Short GONR/GC
UA
-0.2 0.0 0.2 0.4 0.6
-300
-200
-100
0
100
200
300
400
500
Current(A)
Potential (V vs. Ag/AgCl)
GC
Grephene/GC
MWCNT/GC
Short MWCNT/GC
GONR/GC
Short GONR/GC
DA
(a)
(b) (c)
C.L. Sun et al., Biosens. Bioelectron. 67, 327 (2015).

More Related Content

What's hot

NaI:Tl-based radiation detector with improved light output and energy resolution
NaI:Tl-based radiation detector with improved light output and energy resolutionNaI:Tl-based radiation detector with improved light output and energy resolution
NaI:Tl-based radiation detector with improved light output and energy resolution
Lawrence Berkeley National Laboratory
 
Vapor growth of binary and ternary phosphorus-based semiconductors into TiO2 ...
Vapor growth of binary and ternary phosphorus-based semiconductors into TiO2 ...Vapor growth of binary and ternary phosphorus-based semiconductors into TiO2 ...
Vapor growth of binary and ternary phosphorus-based semiconductors into TiO2 ...
Pawan Kumar
 
Surfaces of Metal Oxides.
Surfaces of Metal Oxides.Surfaces of Metal Oxides.
Vamsi
VamsiVamsi
Synthesis, Electrical and Optical Properties of Nickel Sulphate Hexa Hydrate ...
Synthesis, Electrical and Optical Properties of Nickel Sulphate Hexa Hydrate ...Synthesis, Electrical and Optical Properties of Nickel Sulphate Hexa Hydrate ...
Synthesis, Electrical and Optical Properties of Nickel Sulphate Hexa Hydrate ...
IJERA Editor
 
Metal ion burst: Examining metal ion diffusion using ultrafast fluorescence s...
Metal ion burst: Examining metal ion diffusion using ultrafast fluorescence s...Metal ion burst: Examining metal ion diffusion using ultrafast fluorescence s...
Metal ion burst: Examining metal ion diffusion using ultrafast fluorescence s...
Chelsey Crosse
 
Gel Growth and Characterization of New PbHNSO3 Crystals
Gel Growth and Characterization of New PbHNSO3 CrystalsGel Growth and Characterization of New PbHNSO3 Crystals
Gel Growth and Characterization of New PbHNSO3 Crystals
IRJET Journal
 
Sabin Stoica "Double beta decay and neutrino properties"
Sabin Stoica "Double beta decay and neutrino properties"Sabin Stoica "Double beta decay and neutrino properties"
Sabin Stoica "Double beta decay and neutrino properties"
SEENET-MTP
 
Application of-the-osl-technique-for-beta-dosimetry 2008-radiation-measurements
Application of-the-osl-technique-for-beta-dosimetry 2008-radiation-measurementsApplication of-the-osl-technique-for-beta-dosimetry 2008-radiation-measurements
Application of-the-osl-technique-for-beta-dosimetry 2008-radiation-measurements
Gerardo Rivera Barrera
 
Effect of Laser Induced Tin Oxide (SnO2) Nano particle
Effect of Laser Induced Tin Oxide (SnO2) Nano particleEffect of Laser Induced Tin Oxide (SnO2) Nano particle
Effect of Laser Induced Tin Oxide (SnO2) Nano particle
IRJET Journal
 
Thermoluminescence in Pure and Nd+3 + K+ Doped Lead Germanate Single Crystals
Thermoluminescence in Pure and Nd+3 + K+ Doped Lead Germanate Single CrystalsThermoluminescence in Pure and Nd+3 + K+ Doped Lead Germanate Single Crystals
Thermoluminescence in Pure and Nd+3 + K+ Doped Lead Germanate Single Crystals
AI Publications
 
Synthesis and Characterization of ZnO and Ammonium Doped ZnO Nanoparticles by...
Synthesis and Characterization of ZnO and Ammonium Doped ZnO Nanoparticles by...Synthesis and Characterization of ZnO and Ammonium Doped ZnO Nanoparticles by...
Synthesis and Characterization of ZnO and Ammonium Doped ZnO Nanoparticles by...
IRJET Journal
 
Ijaret 06 10_018
Ijaret 06 10_018Ijaret 06 10_018
Ijaret 06 10_018
IAEME Publication
 
Impact of detector thickness on imaging characteristics of the Siemens Biogra...
Impact of detector thickness on imaging characteristics of the Siemens Biogra...Impact of detector thickness on imaging characteristics of the Siemens Biogra...
Impact of detector thickness on imaging characteristics of the Siemens Biogra...Anax Fotopoulos
 
Origin of the Size-Dependent Fluorescence Blueshift in [n]Cycloparaphenylenes
Origin of the Size-Dependent Fluorescence Blueshift in [n]Cycloparaphenylenes Origin of the Size-Dependent Fluorescence Blueshift in [n]Cycloparaphenylenes
Origin of the Size-Dependent Fluorescence Blueshift in [n]Cycloparaphenylenes
Stephan Irle
 
Park Systems SICM SECM presentation
Park Systems SICM SECM presentationPark Systems SICM SECM presentation
Park Systems SICM SECM presentation
Keibock Lee
 
Deep two-photon brain imaging with a red-shifted fluorometric Ca2+ indicator
Deep two-photon brain imaging with a red-shifted fluorometric Ca2+ indicatorDeep two-photon brain imaging with a red-shifted fluorometric Ca2+ indicator
Deep two-photon brain imaging with a red-shifted fluorometric Ca2+ indicator
PetteriTeikariPhD
 
Highly mismatched alloys for optoelectronics
Highly mismatched alloys for optoelectronicsHighly mismatched alloys for optoelectronics
Highly mismatched alloys for optoelectronics
Mohammadreza Nematollahi
 
Synthesis and Structural Characterization of Cu Substituted Ni-Zn Nano-Ferrit...
Synthesis and Structural Characterization of Cu Substituted Ni-Zn Nano-Ferrit...Synthesis and Structural Characterization of Cu Substituted Ni-Zn Nano-Ferrit...
Synthesis and Structural Characterization of Cu Substituted Ni-Zn Nano-Ferrit...
IJERA Editor
 

What's hot (20)

NaI:Tl-based radiation detector with improved light output and energy resolution
NaI:Tl-based radiation detector with improved light output and energy resolutionNaI:Tl-based radiation detector with improved light output and energy resolution
NaI:Tl-based radiation detector with improved light output and energy resolution
 
Vapor growth of binary and ternary phosphorus-based semiconductors into TiO2 ...
Vapor growth of binary and ternary phosphorus-based semiconductors into TiO2 ...Vapor growth of binary and ternary phosphorus-based semiconductors into TiO2 ...
Vapor growth of binary and ternary phosphorus-based semiconductors into TiO2 ...
 
Surfaces of Metal Oxides.
Surfaces of Metal Oxides.Surfaces of Metal Oxides.
Surfaces of Metal Oxides.
 
Vamsi
VamsiVamsi
Vamsi
 
Synthesis, Electrical and Optical Properties of Nickel Sulphate Hexa Hydrate ...
Synthesis, Electrical and Optical Properties of Nickel Sulphate Hexa Hydrate ...Synthesis, Electrical and Optical Properties of Nickel Sulphate Hexa Hydrate ...
Synthesis, Electrical and Optical Properties of Nickel Sulphate Hexa Hydrate ...
 
Metal ion burst: Examining metal ion diffusion using ultrafast fluorescence s...
Metal ion burst: Examining metal ion diffusion using ultrafast fluorescence s...Metal ion burst: Examining metal ion diffusion using ultrafast fluorescence s...
Metal ion burst: Examining metal ion diffusion using ultrafast fluorescence s...
 
Gel Growth and Characterization of New PbHNSO3 Crystals
Gel Growth and Characterization of New PbHNSO3 CrystalsGel Growth and Characterization of New PbHNSO3 Crystals
Gel Growth and Characterization of New PbHNSO3 Crystals
 
Sabin Stoica "Double beta decay and neutrino properties"
Sabin Stoica "Double beta decay and neutrino properties"Sabin Stoica "Double beta decay and neutrino properties"
Sabin Stoica "Double beta decay and neutrino properties"
 
231 bhasker soni
231 bhasker soni231 bhasker soni
231 bhasker soni
 
Application of-the-osl-technique-for-beta-dosimetry 2008-radiation-measurements
Application of-the-osl-technique-for-beta-dosimetry 2008-radiation-measurementsApplication of-the-osl-technique-for-beta-dosimetry 2008-radiation-measurements
Application of-the-osl-technique-for-beta-dosimetry 2008-radiation-measurements
 
Effect of Laser Induced Tin Oxide (SnO2) Nano particle
Effect of Laser Induced Tin Oxide (SnO2) Nano particleEffect of Laser Induced Tin Oxide (SnO2) Nano particle
Effect of Laser Induced Tin Oxide (SnO2) Nano particle
 
Thermoluminescence in Pure and Nd+3 + K+ Doped Lead Germanate Single Crystals
Thermoluminescence in Pure and Nd+3 + K+ Doped Lead Germanate Single CrystalsThermoluminescence in Pure and Nd+3 + K+ Doped Lead Germanate Single Crystals
Thermoluminescence in Pure and Nd+3 + K+ Doped Lead Germanate Single Crystals
 
Synthesis and Characterization of ZnO and Ammonium Doped ZnO Nanoparticles by...
Synthesis and Characterization of ZnO and Ammonium Doped ZnO Nanoparticles by...Synthesis and Characterization of ZnO and Ammonium Doped ZnO Nanoparticles by...
Synthesis and Characterization of ZnO and Ammonium Doped ZnO Nanoparticles by...
 
Ijaret 06 10_018
Ijaret 06 10_018Ijaret 06 10_018
Ijaret 06 10_018
 
Impact of detector thickness on imaging characteristics of the Siemens Biogra...
Impact of detector thickness on imaging characteristics of the Siemens Biogra...Impact of detector thickness on imaging characteristics of the Siemens Biogra...
Impact of detector thickness on imaging characteristics of the Siemens Biogra...
 
Origin of the Size-Dependent Fluorescence Blueshift in [n]Cycloparaphenylenes
Origin of the Size-Dependent Fluorescence Blueshift in [n]Cycloparaphenylenes Origin of the Size-Dependent Fluorescence Blueshift in [n]Cycloparaphenylenes
Origin of the Size-Dependent Fluorescence Blueshift in [n]Cycloparaphenylenes
 
Park Systems SICM SECM presentation
Park Systems SICM SECM presentationPark Systems SICM SECM presentation
Park Systems SICM SECM presentation
 
Deep two-photon brain imaging with a red-shifted fluorometric Ca2+ indicator
Deep two-photon brain imaging with a red-shifted fluorometric Ca2+ indicatorDeep two-photon brain imaging with a red-shifted fluorometric Ca2+ indicator
Deep two-photon brain imaging with a red-shifted fluorometric Ca2+ indicator
 
Highly mismatched alloys for optoelectronics
Highly mismatched alloys for optoelectronicsHighly mismatched alloys for optoelectronics
Highly mismatched alloys for optoelectronics
 
Synthesis and Structural Characterization of Cu Substituted Ni-Zn Nano-Ferrit...
Synthesis and Structural Characterization of Cu Substituted Ni-Zn Nano-Ferrit...Synthesis and Structural Characterization of Cu Substituted Ni-Zn Nano-Ferrit...
Synthesis and Structural Characterization of Cu Substituted Ni-Zn Nano-Ferrit...
 

Similar to NTU_2014Nov3_PowerPonitSharedwithAudience

A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...
A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...
A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...
Arkansas State University
 
B037309012
B037309012B037309012
B037309012
theijes
 
博士論文口試-Ph.D. Defense (2013-06-19)-TH Wang.ppt
博士論文口試-Ph.D. Defense (2013-06-19)-TH Wang.ppt博士論文口試-Ph.D. Defense (2013-06-19)-TH Wang.ppt
博士論文口試-Ph.D. Defense (2013-06-19)-TH Wang.ppt
ssuserfd013d
 
Grds conferences icst and icbelsh (6)
Grds conferences icst and icbelsh (6)Grds conferences icst and icbelsh (6)
Grds conferences icst and icbelsh (6)
Global R & D Services
 
Fabrication, Structural and Optical Properties of Ni and Cr Doped ZnO Nanocom...
Fabrication, Structural and Optical Properties of Ni and Cr Doped ZnO Nanocom...Fabrication, Structural and Optical Properties of Ni and Cr Doped ZnO Nanocom...
Fabrication, Structural and Optical Properties of Ni and Cr Doped ZnO Nanocom...
IRJET Journal
 
Soft x-ray nanoanalytical tools for thin film organic electronics
Soft x-ray nanoanalytical tools for thin film organic electronicsSoft x-ray nanoanalytical tools for thin film organic electronics
Soft x-ray nanoanalytical tools for thin film organic electronics
Trinity College Dublin
 
Nx calrics2019 yano-presentation
Nx calrics2019 yano-presentationNx calrics2019 yano-presentation
Nx calrics2019 yano-presentation
Shinichiro Yano
 
Thesis Presentation Template[Conflict 1]
Thesis Presentation Template[Conflict 1]Thesis Presentation Template[Conflict 1]
Thesis Presentation Template[Conflict 1]Sumeet Changla
 
Nanotechnology Progess And Pitfalls
Nanotechnology Progess And PitfallsNanotechnology Progess And Pitfalls
Nanotechnology Progess And Pitfallsphackettualberta
 
Od3424682473
Od3424682473Od3424682473
Od3424682473
IJERA Editor
 
Acceptor–donor–acceptor small molecules based on derivatives of 3,4-ethylened...
Acceptor–donor–acceptor small molecules based on derivatives of 3,4-ethylened...Acceptor–donor–acceptor small molecules based on derivatives of 3,4-ethylened...
Acceptor–donor–acceptor small molecules based on derivatives of 3,4-ethylened...
Boniface Y. Antwi
 
4ISMET, Alessandro Carmona
4ISMET, Alessandro Carmona4ISMET, Alessandro Carmona
4ISMET, Alessandro Carmona
IMDEA-Water
 
ISOTROPY OF INTERMETALLIC COMPOUNDS
ISOTROPY OF INTERMETALLIC COMPOUNDSISOTROPY OF INTERMETALLIC COMPOUNDS
ISOTROPY OF INTERMETALLIC COMPOUNDS
IJCSEA Journal
 
Isotropy of intermetallic compounds
Isotropy of intermetallic compoundsIsotropy of intermetallic compounds
Isotropy of intermetallic compounds
IJCSEA Journal
 
La nanociencia y las tecnologías energéticas del futuro
La nanociencia y las tecnologías energéticas del futuroLa nanociencia y las tecnologías energéticas del futuro
La nanociencia y las tecnologías energéticas del futuro
Cic Nanogune
 
Sano_IGARSS2011.ppt
Sano_IGARSS2011.pptSano_IGARSS2011.ppt
Sano_IGARSS2011.pptgrssieee
 
Novel composite electrodes:Preparation and application to the electroanalytic...
Novel composite electrodes:Preparation and application to the electroanalytic...Novel composite electrodes:Preparation and application to the electroanalytic...
Novel composite electrodes:Preparation and application to the electroanalytic...
Université de Dschang
 
Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device Slide ...
Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device Slide ...Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device Slide ...
Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device Slide ...
M. Faisal Halim
 
Twnss 1-jsg-yano
Twnss 1-jsg-yanoTwnss 1-jsg-yano
Twnss 1-jsg-yano
Shinichiro Yano
 

Similar to NTU_2014Nov3_PowerPonitSharedwithAudience (20)

A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...
A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...
A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...
 
GOMD_2016_mayurtalk
GOMD_2016_mayurtalkGOMD_2016_mayurtalk
GOMD_2016_mayurtalk
 
B037309012
B037309012B037309012
B037309012
 
博士論文口試-Ph.D. Defense (2013-06-19)-TH Wang.ppt
博士論文口試-Ph.D. Defense (2013-06-19)-TH Wang.ppt博士論文口試-Ph.D. Defense (2013-06-19)-TH Wang.ppt
博士論文口試-Ph.D. Defense (2013-06-19)-TH Wang.ppt
 
Grds conferences icst and icbelsh (6)
Grds conferences icst and icbelsh (6)Grds conferences icst and icbelsh (6)
Grds conferences icst and icbelsh (6)
 
Fabrication, Structural and Optical Properties of Ni and Cr Doped ZnO Nanocom...
Fabrication, Structural and Optical Properties of Ni and Cr Doped ZnO Nanocom...Fabrication, Structural and Optical Properties of Ni and Cr Doped ZnO Nanocom...
Fabrication, Structural and Optical Properties of Ni and Cr Doped ZnO Nanocom...
 
Soft x-ray nanoanalytical tools for thin film organic electronics
Soft x-ray nanoanalytical tools for thin film organic electronicsSoft x-ray nanoanalytical tools for thin film organic electronics
Soft x-ray nanoanalytical tools for thin film organic electronics
 
Nx calrics2019 yano-presentation
Nx calrics2019 yano-presentationNx calrics2019 yano-presentation
Nx calrics2019 yano-presentation
 
Thesis Presentation Template[Conflict 1]
Thesis Presentation Template[Conflict 1]Thesis Presentation Template[Conflict 1]
Thesis Presentation Template[Conflict 1]
 
Nanotechnology Progess And Pitfalls
Nanotechnology Progess And PitfallsNanotechnology Progess And Pitfalls
Nanotechnology Progess And Pitfalls
 
Od3424682473
Od3424682473Od3424682473
Od3424682473
 
Acceptor–donor–acceptor small molecules based on derivatives of 3,4-ethylened...
Acceptor–donor–acceptor small molecules based on derivatives of 3,4-ethylened...Acceptor–donor–acceptor small molecules based on derivatives of 3,4-ethylened...
Acceptor–donor–acceptor small molecules based on derivatives of 3,4-ethylened...
 
4ISMET, Alessandro Carmona
4ISMET, Alessandro Carmona4ISMET, Alessandro Carmona
4ISMET, Alessandro Carmona
 
ISOTROPY OF INTERMETALLIC COMPOUNDS
ISOTROPY OF INTERMETALLIC COMPOUNDSISOTROPY OF INTERMETALLIC COMPOUNDS
ISOTROPY OF INTERMETALLIC COMPOUNDS
 
Isotropy of intermetallic compounds
Isotropy of intermetallic compoundsIsotropy of intermetallic compounds
Isotropy of intermetallic compounds
 
La nanociencia y las tecnologías energéticas del futuro
La nanociencia y las tecnologías energéticas del futuroLa nanociencia y las tecnologías energéticas del futuro
La nanociencia y las tecnologías energéticas del futuro
 
Sano_IGARSS2011.ppt
Sano_IGARSS2011.pptSano_IGARSS2011.ppt
Sano_IGARSS2011.ppt
 
Novel composite electrodes:Preparation and application to the electroanalytic...
Novel composite electrodes:Preparation and application to the electroanalytic...Novel composite electrodes:Preparation and application to the electroanalytic...
Novel composite electrodes:Preparation and application to the electroanalytic...
 
Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device Slide ...
Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device Slide ...Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device Slide ...
Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device Slide ...
 
Twnss 1-jsg-yano
Twnss 1-jsg-yanoTwnss 1-jsg-yano
Twnss 1-jsg-yano
 

NTU_2014Nov3_PowerPonitSharedwithAudience

  • 1. Dr. Chia-Liang Sun (孫嘉良 博士) Department of Chemical and Materials Engineering Chang Gung University Tao-Yuan 333, Taiwan E-mail (1): sunchialiang@gmail.com ; E-mail (2): clsun@mail.cgu.edu.tw Lab home page: http://www.suncl.idv.tw Lab Facebook page: http://www.facebook.com/sunclgroup Synthesis of a variety of graphene oxide nanoribbons for electrochemical detection of dopamine
  • 2. Outline  About CGU  sp2 nanocarbons  Graphene-based materials for biosensor applications  Conclusions SunCL, CGU, Taiwan 22014/Nov./3
  • 3. Outline  About CGU  sp2 nanocarbons  Graphene-based materials for biosensor applications  Conclusions SunCL, CGU, Taiwan 32014/Nov./3
  • 4. History of CGU 2014/Nov./3 SunCL, CGU, Taiwan4  CGU was established in 1987 as the Chang Gung Medical College. In July 1997, the school name was changed to “Chang Gung University”. CGU logo Yung-Ching WANG (1917 ~2008, 91 years) http://www.chinataiwan.org/wh/tbtj/200811/W020081121338205248484.jpg
  • 5. Chang Gung Memorial Hospital (CGMH) 2014/Nov./3 SunCL, CGU, Taiwan5
  • 7. 2014/Nov./3 SunCL, CGU, Taiwan7 Achievements of CGU  CGU is one of the top 12 research universities in Taiwan and the only private university in these 12 universities.  CGU is locally ranked around No. 5 inside Taiwan according to University Academic Ranking of World Universities (the ARWU) that published by the Shanghai Jiao Tong University in 2014.
  • 8. Outline  About CGU  sp2 nanocarbons  Graphene-based materials for biosensor applications  Conclusions SunCL, CGU, Taiwan 82014/Nov./3
  • 9. SunCL, CGU, Taiwan 92014/Nov./3 1995 2000 2005 2010 2015 0 10000 20000 30000 40000 Papernumber Publication year Fullerene Carbon nanotube Graphene Graphene nanoribbon
  • 10. SunCL, CGU, Taiwan 102014/Nov./3 C60 H P P: pentagon, 5-membered ring, 12 H : hexagon, 6-membered ring, 20
  • 11. SunCL, CGU, Taiwan 112014/Nov./3
  • 12. SunCL, CGU, Taiwan 122014/Nov./3 Andre Geim Konstantin Novoselov "for groundbreaking experiments regarding the two-dimensional material graphene"
  • 13. SunCL, CGU, Taiwan 132014/Nov./3 A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).
  • 14. SunCL, CGU, Taiwan 142014/Nov./3
  • 15. SunCL, CGU, Taiwan 152014/Nov./3
  • 16. SunCL, CGU, Taiwan 162014/Nov./3
  • 17. SunCL, CGU, Taiwan 172014/Nov./3
  • 18. SunCL, CGU, Taiwan 182014/Nov./3
  • 19. SunCL, CGU, Taiwan 192014/Nov./3
  • 20. SunCL, CGU, Taiwan 202014/Nov./3
  • 21. Outline  About CGU  sp2 nanocarbons  Graphene-based materials for biosensor applications  Conclusions SunCL, CGU, Taiwan 212014/Nov./3
  • 22. SunCL, CGU, Taiwan 222014/Nov./3
  • 23. SunCL, CGU, Taiwan 232014/Nov./3 C.L. Sun et al., Biosens. Bioelectron. 26, 3450 (2011).
  • 24. SunCL, CGU, Taiwan 242014/Nov./3 20nm 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0 5 10 15 20 25 30 Percentpageofparticles% Diameter ( nm) MD 1.735nm (b) 50nm (c) 20nm (d) 250nm (a) C.L. Sun et al., Biosens. Bioelectron. 26, 3450 (2011).
  • 25. SunCL, CGU, Taiwan 252014/Nov./3 -0.2 0.0 0.2 0.4 0.6 0.8 -300 -150 0 150 300 450 GC Graphene Graphene/Pt Current(A) Potential (V) vs. Ag/AgCl DA(b) -0.2 0.0 0.2 0.4 0.6 0.8 -200 -100 0 100 200 300 GC Graphene Graphene/Pt Current(A) Potential (V) vs. Ag/AgCl AA DA UA -0.2 0.0 0.2 0.4 0.6 150 200 250 300 350 400 -0.2 0.0 0.2 0.4 0.6 0 10 20 30 40 50 Current(A) Potential (V) vs. Ag/AgCl Graphene/Pt Graphene AA DA UA 0 200 400 600 800 0 2 4 6 8 40 50 60 -3.5 -3.0 0.12 Current(A) Time (s) 0.03 0.06 0.24 0.48 0.96 (b) C.L. Sun et al., Biosens. Bioelectron. 26, 3450 (2011).
  • 26. SunCL, CGU, Taiwan 262014/Nov./3 Y.W. Hsu et al., Electrochim. Acta 82, 152 (2012).
  • 27. SunCL, CGU, Taiwan 272014/Nov./3 (a) (b) (c) (202) (002) (111) (111) (200) ━ ━ (d) 0 2 4 6 8 10 C O Si Cu Cu Cu Energy / keV Intensity/a.u. Y.W. Hsu et al., Electrochim. Acta 82, 152 (2012).
  • 28. SunCL, CGU, Taiwan 282014/Nov./3 0.0 0.2 0.4 0.6 0.8 0 100 200 300 400 500 600 (a) Potential vs. (Ag/AgCl) / V Current/A Graphene CuO CuOG 0.0 0.2 0.4 0.6 0.8 0 200 400 600 800 1000 (b) Potential vs. (Ag/AgCl) / V Current/A 0.1 molL -1 NaOH 2 mmolL -1 Glucose 4 mmolL -1 Glucose 6 mmolL -1 Glucose 8 mmolL -1 Glucose 10 mmolL -1 Glucose 12 mmolL -1 Glucose 14 mmolL -1 Glucose Y.W. Hsu et al., Electrochim. Acta 82, 152 (2012).
  • 29. SunCL, CGU, Taiwan 292014/Nov./3 11 12 13 14 0 20 40 60 80 100 pH Diameter/nm 0 200 400 600 800 1000 1200 Sensitivity/Ammol -1 Lcm -2 0 10 20 30 40 50 60 70 0 20 40 60 80 100 Diameter / nm Number MD: 15.75 nm 0 10 20 30 40 50 60 70 0 20 40 60 80 100 Number Diameter / nm MD: 5.17 nm (a) (b) (c) 200 400 600 800 1000 1200 0 150 300 450 600 Time / s Current/A 3 mmolL -1 Glucose 2 mmolL -1 Glucose 0.1 mmolL -1 Sucrose 0.1 mmolL -1 Lactose 0.1 mmolL -1 Fructose 0.1 mmolL -1 UA 0.1 mmolL -1 DA 0.1 mmolL -1 AA 1 mmolL -1 Glucose (d) Y.W. Hsu et al., Electrochim. Acta 82, 152 (2012).
  • 30. SunCL, CGU, Taiwan 302014/Nov./3 1995 2000 2005 2010 0 5000 10000 15000 20000 25000 30000 35000 Papernumber Publication year Fullerene Carbon nanotube Graphene Graphene nanoribbon
  • 31. SunCL, CGU, Taiwan 312014/Nov./3 M. Terrones et al., ACS Nano 4, 1775 (2010).
  • 32. SunCL, CGU, Taiwan 322014/Nov./3 D.V. Kosynlin et al., Nature 458, 872 (2009).
  • 33. SunCL, CGU, Taiwan 332014/Nov./3 D.V. Kosynlin et al., Nature 458, 872 (2009).
  • 34. SunCL, CGU, Taiwan 342014/Nov./3 C.L. Sun et al., ACS Nano 5, 7788 (2011).
  • 35. SunCL, CGU, Taiwan 352014/Nov./3 Patents issued and pending  US 8900542 B2 METHOD FOR FORMING GRAPHENE NANORIBBONS (USA)  2012-158514METHOD FOR FORMING GRAPHENE NANORIBBON (Japan) (Date: 2012/01/27; No.: 特願2012-15529)  201110360884.8石墨烯纳米带制作方法 (中國大陸) (Date: 2011/11/25; No.: 201110360884.8)  I 429586石墨烯奈米帶製作方法 (Taiwan)
  • 36. SunCL, CGU, Taiwan 362014/Nov./3 c d 100 nm 100 nm 100 nm 200nm c b d a C.L. Sun et al., ACS Nano 5, 7788 (2011).
  • 37. SunCL, CGU, Taiwan 372014/Nov./3 280 290 300 310 0.00 0.01 0.02 0.03 Absorption(nm -1 ) Photon Energy (eV) GONR MWCNT (d)(c) Composite map GONR(b) 1.0 20.8 500 nm500 nm 2.0 MWCNT(a) 53.4 C.L. Sun et al., ACS Nano 5, 7788 (2011).
  • 38. SunCL, CGU, Taiwan 382014/Nov./3 -0.2 0.0 0.2 0.4 0.6 -200 -100 0 100 200 300 Current(A) Potential (V vs. Ag/AgCl) GONR Graphene CNT Glassy Carbon C.L. Sun et al., ACS Nano 5, 7788 (2011).
  • 39. SunCL, CGU, Taiwan 392014/Nov./3 Summary of previously published results for the detection of AA, UA and DA using cyclic voltammetry with different electrodes Electrode Scan rate (V/s) Reference electrode Surface area (cm2) Current (μA) Current density (μA/cm2) Ref AA DA UA AA DA UA MWCNT/GCE 0.05 Ag/AgCl 0.07 ﹣ 0.7(0.05 mM) ﹣ ﹣ 10 ﹣ [S6] Graphene/GCE 0.05 Ag/AgCl 0.07 140 (3 mM) 50 (3 mM) 70 (3 mM) 2000 714.3 1000 [S7] Chitosan- graphene/GCE 0.05 Ag/AgCl 0.07 17 (2 mM) 12 (1 mM) 10 (0.5 mM) 242.9 171.4 142.9 [S1] Pd/CNF-CPE 0.05 Ag/AgCl 0.0113 7 (2 mM) 15 (2 mM) 12.5 (2 mM) 619.5 1327 1106 [S8] Pt-MWCNTs/GCE 0.05 Ag/AgCl - 22 (0.5 mM) 60 (0.5 mM) 155 (0.5 mM) - - - [S2] SWNT/PSS/GCE 0.1 SCE 0.07 - 35 (0.03 mM) - - 500 - [S3] PAA-MWCNTs/SPE 0.1 Ag/AgCl 0.07 4 (0.2 mM) - 25 (0.015 mM) 57.1 - 357.1 [S9] PAY/MWCNTs/GCE 0.02 Ag/AgCl 0.07 8 (0.0002 mM) 3 (0.3 mM) - 114.3 42.9 - [S10] Pt/PFIL/GS/GCE 0.1 Ag/AgCl 0.07 49 (2 mM) 57 (1 mM) - 700 814.3 - [S11] Pt/Graphene/GCE 0.05 Ag/AgCl 0.196 95 (1 mM) 272 (1 mM) 371 (1 mM) 484.7 1387.7 1892.8 [S12] GONR(200W)/GCE 0.05 Ag/AgCl 0.196 67 (1 mM) 402.3 (1 mM) 426.9 (1 mM) 341.8 2053 2178 This work C.L. Sun et al., ACS Nano 5, 7788 (2011).
  • 40. SunCL, CGU, Taiwan 402014/Nov./3 2 4 6 8 0 1 2 3 IAA=0.1188+0.2938CAA R=0.9824Current(A) Concentration (M) (a) 2 4 6 8 10 2 4 6 IDA=0.2481+0.4694CDA R=0.9989 Current(A) Concentration (M) (b) 0 2 4 6 8 10 0 1 2 IUA=-0.0023+0.2154CUA R=0.9979 Current(A) Concentration (M) (c) -0.2 0.0 0.2 0.4 0.6 0 100 200 300 Current(A) Potential (V vs. Ag/AgCl) GONR(200W)/GC AA DA UA 229.9mV 126.7 mV C.L. Sun et al., ACS Nano 5, 7788 (2011).
  • 41. SunCL, CGU, Taiwan 412014/Nov./3 Summary of previously published results for the detection of AA, UA and DA using amperometric measurements with different electrodes Electrode Dynamic range (μM) Limit of detection (μM) Ref AA DA UA AA DA UA PAY/MWCNTs/GCE 1 – 56 ﹣ ﹣ 0.2 ﹣ ﹣ [S10] Pt/Graphene/GCE 0.15- 34.4 0.03-8.13 0.05- 11.85 0.15 0.03 0.05 [S12] Gold nanoparticles/Graphene/GCE ﹣ ﹣ 2– 62 ﹣ ﹣ 0.2 [S13] Polystyrene sulfonate wrapped MWCNT/graphite cylinder 50– 1000 50 – 350 50 –800 0.5 0.15 0.8 [S14] Polyaniline- poly(acrylic acid) network/SCE 1 – 9300 ﹣ ﹣ 1 ﹣ ﹣ [S15] OMC–Fc/GCE ﹣ ﹣ 60–390 ﹣ ﹣ 1.8 [S4] GONR(200W)/GCE 0.1-8.5 0.15-12.2 0.15- 11.45 0.06 0.08 0.07 This work
  • 42. SunCL, CGU, Taiwan 422014/Nov./3 (a) (b) (c) (d) C.L. Sun et al., Biosens. Bioelectron. 67, 327 (2015).
  • 43. Short GONRs SunCL, CGU, Taiwan 432014/Nov./3 15 20 as-recieved MWCNTs cut MWCNTs tion(a.u.) (a) (b) 0 10 20 30 40 50 0 2 4 6 8 10 12 14 Lengthorsize(m) Reaction time (hrs) TEM Zetasizer 0 5 10 15 20 0 5 10 15 20 as-recieved MWCNTs cut MWCNTs Distribution(a.u.) Length (m) (b) 0 10 20 30 40 50 0 2 4 6 8 Lengthorsiz Reaction time (hrs) C.L. Sun et al., Biosens. Bioelectron. 67, 327 (2015).
  • 44. SunCL, CGU, Taiwan 442014/Nov./3 -0.2 0.0 0.2 0.4 0.6 -150 -100 -50 0 50 100 150 Current(A) Potential (V vs. Ag/AgCl) GC Grephene/GC MWCNT/GC Short MWCNT/GC GONR/GC Short GONR/GC AA -0.2 0.0 0.2 0.4 0.6 -150 -100 -50 0 50 100 150 200 250 300 350 400 Current(A) Potential (V vs. Ag/AgCl) GC Grephene/GC MWCNT/GC Short MWCNT/GC GONR/GC Short GONR/GC UA -0.2 0.0 0.2 0.4 0.6 -300 -200 -100 0 100 200 300 400 500 Current(A) Potential (V vs. Ag/AgCl) GC Grephene/GC MWCNT/GC Short MWCNT/GC GONR/GC Short GONR/GC DA (a) (b) (c) C.L. Sun et al., Biosens. Bioelectron. 67, 327 (2015).