#azurejp
https://www.facebook.com/dahatake/
https://twitter.com/dahatake/
https://github.com/dahatake/
https://daiyuhatakeyama.wordpress.com/
https://www.slideshare.net/dahatake/
Switchboard
携帯電話の
Switchboard ミーティング
IBM,
Switchboard
ブロードなスピーチ
Harry Shum,
EVP of AI and Research Group
AI の民主化にむけ5000 名規模の
Microsoft AI and Research Group 設立
Deep Intelligence
In Motion
Deep Learning Lab
深層学習 開発事例や最新技術動向を
情報発信するコミュニティ
PFN x MS 認定トレーニング
3 年間で 5 万人 深層学習人材育成
深層学習 ソリューション 開発
Chainer / DIMo / Partner Solution /
Microsoft Azure を組み合わせて、
深層学習案件のすそ野を拡大
with cntk.layers.default_options(activation=cntk.ops.relu, pad=False):
conv1 = cntk.layers.Convolution2D((5,5), 32, pad=True)(scaled_input)
pool1 = cntk.layers.MaxPooling((3,3), (2,2))(conv1)
conv2 = cntk.layers.Convolution2D((3,3), 48)(pool1)
pool2 = cntk.layers.MaxPooling((3,3), (2,2))(conv2)
conv3 = cntk.layers.Convolution2D((3,3), 64)(pool2)
f4 = cntk.layers.Dense(96)(conv3)
drop4 = cntk.layers.Dropout(0.5)(f4)
z = cntk.layers.Dense(num_output_classes, activation=None)(drop4)
例:手書き文字認識 (MNIST)
Microsoft Azure
Compute Infrastructure
TORCH
THEANO
CAFFE
MATCONVNET
PURINEMOCHA.JL
MINERVA MXNET*
BIG SUR TENSORFLOW
WATSON CNTK
ND6s ND12s ND24s ND24rs
Cores 6 12 24 24
GPU 1 x P40 2 x P40 4 x P40 4 x P40
Memory 112 GB 224 GB 448 GB 448 GB
Disk ~700 GB SSD ~1.4 TB SSD ~3 TB SSD ~3 TB SSD
Network Azure Network Azure Network Azure Network InfiniBand
Azure 環境に簡単にデプロ
イ
「Wikipedia」 英→西
訳
「戦争と平和」 露→英 訳
Microsoft製FPGAボー
ド
Video Indexer
Cognitive Services Labs
Video Indexer
Cognitive Services Labs
Custom Custom CustomCustom Custom
従来の Database
+ App
Intelligence Database
+ App
Application +
Intelligence
Database
Application
Intelligence
+ Database
VS
#azurejp
Azure Data Lake
Azure Media Service
SQL Server 2017
Azure Data Lake service
Big Data as a Services
無限にデータをストア・管理
Row Data を保存
高スループット、低いレイテンシの分析ジョ
ブ
セキュリティ、アクセスコントロール
Azure Data Lake store
HDInsight & Azure Data Lake Analytics
多くの SQL & .NET DEVELOPERS
宣言型言語の SQL と
逐次実行型である C# のパワーを融合
構造化、一部構造化、非構造化データの融合
全てのデータに分散クエリの実施
U-SQL
Big Data のための新しい言語
1. 顔の解析
2. 画像への タグ 付け
3. 顔の感情分析
4. OCR
5. テキストからの重要語句の抽出
6. テキストの感情分析
Azure Data Lake の 6つの Cognitive 機
能
• オブジェクト認識 (タグ)
• 顔認識、感情認識
• JOIN処理 – 幸せな人は誰なのか?
REFERENCE ASSEMBLY ImageCommon;
REFERENCE ASSEMBLY FaceSdk;
REFERENCE ASSEMBLY ImageEmotion;
REFERENCE ASSEMBLY ImageTagging;
@objects =
PROCESS MegaFaceView
PRODUCE FileName, NumObjects int, Tags string
READONLY FileName
USING new
Cognition.Vision.ImageTagger();
@tags =
SELECT FileName, T.Tag
FROM @objects
CROSS APPLY
EXPLODE(SqlArray.Create(Tags.Split(';')))
AS T(Tag)
WHERE T.Tag.ToString().Contains("dog") OR
T.Tag.ToString().Contains("cat");
@emotion_raw =
PROCESS MegaFaceView
PRODUCE FileName string, NumFaces int, Emotion string
READONLY FileName
USING new Cognition.Vision.EmotionAnalyzer();
@emotion =
SELECT FileName, T.Emotion
FROM @emotion_raw
CROSS APPLY
EXPLODE(SqlArray.Create(Emotion.Split(';')))
AS T(Emotion);
@correlation =
SELECT T.FileName, Emotion, Tag
FROM @emotion AS E
INNER JOIN
@tags AS T
ON E.FileName == T.FileName;
Images
Objects Emotions
filter
join
aggregate
付加価値を提供する
多くのパートナー
ソリューション
Streaming /
CDN
コンテンツ
保護
Processing取り込み
と保管
メディア 配信の コア 機能を
API として提供
Azure Media Services
PlayerAI
(Artificial
Intelligence)
Vision
Speech
Language
Face
画面上の文字
歴史的建造物
話している言葉
翻訳
話者
オブジェクト
シーン
感情
感情
感情キーワード
Azure Functions
翻訳
感情 キー
ワード
R & Python ベースの
AI の ストアドプロシージャ
MicrosoftML Library の組み込み
Graph モデルのサポートによる
より複雑な関係を分析
クエリ 処理の最適化による
比類なき パフォーマンス
AI を組み込んだ最初の商用データベース
SQL Server
2017
• SQL Server, CNTK & R/Python – それぞれの強い部分を連携させた
エンタープライズ グレードの AI アプリケーション
• データを移動させる必要がないため、セキュリティと効率化が向上
• GPU による、処理能力の向上
Featurization
classifier model
での スコアリング
Web App
Diagnosis: 35% certainty
Python / R で実装した ストアドプロシージャ ストアド
プロシージャ
の
呼び出し
Model table,
Features table,
New Images table
SQL Server
execute sp_execute_external_script
@language = N'R'
, @script = N'
x <- as.matrix(InputDataSet);
y <- array(dim1:dim2);
OutputDataSet <- as.data.frame(x %*% y);'
, @input_data_1 = N'SELECT [Col1] from MyData;'
, @params = N'@dim1 int, @dim2 int'
, @dim1 = 12, @dim2 = 15
WITH RESULT SETS (([Col1] int, [Col2] int, [Col3] int, [Col4] int));
‘R’ もしくは ‘Python’
R file や Python file の
読み込みも
入力データ。 T-SQL SELECT も使
えるスクリプト用のパラメーター。”OUTPUT” もサポー
ト。
トレーニング済みのモデルには varbinary(max) を
使用
Result set のバインド(Optional)
STDOUT や STDERR と一緒に
メッセージ文字列も
R dataframe もしくは
Python Pandas dataframe
launchpad.exe
sp_execute_external_script
sqlservr.exe
Named pipe
それぞれの SQL インスタ
ンスがlaumchpad.exe を持
つ
SQLOS
XEvent
MSSQLSERVER Service MSSQLLAUNCHPAD Service
“何を” そして “どう”
“実行” するか
“launcher”
Bxlserver.exe
sqlsatellite.dll
Bxlserver.exe
sqlsatellite.dll
Windows Satellite
Process
sqlsatellite.dll
Run your “query”
In-memory OLTPColumn Store
大量データの
書き込み処理
PowerBI Dashboardスケールする
Database 内の分析
R
業務ユーザー
分析の用意
Stored
Predictions
Visualize
SQL-R を使って、秒間100万件の機械学習の処理も
Gathering
Data
Store
Data
Store
Data
Store
Data
Store
Data
Store
Training
Dataset
Model
Data Process Training Deploy Prediction
Model
Model
Lang. Image
Model Video
Dataset Model
Dataset Model
Model
Service
リモートモニタリング・制御
多数のIoTデバイスからの収集データ
をマージ
先進AIの適用を可能にする、
無限に近いコンピューティング
リソースとストレージ
リアルタイム応答に必要な
ローレーテンシーでタイトな
コントロールループ
プライバシーデータや知的財産の保護
Azure IoT Edge IoT Hub
Devices
Local Storage
Azure Machine
Learning
(Container)
Functions
RuntimeContainer
Management
Device
Twin
Device
Twin
Azure Stream
Analytics
(Container)
Azure Functions
(Container)
Cognitive Services
(Container)
Custom Code
(Container)
Module
Twin
Module
Twin
Module
Twin
Module
Twin
Module
Twin
Module
Twin
Module
Twin
Module
Twin
Module
Twin
Module
Twin
さあ、始めま
しょう!azure.com
© 2017 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a
commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

Open Cloud カンファレンス@札幌 Microsoft AI最前線