SlideShare a Scribd company logo
1 of 33
International Conference Vajont, 1963-2013
October 8-10, 2013, Padua, Italy

3D SPH NUMERICAL SIMULATION OF THE
WAVE GENERATED BY THE VAJONT
LANDSLIDE
R. Vacondio*, S. Pagani*, P. Mignosa*, R. Genevois**
* DICATeA – University of Parma, Italy
**Dept. of Geosciences, University of Padua, Italy
OUTLINE OF THE PRESENTATION

1.
2.
3.
4.

Previous works
Data available
Kinematics of the landslide
SPH fundamentals and main characteristics of the
numerical model
5. Numerical simulations and model calibration
6. Results
7. Conclusions

3D SPH numerical simulation of the wave generated by the Vajont landlslide

2/25
PREVIOUS WORKS AN MOTIVATION
Previous works concerning the kinematic of the Vajont slide:
Datei (1969), Hendron & Patton (1985), Semenza & Melidoro (1992),
Zaniboni & Tinti (2013),
Previous works concerning the wave generated by the Vajont slide:
Selli & Trevisan (1964), Viparelli & Merla (1968), Semenza (2001),
Datei (2005).
More recently Bosa & Petti (2010) have simulated the phenomenon by
means of a 2D shallow water model. The slide was schematized as a
moving vertical wall which acted as a «piston» in moving the water of
the Vajont slide.
Motivation:
To overcome the limitations of the SWE through the adoption of a fully
3D numerical model

3D SPH numerical simulation of the wave generated by the Vajont landlslide

3/25
DEM USED TO DERIVE THE GEOMETRY OF THE VAJONT VALLEY

3D SPH numerical simulation of the wave generated by the Vajont landlslide

4/25
z (m a.s.l.)

LEVEL-VOLUME CURVE OF THE VAJONT LAKE (PRE-SLIDE)

Volume at z=700,42 m a.s.l.:
112 106 m3

volume (106 m3)

Datei (2005)

Present work

3D SPH numerical simulation of the wave generated by the Vajont landlslide

5/25
RECONSTRUCTION OF THE SLIDING BODY
Intersection between:
• DEM pre-event , obtained by digitizing maps of Semenza et al. (1965);
• Sliding surface, obtained by Superchi (2011) through seismic sections
and boreholes stratigraphy interpretation)
Vajont valley
Vajont valley

Sliding
Sliding
body
surface

Vajont dam
3D SPH numerical simulation of the wave generated by the Vajont landlslide

6/25
KINEMATICS OF THE LANDSLIDE -1
We follow the 2D Datei’s approach extending it to the whole 3D
sliding body
1200
R
1000
800
m a.s.l.

m a.s.l.
CoMpre
CoMpost

800
600
400

The Centers of Mass (CoM) of the sliding body before (CoMpre) and after the
slide (CoMpost) have been calculated.

The following hypoteses have been assumed:
1. The slide moved as a rigid body (Muller, 1961, Selli & Trevisan, 1964) on a
rotational axis normal to the plane containing CoMpre and CoMpost;
2. The CoM trajectory is a circular arc of radius R (to be determined).
3D SPH numerical simulation of the wave generated by the Vajont landlslide

7/25
KINEMATICS OF THE LANDSLIDE -2
C

For each radius R:
1. the trace of the rotational axis C on the plane
containing both CoM is evaluated;
2. the sliding body is rigidly rotated around C.
The optimal radius R is obtained by minimizing the
L2 norm:
N

L2 ( R)
i 1

zirot

zipost
N

R

CoMpre

2

3D SPH numerical simulation of the wave generated by the Vajont landlslide

CoMpost

8/25
KINEMATICS OF THE LANDSLIDE -3

Section 1

Section 2

3D SPH numerical simulation of the wave generated by the Vajont landlslide

9/25
KINEMATICS OF THE LANDSLIDE -4

Section 3

Section 4

3D SPH numerical simulation of the wave generated by the Vajont landlslide

10/25
KINEMATICS OF THE LANDSLIDE -5

Section 5

Section 6

3D SPH numerical simulation of the wave generated by the Vajont landlslide

11/25
KINEMATICS OF THE LANDSLIDE -6
Assuming a constant friction coefficient f, from the
second law of dynamics, the following equation of
the CoM can be derived
d2
R 2
dt

g sen

R d
g dt

f cos

R

d
dt

0

f

R (m)
α0 (rad)
α1 (rad)
f( )
vmax (m/s)
Tf (s)

tan

max

R

m ax

1
1

cos
sin

1

CoMpre

gR
g
sin t
cos max
R cos

cos
sin

0

2

With some simplifications (Datei, 1969) and
introducing the b.c. the equation for the velocity
magnitude time history of the CoM is obtained
v

C

CoMpost

max

0
0

800
0.469
0.058
0.27
18.5
27.9

3D SPH numerical simulation of the wave generated by the Vajont landlslide

12/25
FUNDAMENTALS OF SPH METHOD
• Meshless spatial interpolation based on kernel functions
• Lagrangian
Water
particles

r’

A(r)

j
r r’ i
2h

Ai
j

j

AjWij

Compact support
of kernel

r

A r' W r r' , h dr'
mj

W(r r’, h)

Radius of
influence

A' (r)

A r' W ' r r' , h dr'
mj

'
i

A

j

AjWij'

j

3D SPH numerical simulation of the wave generated by the Vajont landlslide

13/25
ALGORITHM: WEAKLY COMPRESSIBLE – SPH SCHEME
Navier – Stokes
Equations
D
Dt
Dv
Dt

SPH
discretization

v
1

D i
Dt

p g Θ

Dv i
Dt

m j vi

vi

Wi , j

j

mj

pj

pi

2
j

2
i

j

Lagrangian particles motion:
Dx i
Dt

vj

i, j

Wi , j

g

Stiff equation of state:
pi

2
c0

0

i

1

7

0

3D SPH numerical simulation of the wave generated by the Vajont landlslide

14/25
DISCRETISATION OF SOLID BOUNDARY CONDITIONS
In a SPH framework the discretisation of solid b.c. is still an
open problem. Several options are available
Type

Sketch
Interior fluid
particles

Time consuming, not
suitable for complex
geometry

Mirror Particles
Boundary

Characteristics

Mirror (ghost) particles

Repulsive Force
(Lennard –Jones
molecular model,
Monaghan, 1994)

Dynamic boundaries

Empirical

Suitable for complex
geometry, good
accuracy and efficiency

3D SPH numerical simulation of the wave generated by the Vajont landlslide

15/25
SPH – ADVANTAGES AND DRAWBACKS
• SPH simulations of practical problem is limited by simulation time and
system size
• 3D applications have been limited until now by the maximum number
of particles in order to perform simulations within reasonable
computational time.
• Two options are available to overcome this issue:
Supercomputers
GP-GPUs

DualSPHysics code exploits the computing capability of GPUs (x 100
speedup)
3D SPH numerical simulation of the wave generated by the Vajont landlslide

16/25
DualSPHysics – EXAMPLE OF APPLICATION

3D SPH numerical simulation of the wave generated by the Vajont landlslide

17/25
3D NUMERICAL SIMULATIONS AND MODEL CALIBRATION
Discretization
1. Cubic cells of side x=5 m with a smoothing lenght h=1.5 x

Data available for calibration:
1. Historical (Semenza et al, 1965) maximum run-up of the wave;
2. Water level at rest on the residual lake after the event (712,5 m a.s.l.).
Calibration parameters:
1. Main: friction factor f maximum velocity vmax;
2. Minor: model resolution, kernel type and smoothing lenght, artificial
viscosity;
3D SPH numerical simulation of the wave generated by the Vajont landlslide

18/25
3D NUMERICAL SIMULATIONS AND MODEL CALIBRATION
Initial conditions: water at rest at z 700,42 m a.s.l.

Dam

Vajont lake

Landslide
body

3D SPH numerical simulation of the wave generated by the Vajont landlslide

19/25
CALIBRATED 3D NUMERICAL SIMULATION – PLANE VIEW
f=0.14 vmax=30 m/s

link video

3D SPH numerical simulation of the wave generated by the Vajont landlslide

20/25
CALIBRATED 3D NUMERICAL SIMULATION – PERSPECTIVE VIEW

link video

3D SPH numerical simulation of the wave generated by the Vajont landlslide

21/25
CALIBRATED 3D NUMERICAL SIMULATION – MAIN RESULTS
Comparison between historical and calculated maximum run-up of the wave
Historical (Semenza et al., 1965)
Numerical

Dam

Water level at rest on the residual lake after the event:
Calculated: 710 m a.s.l.. Historical 712,5 m a.s.l.
3D SPH numerical simulation of the wave generated by the Vajont landlslide

22/25
FLOOD WAVE OVERTOPPING THE DAM

Qmax 160·103 m3/s

time (s)

3D SPH numerical simulation of the wave generated by the Vajont landlslide

23/25
CONCLUSIONS AND FUTURE WORKS
• The results of a 3D SPH numerical simulation of the wave generated by the
Vajont rockslide are presented.
• The slide was modeled as a rigid body on a rotational axis normal to the plane
containing CoMpre and CoMpost
• The water volume before the slide was discretized by means of about 1.7
millions of liquid particles, thanks to the CUDA parallelization of the opensource DualSPHysics code.
• The sensitivity analysis of the numerical model has shown that the main
parameter is the friction factor f (which influence the total duration of the fall).
In order to correctly reproduce the maximum historical run-up a friction factor
f=0.14 was necessary.
• The comparison between the results of the numerical simulation and the data
available in literature shows that the numerical scheme is able to reasonably
reproduce, the maximum run-up and level in the residual lake after the event.
• The peak of the flood wave overtopping the dam was estimated at about 160 103
m3/s;
• The numerical results can be adopted in future works as upstream b.c. to
simulate the propagation of the wave in the Vajont gorge, downstream the dam
and in the Piave valley.
3D SPH numerical simulation of the wave generated by the Vajont landlslide

24/25
Thank you for your attention

paolo.mignosa@unipr.it
rinaldo.genevois@unipd.it

renato.vacondio@unipr.it

3D SPH numerical simulation of the wave generated by the Vajont landlslide

25/25
SIMULAZIONI NUMERICHE 3D E TARATURA DEL
MODELLO
Tf= 17.2 secondi vmax=30 m/s

vmax=20 m/s
vmax=35 m/s

Formazione
del lago
Massalezza

Evoluzione temporale della distribuzione del modulo della velocità dell’onda nella valle del Vajont
SIMULAZIONI NUMERICHE 3D E TARATURA DEL
MODELLO
Tf= 17.2 secondi vmax=30 m/s

Tracimazione diga

Velocità
superiori a
25 m/s

Flusso prevalente in
sinistra idraulica
Evoluzione temporale della distribuzione del modulo della velocità dell’onda in prossimità della diga
SIMULAZIONI NUMERICHE 3D E TARATURA DEL
MODELLO
Tf= 17.2 secondi vmax=30 m/s

t = 10 s

Tracimazione diga

Mappa delle quote idriche a diversi istanti temporali
SIMULAZIONI NUMERICHE 3D E TARATURA DEL
MODELLO
Tf= 17.2 secondi vmax=30 m/s

t = 20 s

Flusso verso il lago Massalezza

Mappa delle quote idriche a diversi istanti temporali
SIMULAZIONI NUMERICHE 3D E TARATURA DEL
MODELLO
Tf= 17.2 secondi vmax=30 m/s

t = 30 s

Massima risalita dell’onda

Mappa delle quote idriche a diversi istanti temporali
SIMULAZIONI NUMERICHE 3D E TARATURA DEL
MODELLO
Tf= 17.2 secondi vmax=30 m/s

t = 40 s

Discesa dell’onda

Mappa delle quote idriche a diversi istanti temporali
BIBLIOGRAFIA














Bosa S., Petti M. & Passaro M. (2010). “Modellazione ai volumi finiti dell’onda generata dalla frana del
Vajont”. XXXII Convegno Nazionale di Idraulica e Costruzioni Idrauliche, Palermo.
Bosa S. & Petti M. (2012). “A numerical model of the wave that overtopped the Vajont dam in 1963”.
Università di Udine, Udine.
Caloi P. (1966). “L’evento del Vajont nei suoi aspetti geodinamici“. Istituto Nazionale di Geofisica,
Roma.
Ciabatti M. (1964). “La dinamica della frana del Vajont”. Giornale di Geologia, 32, 139-160.
Datei C. (1969). “Su alcune questioni di carattere dinamico relative ad un eccezionale scoscendimento
di un ammasso roccioso”. Memorie della Accademia Patavina, 89-108, Padova
Datei C. (2005). “Vajont. La storia idraulica”. Cortina, Padova.
Genevois R. & Ghirotti M. (2005). “The 1963 Vaiont Landslide”. Giornale di Geologia Applicata, 1, 41–
52.
Giudici F. & Semenza E. (1960). “Studio geologico del serbatoio del Vajont”. Report for S.A.D.E.,
Venezia.
Semenza E., Rossi D. & Giudici F. (1965). “Carte geologiche del versante settentrionale del Monte Toc
e zone limitrofe, prima e dopo il fenomeno di scivolamento del 9 ottobre 1963”. Scala 1:5000. Istituto di
Geologia dell’Università di Padova, Padova.
Selli R. & Trevisan L. (1964). “Caratteri e interpretazione della Frana del Vajont”. Giornale di Geologia,
32, 1-154.
Semenza E. (2001). “La storia del Vajont raccontata dal geologo che ha scoperto la frana”.
Tecomproject Editore Multimediale, Ferrara.
Superchi L. (2011). “The Vajont rockslide: new techniques and tradizional method to re-evaluate the
catastrophic event”. Tesi di dottorato XXIV ciclo, PhD School in Earth Sciences, Università di Padova.
Viparelli M. & Merla G. (1968). “L'onda di piena seguita alla frana del Vajont”. Atti dell’Accademia
Pontaniana, 15.
ALGORITHM: WEAKLY COMPRESSIBLE -SPH SCHEME
The artificial viscosity term
v cij

is defined as follows:
v ij

vj

0

rij

ri r j

v ij rij

0

with

0

cij

0.5 ci

ij

hv ij rij
rij2

vi

v ij rij

ij

i, j

ij

ij

i, j

2

2

0. 5

cj
i

j

0.01h 2

Artificial viscosity v must prevent instabilitiy and
spurious oscillations. For violent phenomena has little
influence on the main characteristics of the flow (Crespo
et al., 2011). The value v=0.2 was assumed in this work
3D SPH numerical simulation of the wave generated by the Vajont landlslide

33/25

More Related Content

What's hot

couches limites laminaire et turbulente.pptx
couches limites laminaire et turbulente.pptxcouches limites laminaire et turbulente.pptx
couches limites laminaire et turbulente.pptxbrahim mouhcine
 
Computational Fluid Dynamics (CFD)
Computational Fluid Dynamics (CFD)Computational Fluid Dynamics (CFD)
Computational Fluid Dynamics (CFD)Khusro Kamaluddin
 
Fluid MechanicsLosses in pipes dynamics of viscous flows
Fluid MechanicsLosses in pipes dynamics of viscous flowsFluid MechanicsLosses in pipes dynamics of viscous flows
Fluid MechanicsLosses in pipes dynamics of viscous flowsMohsin Siddique
 
fluid mechanics pt1
fluid mechanics pt1fluid mechanics pt1
fluid mechanics pt1Shanu Jp
 
Fluid flow Equations.pptx
Fluid flow Equations.pptxFluid flow Equations.pptx
Fluid flow Equations.pptxChintanModi26
 
Introduction Effective Permeability & Relative Permeability
Introduction Effective Permeability & Relative PermeabilityIntroduction Effective Permeability & Relative Permeability
Introduction Effective Permeability & Relative PermeabilityM.T.H Group
 
Chapter four fluid mechanics
Chapter four fluid mechanicsChapter four fluid mechanics
Chapter four fluid mechanicsabrish shewa
 
Fluid Mechanics - Hydrostatic Pressure
Fluid Mechanics - Hydrostatic PressureFluid Mechanics - Hydrostatic Pressure
Fluid Mechanics - Hydrostatic PressureMalla Reddy University
 

What's hot (20)

CFD
CFDCFD
CFD
 
1. introduction
1. introduction1. introduction
1. introduction
 
couches limites laminaire et turbulente.pptx
couches limites laminaire et turbulente.pptxcouches limites laminaire et turbulente.pptx
couches limites laminaire et turbulente.pptx
 
Convolution and deconvolution
Convolution and deconvolution Convolution and deconvolution
Convolution and deconvolution
 
vortex and circulation
vortex and circulationvortex and circulation
vortex and circulation
 
Computational Fluid Dynamics (CFD)
Computational Fluid Dynamics (CFD)Computational Fluid Dynamics (CFD)
Computational Fluid Dynamics (CFD)
 
Fluid MechanicsLosses in pipes dynamics of viscous flows
Fluid MechanicsLosses in pipes dynamics of viscous flowsFluid MechanicsLosses in pipes dynamics of viscous flows
Fluid MechanicsLosses in pipes dynamics of viscous flows
 
Flow in pipes
Flow in pipesFlow in pipes
Flow in pipes
 
fluid mechanics pt1
fluid mechanics pt1fluid mechanics pt1
fluid mechanics pt1
 
Flow through pipes
Flow through pipesFlow through pipes
Flow through pipes
 
Reservoir Modeling
Reservoir ModelingReservoir Modeling
Reservoir Modeling
 
Fluid Mechanics - Fluid Dynamics
Fluid Mechanics - Fluid DynamicsFluid Mechanics - Fluid Dynamics
Fluid Mechanics - Fluid Dynamics
 
Fluid flow Equations.pptx
Fluid flow Equations.pptxFluid flow Equations.pptx
Fluid flow Equations.pptx
 
Introduction Effective Permeability & Relative Permeability
Introduction Effective Permeability & Relative PermeabilityIntroduction Effective Permeability & Relative Permeability
Introduction Effective Permeability & Relative Permeability
 
Chapter four fluid mechanics
Chapter four fluid mechanicsChapter four fluid mechanics
Chapter four fluid mechanics
 
Potential flow
Potential flowPotential flow
Potential flow
 
Fluid Mechanics - Hydrostatic Pressure
Fluid Mechanics - Hydrostatic PressureFluid Mechanics - Hydrostatic Pressure
Fluid Mechanics - Hydrostatic Pressure
 
Laminar turbulent
Laminar turbulentLaminar turbulent
Laminar turbulent
 
05 groundwater flow equations
05 groundwater flow equations05 groundwater flow equations
05 groundwater flow equations
 
Particle Technology- Fluid Flow in Porous Media
Particle Technology- Fluid Flow in Porous MediaParticle Technology- Fluid Flow in Porous Media
Particle Technology- Fluid Flow in Porous Media
 

Similar to Numerical simulation

Flood routing by kinematic wave model
Flood routing by kinematic wave modelFlood routing by kinematic wave model
Flood routing by kinematic wave modelIOSR Journals
 
Ravasi_etal_EAGESBGF2014
Ravasi_etal_EAGESBGF2014Ravasi_etal_EAGESBGF2014
Ravasi_etal_EAGESBGF2014Matteo Ravasi
 
DSD-INT 2017 Ocean wave spectra from phase averaged models and remote sensing...
DSD-INT 2017 Ocean wave spectra from phase averaged models and remote sensing...DSD-INT 2017 Ocean wave spectra from phase averaged models and remote sensing...
DSD-INT 2017 Ocean wave spectra from phase averaged models and remote sensing...Deltares
 
Lecture 23 april29 static correction
Lecture 23 april29 static correctionLecture 23 april29 static correction
Lecture 23 april29 static correctionAmin khalil
 
Seismic Modeling ASEG 082001 Andrew Long
Seismic Modeling ASEG 082001 Andrew LongSeismic Modeling ASEG 082001 Andrew Long
Seismic Modeling ASEG 082001 Andrew LongAndrew Long
 
Seismic data Interpretation On Dhodak field Pakistan
Seismic data Interpretation On Dhodak field PakistanSeismic data Interpretation On Dhodak field Pakistan
Seismic data Interpretation On Dhodak field PakistanJamal Ahmad
 
Prunet, Pascal: Plume detection and characterization from XCO2 imagery: Evalu...
Prunet, Pascal: Plume detection and characterization from XCO2 imagery: Evalu...Prunet, Pascal: Plume detection and characterization from XCO2 imagery: Evalu...
Prunet, Pascal: Plume detection and characterization from XCO2 imagery: Evalu...Integrated Carbon Observation System (ICOS)
 
Seismic interpretation work flow final ppt
Seismic interpretation work flow final pptSeismic interpretation work flow final ppt
Seismic interpretation work flow final pptMuhammadJawwad28
 
Extinction of Millimeter wave on Two Dimensional Slices of Foam-Covered Sea-s...
Extinction of Millimeter wave on Two Dimensional Slices of Foam-Covered Sea-s...Extinction of Millimeter wave on Two Dimensional Slices of Foam-Covered Sea-s...
Extinction of Millimeter wave on Two Dimensional Slices of Foam-Covered Sea-s...IJSRED
 
IRJET - Effect of Local Scour on Foundation of Hydraulic Structure
IRJET - Effect of Local Scour on Foundation of Hydraulic StructureIRJET - Effect of Local Scour on Foundation of Hydraulic Structure
IRJET - Effect of Local Scour on Foundation of Hydraulic StructureIRJET Journal
 
ESA SMOS (Soil Moisture and Ocean Salinity) Mission: Principles of Operation ...
ESA SMOS (Soil Moisture and Ocean Salinity) Mission: Principles of Operation ...ESA SMOS (Soil Moisture and Ocean Salinity) Mission: Principles of Operation ...
ESA SMOS (Soil Moisture and Ocean Salinity) Mission: Principles of Operation ...adrianocamps
 
TU3.T10.5.ppt
TU3.T10.5.pptTU3.T10.5.ppt
TU3.T10.5.pptgrssieee
 
DSD-INT 2019 Effects installation Borssele export cables - Koudstaal
DSD-INT 2019 Effects installation Borssele export cables - KoudstaalDSD-INT 2019 Effects installation Borssele export cables - Koudstaal
DSD-INT 2019 Effects installation Borssele export cables - KoudstaalDeltares
 
Csp seismic data processing method for fracture oil and gas reservoir prospec...
Csp seismic data processing method for fracture oil and gas reservoir prospec...Csp seismic data processing method for fracture oil and gas reservoir prospec...
Csp seismic data processing method for fracture oil and gas reservoir prospec...wsspsoft
 
Changes in dam break hydrodynamic modelling practice - Suter et al
Changes in dam break hydrodynamic modelling practice - Suter et alChanges in dam break hydrodynamic modelling practice - Suter et al
Changes in dam break hydrodynamic modelling practice - Suter et alStephen Flood
 

Similar to Numerical simulation (20)

TuD20203_Sepat
TuD20203_SepatTuD20203_Sepat
TuD20203_Sepat
 
Flood routing by kinematic wave model
Flood routing by kinematic wave modelFlood routing by kinematic wave model
Flood routing by kinematic wave model
 
Ravasi_etal_EAGESBGF2014
Ravasi_etal_EAGESBGF2014Ravasi_etal_EAGESBGF2014
Ravasi_etal_EAGESBGF2014
 
DSD-INT 2017 Ocean wave spectra from phase averaged models and remote sensing...
DSD-INT 2017 Ocean wave spectra from phase averaged models and remote sensing...DSD-INT 2017 Ocean wave spectra from phase averaged models and remote sensing...
DSD-INT 2017 Ocean wave spectra from phase averaged models and remote sensing...
 
Lecture 23 april29 static correction
Lecture 23 april29 static correctionLecture 23 april29 static correction
Lecture 23 april29 static correction
 
240708
240708240708
240708
 
Seismic Modeling ASEG 082001 Andrew Long
Seismic Modeling ASEG 082001 Andrew LongSeismic Modeling ASEG 082001 Andrew Long
Seismic Modeling ASEG 082001 Andrew Long
 
Seismic data Interpretation On Dhodak field Pakistan
Seismic data Interpretation On Dhodak field PakistanSeismic data Interpretation On Dhodak field Pakistan
Seismic data Interpretation On Dhodak field Pakistan
 
Prunet, Pascal: Plume detection and characterization from XCO2 imagery: Evalu...
Prunet, Pascal: Plume detection and characterization from XCO2 imagery: Evalu...Prunet, Pascal: Plume detection and characterization from XCO2 imagery: Evalu...
Prunet, Pascal: Plume detection and characterization from XCO2 imagery: Evalu...
 
Seismic interpretation work flow final ppt
Seismic interpretation work flow final pptSeismic interpretation work flow final ppt
Seismic interpretation work flow final ppt
 
Extinction of Millimeter wave on Two Dimensional Slices of Foam-Covered Sea-s...
Extinction of Millimeter wave on Two Dimensional Slices of Foam-Covered Sea-s...Extinction of Millimeter wave on Two Dimensional Slices of Foam-Covered Sea-s...
Extinction of Millimeter wave on Two Dimensional Slices of Foam-Covered Sea-s...
 
IRJET - Effect of Local Scour on Foundation of Hydraulic Structure
IRJET - Effect of Local Scour on Foundation of Hydraulic StructureIRJET - Effect of Local Scour on Foundation of Hydraulic Structure
IRJET - Effect of Local Scour on Foundation of Hydraulic Structure
 
ESA SMOS (Soil Moisture and Ocean Salinity) Mission: Principles of Operation ...
ESA SMOS (Soil Moisture and Ocean Salinity) Mission: Principles of Operation ...ESA SMOS (Soil Moisture and Ocean Salinity) Mission: Principles of Operation ...
ESA SMOS (Soil Moisture and Ocean Salinity) Mission: Principles of Operation ...
 
TU3.T10.5.ppt
TU3.T10.5.pptTU3.T10.5.ppt
TU3.T10.5.ppt
 
DSD-INT 2019 Effects installation Borssele export cables - Koudstaal
DSD-INT 2019 Effects installation Borssele export cables - KoudstaalDSD-INT 2019 Effects installation Borssele export cables - Koudstaal
DSD-INT 2019 Effects installation Borssele export cables - Koudstaal
 
Csp seismic data processing method for fracture oil and gas reservoir prospec...
Csp seismic data processing method for fracture oil and gas reservoir prospec...Csp seismic data processing method for fracture oil and gas reservoir prospec...
Csp seismic data processing method for fracture oil and gas reservoir prospec...
 
Changes in dam break hydrodynamic modelling practice - Suter et al
Changes in dam break hydrodynamic modelling practice - Suter et alChanges in dam break hydrodynamic modelling practice - Suter et al
Changes in dam break hydrodynamic modelling practice - Suter et al
 
CFD modeling
CFD modelingCFD modeling
CFD modeling
 
WATERSHED ANALYSIS .pptx
WATERSHED ANALYSIS .pptxWATERSHED ANALYSIS .pptx
WATERSHED ANALYSIS .pptx
 
DRONES IN HYDROLOGY
DRONES IN HYDROLOGYDRONES IN HYDROLOGY
DRONES IN HYDROLOGY
 

More from ceriuniroma

9oct mechanics large-landslides5
9oct mechanics large-landslides59oct mechanics large-landslides5
9oct mechanics large-landslides5ceriuniroma
 
9oct 1 esposito-landslide risk reduction
9oct 1 esposito-landslide risk reduction9oct 1 esposito-landslide risk reduction
9oct 1 esposito-landslide risk reductionceriuniroma
 
9oct vajont lecture hatzor
9oct vajont lecture hatzor9oct vajont lecture hatzor
9oct vajont lecture hatzorceriuniroma
 
9oct paolo mazzanti-vajont
9oct paolo mazzanti-vajont9oct paolo mazzanti-vajont
9oct paolo mazzanti-vajontceriuniroma
 
9oct hungr vaiont-2013
9oct hungr vaiont-20139oct hungr vaiont-2013
9oct hungr vaiont-2013ceriuniroma
 
9oct 4 crosta-monitoring and modelling
9oct 4 crosta-monitoring and modelling9oct 4 crosta-monitoring and modelling
9oct 4 crosta-monitoring and modellingceriuniroma
 
9oct 3 wang1-reservoir bank slope
9oct 3 wang1-reservoir bank slope9oct 3 wang1-reservoir bank slope
9oct 3 wang1-reservoir bank slopeceriuniroma
 
9oct 2 franz-land-slide triggered
9oct 2 franz-land-slide triggered9oct 2 franz-land-slide triggered
9oct 2 franz-land-slide triggeredceriuniroma
 
9oct 2 fabbri-hydrogeological spring
9oct 2 fabbri-hydrogeological spring9oct 2 fabbri-hydrogeological spring
9oct 2 fabbri-hydrogeological springceriuniroma
 
9oct 2 bretschneider-a physically based scale
9oct 2 bretschneider-a physically based scale9oct 2 bretschneider-a physically based scale
9oct 2 bretschneider-a physically based scaleceriuniroma
 
9oct 1 petronio-reflection seismic
9oct 1 petronio-reflection seismic9oct 1 petronio-reflection seismic
9oct 1 petronio-reflection seismicceriuniroma
 
9oct 1 croce-geotechnical analysis
9oct 1 croce-geotechnical analysis9oct 1 croce-geotechnical analysis
9oct 1 croce-geotechnical analysisceriuniroma
 
9oct vajont2013bcompresso
9oct vajont2013bcompresso9oct vajont2013bcompresso
9oct vajont2013bcompressoceriuniroma
 
Cruchon - la reglementation francaise
Cruchon - la reglementation francaiseCruchon - la reglementation francaise
Cruchon - la reglementation francaiseceriuniroma
 
Blikra - vajont 2013
Blikra - vajont 2013Blikra - vajont 2013
Blikra - vajont 2013ceriuniroma
 
Loew - pore pressure
Loew - pore pressureLoew - pore pressure
Loew - pore pressureceriuniroma
 
3 notti studying and monitoring
3 notti studying and monitoring3 notti studying and monitoring
3 notti studying and monitoringceriuniroma
 
Hermanns - understanding long term slope
Hermanns - understanding long term slopeHermanns - understanding long term slope
Hermanns - understanding long term slopeceriuniroma
 
Federico - modeling of runout
Federico - modeling of runoutFederico - modeling of runout
Federico - modeling of runoutceriuniroma
 
Ricciardi - evolution of regulation
Ricciardi - evolution of  regulationRicciardi - evolution of  regulation
Ricciardi - evolution of regulationceriuniroma
 

More from ceriuniroma (20)

9oct mechanics large-landslides5
9oct mechanics large-landslides59oct mechanics large-landslides5
9oct mechanics large-landslides5
 
9oct 1 esposito-landslide risk reduction
9oct 1 esposito-landslide risk reduction9oct 1 esposito-landslide risk reduction
9oct 1 esposito-landslide risk reduction
 
9oct vajont lecture hatzor
9oct vajont lecture hatzor9oct vajont lecture hatzor
9oct vajont lecture hatzor
 
9oct paolo mazzanti-vajont
9oct paolo mazzanti-vajont9oct paolo mazzanti-vajont
9oct paolo mazzanti-vajont
 
9oct hungr vaiont-2013
9oct hungr vaiont-20139oct hungr vaiont-2013
9oct hungr vaiont-2013
 
9oct 4 crosta-monitoring and modelling
9oct 4 crosta-monitoring and modelling9oct 4 crosta-monitoring and modelling
9oct 4 crosta-monitoring and modelling
 
9oct 3 wang1-reservoir bank slope
9oct 3 wang1-reservoir bank slope9oct 3 wang1-reservoir bank slope
9oct 3 wang1-reservoir bank slope
 
9oct 2 franz-land-slide triggered
9oct 2 franz-land-slide triggered9oct 2 franz-land-slide triggered
9oct 2 franz-land-slide triggered
 
9oct 2 fabbri-hydrogeological spring
9oct 2 fabbri-hydrogeological spring9oct 2 fabbri-hydrogeological spring
9oct 2 fabbri-hydrogeological spring
 
9oct 2 bretschneider-a physically based scale
9oct 2 bretschneider-a physically based scale9oct 2 bretschneider-a physically based scale
9oct 2 bretschneider-a physically based scale
 
9oct 1 petronio-reflection seismic
9oct 1 petronio-reflection seismic9oct 1 petronio-reflection seismic
9oct 1 petronio-reflection seismic
 
9oct 1 croce-geotechnical analysis
9oct 1 croce-geotechnical analysis9oct 1 croce-geotechnical analysis
9oct 1 croce-geotechnical analysis
 
9oct vajont2013bcompresso
9oct vajont2013bcompresso9oct vajont2013bcompresso
9oct vajont2013bcompresso
 
Cruchon - la reglementation francaise
Cruchon - la reglementation francaiseCruchon - la reglementation francaise
Cruchon - la reglementation francaise
 
Blikra - vajont 2013
Blikra - vajont 2013Blikra - vajont 2013
Blikra - vajont 2013
 
Loew - pore pressure
Loew - pore pressureLoew - pore pressure
Loew - pore pressure
 
3 notti studying and monitoring
3 notti studying and monitoring3 notti studying and monitoring
3 notti studying and monitoring
 
Hermanns - understanding long term slope
Hermanns - understanding long term slopeHermanns - understanding long term slope
Hermanns - understanding long term slope
 
Federico - modeling of runout
Federico - modeling of runoutFederico - modeling of runout
Federico - modeling of runout
 
Ricciardi - evolution of regulation
Ricciardi - evolution of  regulationRicciardi - evolution of  regulation
Ricciardi - evolution of regulation
 

Recently uploaded

Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsMark Billinghurst
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii SoldatenkoFwdays
 
Pigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions
 
Artificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxArtificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxhariprasad279825
 
APIForce Zurich 5 April Automation LPDG
APIForce Zurich 5 April  Automation LPDGAPIForce Zurich 5 April  Automation LPDG
APIForce Zurich 5 April Automation LPDGMarianaLemus7
 
Powerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time ClashPowerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time Clashcharlottematthew16
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsMemoori
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024Scott Keck-Warren
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...shyamraj55
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationRidwan Fadjar
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitecturePixlogix Infotech
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piececharlottematthew16
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):comworks
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfAddepto
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxNavinnSomaal
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr BaganFwdays
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubKalema Edgar
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek SchlawackFwdays
 

Recently uploaded (20)

Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR Systems
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko
 
Pigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food Manufacturing
 
Artificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxArtificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptx
 
APIForce Zurich 5 April Automation LPDG
APIForce Zurich 5 April  Automation LPDGAPIForce Zurich 5 April  Automation LPDG
APIForce Zurich 5 April Automation LPDG
 
Powerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time ClashPowerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time Clash
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial Buildings
 
DMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special EditionDMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special Edition
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 Presentation
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC Architecture
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piece
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdf
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptx
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding Club
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
 

Numerical simulation

  • 1. International Conference Vajont, 1963-2013 October 8-10, 2013, Padua, Italy 3D SPH NUMERICAL SIMULATION OF THE WAVE GENERATED BY THE VAJONT LANDSLIDE R. Vacondio*, S. Pagani*, P. Mignosa*, R. Genevois** * DICATeA – University of Parma, Italy **Dept. of Geosciences, University of Padua, Italy
  • 2. OUTLINE OF THE PRESENTATION 1. 2. 3. 4. Previous works Data available Kinematics of the landslide SPH fundamentals and main characteristics of the numerical model 5. Numerical simulations and model calibration 6. Results 7. Conclusions 3D SPH numerical simulation of the wave generated by the Vajont landlslide 2/25
  • 3. PREVIOUS WORKS AN MOTIVATION Previous works concerning the kinematic of the Vajont slide: Datei (1969), Hendron & Patton (1985), Semenza & Melidoro (1992), Zaniboni & Tinti (2013), Previous works concerning the wave generated by the Vajont slide: Selli & Trevisan (1964), Viparelli & Merla (1968), Semenza (2001), Datei (2005). More recently Bosa & Petti (2010) have simulated the phenomenon by means of a 2D shallow water model. The slide was schematized as a moving vertical wall which acted as a «piston» in moving the water of the Vajont slide. Motivation: To overcome the limitations of the SWE through the adoption of a fully 3D numerical model 3D SPH numerical simulation of the wave generated by the Vajont landlslide 3/25
  • 4. DEM USED TO DERIVE THE GEOMETRY OF THE VAJONT VALLEY 3D SPH numerical simulation of the wave generated by the Vajont landlslide 4/25
  • 5. z (m a.s.l.) LEVEL-VOLUME CURVE OF THE VAJONT LAKE (PRE-SLIDE) Volume at z=700,42 m a.s.l.: 112 106 m3 volume (106 m3) Datei (2005) Present work 3D SPH numerical simulation of the wave generated by the Vajont landlslide 5/25
  • 6. RECONSTRUCTION OF THE SLIDING BODY Intersection between: • DEM pre-event , obtained by digitizing maps of Semenza et al. (1965); • Sliding surface, obtained by Superchi (2011) through seismic sections and boreholes stratigraphy interpretation) Vajont valley Vajont valley Sliding Sliding body surface Vajont dam 3D SPH numerical simulation of the wave generated by the Vajont landlslide 6/25
  • 7. KINEMATICS OF THE LANDSLIDE -1 We follow the 2D Datei’s approach extending it to the whole 3D sliding body 1200 R 1000 800 m a.s.l. m a.s.l. CoMpre CoMpost 800 600 400 The Centers of Mass (CoM) of the sliding body before (CoMpre) and after the slide (CoMpost) have been calculated. The following hypoteses have been assumed: 1. The slide moved as a rigid body (Muller, 1961, Selli & Trevisan, 1964) on a rotational axis normal to the plane containing CoMpre and CoMpost; 2. The CoM trajectory is a circular arc of radius R (to be determined). 3D SPH numerical simulation of the wave generated by the Vajont landlslide 7/25
  • 8. KINEMATICS OF THE LANDSLIDE -2 C For each radius R: 1. the trace of the rotational axis C on the plane containing both CoM is evaluated; 2. the sliding body is rigidly rotated around C. The optimal radius R is obtained by minimizing the L2 norm: N L2 ( R) i 1 zirot zipost N R CoMpre 2 3D SPH numerical simulation of the wave generated by the Vajont landlslide CoMpost 8/25
  • 9. KINEMATICS OF THE LANDSLIDE -3 Section 1 Section 2 3D SPH numerical simulation of the wave generated by the Vajont landlslide 9/25
  • 10. KINEMATICS OF THE LANDSLIDE -4 Section 3 Section 4 3D SPH numerical simulation of the wave generated by the Vajont landlslide 10/25
  • 11. KINEMATICS OF THE LANDSLIDE -5 Section 5 Section 6 3D SPH numerical simulation of the wave generated by the Vajont landlslide 11/25
  • 12. KINEMATICS OF THE LANDSLIDE -6 Assuming a constant friction coefficient f, from the second law of dynamics, the following equation of the CoM can be derived d2 R 2 dt g sen R d g dt f cos R d dt 0 f R (m) α0 (rad) α1 (rad) f( ) vmax (m/s) Tf (s) tan max R m ax 1 1 cos sin 1 CoMpre gR g sin t cos max R cos cos sin 0 2 With some simplifications (Datei, 1969) and introducing the b.c. the equation for the velocity magnitude time history of the CoM is obtained v C CoMpost max 0 0 800 0.469 0.058 0.27 18.5 27.9 3D SPH numerical simulation of the wave generated by the Vajont landlslide 12/25
  • 13. FUNDAMENTALS OF SPH METHOD • Meshless spatial interpolation based on kernel functions • Lagrangian Water particles r’ A(r) j r r’ i 2h Ai j j AjWij Compact support of kernel r A r' W r r' , h dr' mj W(r r’, h) Radius of influence A' (r) A r' W ' r r' , h dr' mj ' i A j AjWij' j 3D SPH numerical simulation of the wave generated by the Vajont landlslide 13/25
  • 14. ALGORITHM: WEAKLY COMPRESSIBLE – SPH SCHEME Navier – Stokes Equations D Dt Dv Dt SPH discretization v 1 D i Dt p g Θ Dv i Dt m j vi vi Wi , j j mj pj pi 2 j 2 i j Lagrangian particles motion: Dx i Dt vj i, j Wi , j g Stiff equation of state: pi 2 c0 0 i 1 7 0 3D SPH numerical simulation of the wave generated by the Vajont landlslide 14/25
  • 15. DISCRETISATION OF SOLID BOUNDARY CONDITIONS In a SPH framework the discretisation of solid b.c. is still an open problem. Several options are available Type Sketch Interior fluid particles Time consuming, not suitable for complex geometry Mirror Particles Boundary Characteristics Mirror (ghost) particles Repulsive Force (Lennard –Jones molecular model, Monaghan, 1994) Dynamic boundaries Empirical Suitable for complex geometry, good accuracy and efficiency 3D SPH numerical simulation of the wave generated by the Vajont landlslide 15/25
  • 16. SPH – ADVANTAGES AND DRAWBACKS • SPH simulations of practical problem is limited by simulation time and system size • 3D applications have been limited until now by the maximum number of particles in order to perform simulations within reasonable computational time. • Two options are available to overcome this issue: Supercomputers GP-GPUs DualSPHysics code exploits the computing capability of GPUs (x 100 speedup) 3D SPH numerical simulation of the wave generated by the Vajont landlslide 16/25
  • 17. DualSPHysics – EXAMPLE OF APPLICATION 3D SPH numerical simulation of the wave generated by the Vajont landlslide 17/25
  • 18. 3D NUMERICAL SIMULATIONS AND MODEL CALIBRATION Discretization 1. Cubic cells of side x=5 m with a smoothing lenght h=1.5 x Data available for calibration: 1. Historical (Semenza et al, 1965) maximum run-up of the wave; 2. Water level at rest on the residual lake after the event (712,5 m a.s.l.). Calibration parameters: 1. Main: friction factor f maximum velocity vmax; 2. Minor: model resolution, kernel type and smoothing lenght, artificial viscosity; 3D SPH numerical simulation of the wave generated by the Vajont landlslide 18/25
  • 19. 3D NUMERICAL SIMULATIONS AND MODEL CALIBRATION Initial conditions: water at rest at z 700,42 m a.s.l. Dam Vajont lake Landslide body 3D SPH numerical simulation of the wave generated by the Vajont landlslide 19/25
  • 20. CALIBRATED 3D NUMERICAL SIMULATION – PLANE VIEW f=0.14 vmax=30 m/s link video 3D SPH numerical simulation of the wave generated by the Vajont landlslide 20/25
  • 21. CALIBRATED 3D NUMERICAL SIMULATION – PERSPECTIVE VIEW link video 3D SPH numerical simulation of the wave generated by the Vajont landlslide 21/25
  • 22. CALIBRATED 3D NUMERICAL SIMULATION – MAIN RESULTS Comparison between historical and calculated maximum run-up of the wave Historical (Semenza et al., 1965) Numerical Dam Water level at rest on the residual lake after the event: Calculated: 710 m a.s.l.. Historical 712,5 m a.s.l. 3D SPH numerical simulation of the wave generated by the Vajont landlslide 22/25
  • 23. FLOOD WAVE OVERTOPPING THE DAM Qmax 160·103 m3/s time (s) 3D SPH numerical simulation of the wave generated by the Vajont landlslide 23/25
  • 24. CONCLUSIONS AND FUTURE WORKS • The results of a 3D SPH numerical simulation of the wave generated by the Vajont rockslide are presented. • The slide was modeled as a rigid body on a rotational axis normal to the plane containing CoMpre and CoMpost • The water volume before the slide was discretized by means of about 1.7 millions of liquid particles, thanks to the CUDA parallelization of the opensource DualSPHysics code. • The sensitivity analysis of the numerical model has shown that the main parameter is the friction factor f (which influence the total duration of the fall). In order to correctly reproduce the maximum historical run-up a friction factor f=0.14 was necessary. • The comparison between the results of the numerical simulation and the data available in literature shows that the numerical scheme is able to reasonably reproduce, the maximum run-up and level in the residual lake after the event. • The peak of the flood wave overtopping the dam was estimated at about 160 103 m3/s; • The numerical results can be adopted in future works as upstream b.c. to simulate the propagation of the wave in the Vajont gorge, downstream the dam and in the Piave valley. 3D SPH numerical simulation of the wave generated by the Vajont landlslide 24/25
  • 25. Thank you for your attention paolo.mignosa@unipr.it rinaldo.genevois@unipd.it renato.vacondio@unipr.it 3D SPH numerical simulation of the wave generated by the Vajont landlslide 25/25
  • 26. SIMULAZIONI NUMERICHE 3D E TARATURA DEL MODELLO Tf= 17.2 secondi vmax=30 m/s vmax=20 m/s vmax=35 m/s Formazione del lago Massalezza Evoluzione temporale della distribuzione del modulo della velocità dell’onda nella valle del Vajont
  • 27. SIMULAZIONI NUMERICHE 3D E TARATURA DEL MODELLO Tf= 17.2 secondi vmax=30 m/s Tracimazione diga Velocità superiori a 25 m/s Flusso prevalente in sinistra idraulica Evoluzione temporale della distribuzione del modulo della velocità dell’onda in prossimità della diga
  • 28. SIMULAZIONI NUMERICHE 3D E TARATURA DEL MODELLO Tf= 17.2 secondi vmax=30 m/s t = 10 s Tracimazione diga Mappa delle quote idriche a diversi istanti temporali
  • 29. SIMULAZIONI NUMERICHE 3D E TARATURA DEL MODELLO Tf= 17.2 secondi vmax=30 m/s t = 20 s Flusso verso il lago Massalezza Mappa delle quote idriche a diversi istanti temporali
  • 30. SIMULAZIONI NUMERICHE 3D E TARATURA DEL MODELLO Tf= 17.2 secondi vmax=30 m/s t = 30 s Massima risalita dell’onda Mappa delle quote idriche a diversi istanti temporali
  • 31. SIMULAZIONI NUMERICHE 3D E TARATURA DEL MODELLO Tf= 17.2 secondi vmax=30 m/s t = 40 s Discesa dell’onda Mappa delle quote idriche a diversi istanti temporali
  • 32. BIBLIOGRAFIA              Bosa S., Petti M. & Passaro M. (2010). “Modellazione ai volumi finiti dell’onda generata dalla frana del Vajont”. XXXII Convegno Nazionale di Idraulica e Costruzioni Idrauliche, Palermo. Bosa S. & Petti M. (2012). “A numerical model of the wave that overtopped the Vajont dam in 1963”. Università di Udine, Udine. Caloi P. (1966). “L’evento del Vajont nei suoi aspetti geodinamici“. Istituto Nazionale di Geofisica, Roma. Ciabatti M. (1964). “La dinamica della frana del Vajont”. Giornale di Geologia, 32, 139-160. Datei C. (1969). “Su alcune questioni di carattere dinamico relative ad un eccezionale scoscendimento di un ammasso roccioso”. Memorie della Accademia Patavina, 89-108, Padova Datei C. (2005). “Vajont. La storia idraulica”. Cortina, Padova. Genevois R. & Ghirotti M. (2005). “The 1963 Vaiont Landslide”. Giornale di Geologia Applicata, 1, 41– 52. Giudici F. & Semenza E. (1960). “Studio geologico del serbatoio del Vajont”. Report for S.A.D.E., Venezia. Semenza E., Rossi D. & Giudici F. (1965). “Carte geologiche del versante settentrionale del Monte Toc e zone limitrofe, prima e dopo il fenomeno di scivolamento del 9 ottobre 1963”. Scala 1:5000. Istituto di Geologia dell’Università di Padova, Padova. Selli R. & Trevisan L. (1964). “Caratteri e interpretazione della Frana del Vajont”. Giornale di Geologia, 32, 1-154. Semenza E. (2001). “La storia del Vajont raccontata dal geologo che ha scoperto la frana”. Tecomproject Editore Multimediale, Ferrara. Superchi L. (2011). “The Vajont rockslide: new techniques and tradizional method to re-evaluate the catastrophic event”. Tesi di dottorato XXIV ciclo, PhD School in Earth Sciences, Università di Padova. Viparelli M. & Merla G. (1968). “L'onda di piena seguita alla frana del Vajont”. Atti dell’Accademia Pontaniana, 15.
  • 33. ALGORITHM: WEAKLY COMPRESSIBLE -SPH SCHEME The artificial viscosity term v cij is defined as follows: v ij vj 0 rij ri r j v ij rij 0 with 0 cij 0.5 ci ij hv ij rij rij2 vi v ij rij ij i, j ij ij i, j 2 2 0. 5 cj i j 0.01h 2 Artificial viscosity v must prevent instabilitiy and spurious oscillations. For violent phenomena has little influence on the main characteristics of the flow (Crespo et al., 2011). The value v=0.2 was assumed in this work 3D SPH numerical simulation of the wave generated by the Vajont landlslide 33/25