Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Many-body Green functions theory for electronic and optical properties of organic systems


Published on

Many-body Green functions theory for electronic and optical properties of organic systems
(are physicists any good at chemistry?)

Published in: Education
  • Be the first to comment

Many-body Green functions theory for electronic and optical properties of organic systems

  1. 1. Many-body Green functions theory for electronic and optical properties of organic systems (are physicists any good at chemistry?) Claudio Attaccalite CNRS/CINAM Campus de Luminy, Case 913 13288 Marseille , France Excited States Bridging Scales, Marseille, November 7-10 (2016)
  2. 2. Outline ● From the Green’s mill to modern computer codes ● From solids to molecules ● The future…..
  3. 3. Outline ● From the Green’s mill to modern computer codes ● From solids to molecules ● The future…..
  4. 4. What do electrons in solids? Direct and inverse  photo­emission Electrons moves in bands  that correspond to the  energy to remove or add  one electron
  5. 5. How to calculate band-structures? Problems with DFT (and HF) The Kohn­Sham eigen­systems do not represent  the real bands of a solid even if we know the exact Vxc ●  Band width too large for metals ●  Band gaps too small ●  In materials with d or f orbitals, the Density  of States is in disagreement with experiments ●  Metal­insulator transition not described ●  The magnetic moments in the transition metal oxides are  systematically underestimated ●  Etc...
  6. 6. Green functions Let's "watch" the propagation of an added electron Green’s function |ψ0 N ⟩ ^ψ+ (r ,t)| ψ0 N ⟩ ^ψ(r ' ,t ') ^ψ+ (r ,t)| ψ0 N ⟩ ● Probability amplitude for propagation of additional electron from (r,t)  to (r',t') in a many electron system. ● Generalization of the density matrix (r,r’,t) where fields operators  have different times.  iG(r ' ,t ' ;r ,t)=⟨ψ0 N | ^ψ(r' ,t ') ^ψ+ (r ,t )|ψ0 N ⟩θ(t '−t) Ref:  Quantum Statistics of Nonideal Plasmas, D. Kremp, M. Schlanges and W. D. Kraeft
  7. 7. Which information is contained in the Green function? G(r ' ,r ;ω)= ∑s ψN +1 (r ´)[ ψN +1 (r)] ∗ ω−ϵs N +1 +i η + ∑s ψN −1 (r ´)[ ψN −1 (r)] ∗ ω−ϵs N +1 −i η By Fourier transform and some mathematics…. Poles of Green's function give energies for addition/removing an electron, charged  excitations (including ionization energy and electron affinities in molecules) ρ(r ' ,r)=−iG(r ' ,r ;t →0⁺ ) The t=0 limit is the density matrix!The t=0 limit is the density matrix!
  8. 8. How to calculate Green functions From the EOM of the annihilation field operator: Historical note: Green’s functions were originally introduced by the British (miller and) mathematical physicist George Green  in the context of the theory of electricity and magnetism. Nowadays, all functions satisfying an inhomogeneous  integral­differential equation with a Dirac delta function as source term are called Green functions. i∂t ^ψ(r ,t)=[ ψ(r ,t ), ^H ] We obtain a infinite hierarchy of  n­particle Green’s functions  similar to the ones of density matrix: h(1)G(1;1' )−i∫d 2V (1,2)G(1,2;1' ,2+ )=δ(1−1') G2 G1 G3 Gn G4 This equations can be closed by introducing a single particle operator   non­local in space and time, that include correlation effects G=G0+G0 Σ(G)G Martin-Schwinger Tower  can be calculated by perturbation theory
  9. 9. Problem with metals and the electron- gas ... Ref: Many­Body Quantum Theory in Condensed Matter Physics: An Introduction, H. Bruus and K. Flensberg e­ e­ e­ e­ e­ e­ e­e­ Metal Electron gas Lets use perturbation theory to improve DFT/HF  and calculate the Green functions
  10. 10. Problem with metals and the electron- gas ... Ref: Many­Body Quantum Theory in Condensed Matter Physics: An Introduction, H. Bruus and K. Flensberg Lets use perturbation theory to improve DFT/HF  and calculate the Green functions It diverges!! It diverges!! e­ e­ e­ e­ e­ e­ e­e­ Metal Electron gas
  11. 11. How to solve the problem of divergences We solved this problem many years ago …. condensed matter physicists discussed with their cousins particle physicists ……... Sums an infinite series of perturbation terms in such a way to create a screened interaction W, and then start again perturbation theory in W
  12. 12. Self-energy in terms of a screened interaction Ref: The GW method F. Aryasetiawan, and O. Gunnarsson,  Reports on Progress in Physics, 61(3), 237. (1998) Where G is the single particle electronic Green's function  and W is the screened electron­electron interaction All correlation effects are included in the self­energy operator   the we approximate as: Putting together Green’s function and perturbation theory in terms of a screened  Coulomb interaction we get the quasi­particle formalism. Namely the mapping of the  true many­body problem onto a single effective single­particle framework: Many-body perturbation theory (GW approximation) Mean-field approaches (DFT, Hartree-Fock, etc.)
  13. 13. Response functions From the derivatives of the Green’s function respect to an external field U  it is possible to calculate the response functions: Li, j, k ,l= ∂ρi, j ∂ U k ,l =−i ∂ Gi, j ∂ Uk , l L=L0+L0[ v+∂ Σ/∂G L] L The Bethe­Salpeter Equation (BSE) Similar to TD­DFT Cassida equation χ=χ0+χ0[ v+f xc] χ But does not depend from any functional  and naturally include exchange effects  h ν + - Ref: G. Strinati, Rivista del Nuovo Cimento 1, 11, (1988)
  14. 14. A sleeping beauty Many­Body Perturbation Theory within the GW approximation for the electron gas was presented  by Hedin in  New method for calculating the one­particle Green's function with  application to the electron­gas problem.  L. Hedin, Physical Review, 139, A796 (1965) (from the abstract: …  there is not much new in principle in this paper. ….) However, we had to wait until 1980 for the first application to semiconductors by Hanke, Sham, Strinati and Mattausch Modern implementation of GW by Hybertsen and Louie (1986) Modern implementation of BSE by Onida et al. (1995)
  15. 15. Some results Band gaps Optical excitations G. Onida, L. Reining, and A. Rubio, RMP 74 (2002).
  16. 16. Outline ● From the Green’s mill to modern computer codes ● From solids to molecules ● The future…..
  17. 17. FIESTA and friends Other implementations using localized orbitals: 1) MOLGW (free):  2) TurboMole:     3) FHI: https://aimsclub.fhi­   4) SIESTA:  French Initiative for Electronic Simulations  with Thousands of Atoms  [] Implementation of GW equations and response functions  (Bethe­Salpeter equation) using a gaussian basis set
  18. 18. The ab-initio zoo: from mean-field to many-body perturbation theory Ab-initio formalisms are not all equivalent and there is still “some work” towards reliable and cheap enough approaches able to tackle complex systems. X. Blase, V. Olevano and C. Attaccalite PRB 83, 115105 (2011) Mean-field approaches (DFT, Hartree-Fock, etc.) The « exact » many-body problem (QMC, CI, coupled-cluster, etc.) Many-body perturbation theory (GW, Bethe-Salpeter, etc.) HOMO-LUMO gap of molecules of interest for organic electronics or photovoltaics
  19. 19. Beyond the scissor operator: level ordering and spacing below the gap HOMO to (HOMO-3) in cytosine LDA GW CASPT2 EOM-IP-CCSD σO + π ππ HOMO 6.167 (σO) 8.73 (π) 8.73/8.76 (π) 8.78 (π) 8.8-9.0 HOMO-1 6.172 (π) 9.52 (π’) 9.42/ - (σO) 9.55 (π’) 9.45-9.55 HOMO-2 6.81 (σ) 9.89 (σO) 9.49/ - (π’) 9.65 (σO) 9.89   LDA            evGW         CASPT2/CCSD(T)   EOM­IP­CCSD      Exp. π σO σO σO σ π’ π’ π’ -3.72 eV (Faber, Attaccalite, Olevano, Runge, Blase, PRB 2011) (DNA nucleobases)
  20. 20. Bethe-Salpeter equations (BSE) for excitonic interactions: comparison to experiment ! BNL = Range-separated hybrid functional (Stein, Kronik, Baer, JACS 2009) TDDFT hybrid Acceptor = TCNE (tetracyanoethylene) Donor = benzene, toluene, o-xylene and naphtalene (Blase, Attaccalite, APL, 2011) See also our competitors: Garcia-Lastra and Thygesen, PRL (2011); Baumeier, Andrienko, Rohlfing, JCTC (2012); F. Bruneval et al. Comp. Phys. Comm. (2016)
  21. 21. A very simple example: dipeptide intramolecular charge-transfer states (Faber, Boulanger, Duchemin, Attaccalite, Blase, JCP 2013) TD-DFT versus GW/BSE for charge-transfer excitations Charge-transfer excitations requiring long-range electron-hole interaction is a well known failure of TD-DFT with local kernels. Similar situation in solids with extended Wannier excitons. Excitonic States: (similar to Felix Plasser): from the Electron-Transition Density Matrix electrons are green, holes are gray ϕe (re)=∫rh ψ(rh ,re)d rh
  22. 22. The future…. Beyond standard approximations Vibronic coupling (forces?) Real-time dynamics Multi- reference problems Multi- reference problems Environment
  23. 23. When a charge arrives onto a molecule, the structural relaxation of the molecule traps the  charge and strongly limits the mobility of the carriers (polaronic coupling).   t1u (3-fold) The relaxation energy is closely  related to the electron­phonon coupling strength. LUMO GW DFT (LDA) (courtesy, A. Troisi, Warwick) Electron-phonon potential LDA 63 meV GW 109 meV Exp. 107 meV Exps: Wang et al., JCP 2005 ; Hands et al., PRB 2008 Theory: Faber et al. J. of Mat. Science 47 (21), 7472 (2012) Electron-phonon or vibronic coupling in molecular systems (Implications in superconductivity, inelastic scattering, resonant Raman, etc. ?) EPC ~ |slope|2
  24. 24. Many-Body Green’s functions and Classical Polarizable Models I. Duchemin et al., JCP 144, 164106 (2016) and  J. Li et al. JPCL, 7, 2814 (2016) Hybrid QM/MM scheme merging the many­body Green’s function  GW formalism  with classical discrete polarizable models and its  application to molecular crystals and molecules in solution. Hybrid QM/MM capture polarization effects not  present in standard a delta­SCF DFT scheme.
  25. 25. Beyond standard approximations: self-consistency, higer orders... C. Faber et al. JCP 139, 194308(2013) and  X. Ren et al. PRB 92, 081102(2015) F. Kaplan et al. JCTC 12, 2528(2016) Improvements are difficult…. Tetracyanoethylene (TCNE)
  26. 26. Real-time dynamics Many­body Green’s function theory can be extended to non­equilibrium situations, and to study real­time dynamics Non­linear response Pump­probe experiments Kadanoff, L. P., & Baym, G. A. Quantum statistical mechanics (1962). Second Harmonic Generation in MoS2 Transient absorption in silicon M. Grüning, C. Attaccalite PRB 89, 081102 (2014) D. Sangalli & A. Marini  EPL, 110, 47004.  (2015)
  27. 27. Multi-references problems: DMFT + DFT C. Weber et al. PRL  Phys.  110, 106402 (2013) and PNAS 111, 5790 (2014) Inclusion of many­body effects results in the  correct prediction of similar binding energies  for oxy­ and carbonmonoxy­myoglobin. The computed electronic structure of the myoglobin complexes and the nature of the Fe–O2  bonding are validated against experimental spectroscopic observables. A long-standing problem related to the quantum- mechanical description of the respiration process, namely that DFT calculations predict a strong imbalance between O2 and CO binding, favoring the latter to an unphysically large extent. Dynimical mean field theory + DFT
  28. 28. Conclusions The Green’s mill is still used to do science Green’s function theory is a powerful tool  to study excitations in finite and infinite systems. The field is rapidly evolving and many application in  chemistry are on going, stay  tuned!! This presentation is available on:
  29. 29. Ivan Duchemin Carina Faber Acknoledgements Xavier Blase Paul Boulanger Thanks to Martin Spenke for comments on this presentation Comics from