SlideShare a Scribd company logo
1 of 9
Download to read offline
1
A NUMERICAL SIMULATION OF THE WOS AND THE
WAVE PROPAGATION ALONG A COASTAL DIKE
Panayotis Prinos1
, Maria Tsakiri1
and Dimitris Souliotis1
Wave overtopping and the propagation of the waves on the crest and the landward slope of a coastal dike is
investigated numerically. Wave overtopping conditions are simulated using the concept of the Wave Overtopping
Simulator (WOS). Two numerical models of the WOS are constructed using the FLUENT 6.0.12 (FLUENT Inc.
2001) and the FLOW 3D 9.4 (FLOW 3D 2010) CFD codes. The former simulates the WOS without accounting for air
entrainment while the latter accounts for air entrainment. The unsteady RANS equations, the RNG k-ε turbulence
model and the VOF method are solved numerically, for "tracking" the free surface and the head of the "current" from
the dike crest to the landward dike slope. The computed results from the two models are compared with each other
and also against field measurements and proposed empirical relationships (Van der Meer et al. 2010).
Keywords: wave overtopping simulator; coastal dike; dike crest; landward slope; air entrainment
INTRODUCTION
Coastal dikes are widely used to protect low-lying areas against floods. As such, they have been
widely applied in countries such as Vietnam, Bangladesh, Thailand, the Netherlands and the USA.
Dikes have been extensively utilized as flood defenses in the Netherlands over the past several hundred
years as 25% of its area and 21% of its population is located below the sea level. Moreover, 800 km
sea dikes are used in Vietnam in order to be protected by floods. Due to changing physical
circumstances, a sea level rise is predicted and in addition to stronger storms and more wave attack,
wave overtopping on the current dikes will increase. For that reason it is essential to estimate the
resistant of the existing dikes and also to propose construction methods in order to increase the strength
of dikes for cases which is necessary.
In order to create full scale overtopping conditions on a real landward slope of a dike the Wave
Overtopping Simulator has been developed. The Wave Overtopping Simulator was first developed in
the Netherlands. It is a water reservoir which is continuously filled by pumps with a certain and
constant discharge of water and emptied at predefined moments through bottom valves in a way that
the volumes simulate the overtopping wave tongues on the dike crest and then on the landward slope.
The maximum capacity is 5500 l/m giving a total volume of 22000 l for a simulator with wide equal to
4 m. The design and the calibration of the Wave Overtopping Simulator have been described by Van
der Meer (2007) and also Van der Meer et al. (2006, 2007 and 2008).
In the past years, several field experiments have been performed in order to evaluate the effect of
wave overtopping on coastal dikes, using the Wave Overtopping Simulator and results have been
described by Akkerman et al. (2007a and 2007b) and Steendam et al. (2008). Experimental results,
using the Wave Overtopping Simulator, as well as empirical equations for flow depth and flow
velocity under wave overtopping have been also presented by Van der Meer et al. (2010).
In the present work the effect of wave overtopping on the crest and the landward slope of a sea
dike is studied numerically for wave volumes of 2000, 3000 and 5000 l/m. The wave overtopping
conditions are created by simulating the Wave Overtopping Simulator (WOS) using two different
models. The first model simulates the wave overtopping without accounting for the air entrainment
while the second model takes into account air entrainment (Hirt 2003). The two models are based on
the FLUENT 6.0.12 (FLUENT Inc. 2001) and the FLOW 3D 9.4 (FLOW 3D 2010) respectively. The
computed results from the two models are compared with each other and also against available field
experiments and empirical relationships for the prediction of maximum flow depth and velocity at
various locations (Van der Meer et al. 2010).
CASES STUDIED
The dike geometry has been presented by Van der Meer et al. (2010). The length of the dike crest
is 2 m at a height of 2.6 m above the ground. The landward slope is equal to 1:3.7 at the upper part,
while at the lower part is equal to 1:5.2. Five measurement locations have been selected as it is shown
in Fig. 1. The first location is at the end of the crest (Board 1), while the next four locations are along
1
Hydraulics Laboratory, Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124
Greece
COASTAL ENGINEERING 20122
the landward slope (Board 2 to 5). Specifically Boards-2 and 3 are at the upper part (slope 1:3.7), while
Boards 4 and 5 are in the region where the slope is equal to 1:5.2.
In the present study, cases with three different overtopping volumes, equal to 2000, 3000 and 5000
l/m are simulated.
Figure 1. Wave overtopping simulator, dike geometry and measurements boards.
NUMERICAL PROCEDURE
General
In this work, two CFD codes are used for simulating the wave overtopping conditions. The first
code is the FLUENT 6.0.12 (FLUENT Inc. 2001) which does not take into account the air entrainment
in the flow while the second code is the FLOW 3D 9.4 (FLOW 3D 2010) which takes into account the
air entrainment.
Mathematical model
The CFD codes solve the unsteady Reynolds-Averaged Navier-Stokes (RANS) equations (Eq. 1
and Eq. 2) in conjunction with the transport equations of turbulent kinetic energy k (Eq. 3) and
dissipation rate ε (Eq. 4) of the RNG k-ε type turbulence model (Yakhot et al. 1992). The VOF method
(Hirt and Nichols 1981) is also enabled for “tracking” the free surface from the dike crest to the toe of
the landward dike slope with the volume fraction equation (Eq. 5).
U
q i,qq
0
t x
i
    
  
 
(1)
U U p
q i,q q i,q q
U u u
j,q q i jt x x x qj i j
                        
       
(2)
k k k U
q q q q t,q q i,q
U u u
j,q q i j q qt x x x xqj j k j j
                                         
   
(3)
   
 
2
q q q q t,q q q i,q q*
j,q 1 q i j 2 q
q
j j j q j q
U
U C u u C
t x x x k x k
 

             
                   
(4)
COASTAL ENGINEERING 2012 3
   q q q q i,q
q i
1
U 0
t x
  
      
   
(5)
The subscript q refers to the phase q while ρq is the density of each phase, αq is the volume fraction, Ui,q
is the velocity in the i direction, pq is the effective pressure (the difference between the static and the
hydrostatic pressure), u u
i j q
  
 
are the turbulent stresses , μt,q is the eddy viscosity , σk, σε, C1ε and C2ε
are coefficients,   i,q
q i j
q
j
U
u u
x

 

is the production of turbulent kinetic energy and C*
2ε is given by the
equation:
 3C 1 /
0*C C
2 2 31
   

 
 

(6)
where η=Sk/ε (S is the rate of strain tensor), Cμ, C2ε, η0 and β are coefficients.
Initial conditions
The FLUENT CFD code (FLUENT Inc. 2001) uses a control-volume technique in order to convert
the governing equations to algebraic equations which can be solved numerically. For the construction
of the grids the GAMBIT program is used. The grids are two-dimensional, structured and the shape of
the cells is orthogonal. The number of computational cells for the cases which are studied is equal to
200000. The initial values of turbulent kinetic energy and dissipation rate are equal to 10-4
and 10-5
respectively. The simulations are time-dependent and the time step which is used is equal to 5x10-4
s.
The FLOW 3D CFD code (FLOW 3D 2010) is applied in order to convert the governing equations
to algebraic equations. For the geometric construction of the model the AutoCAD program is used
while the mesh is constructed with the FLOW 3D. The grids are two-dimensional, structured and the
shape of the cells is orthogonal. The number of computational cells varies between 300000 and 600000
for the cases studied. In order to simulate air entrainment, the second option of air entrainment model
is used which is based on a variable density formulation (Hirt 2003). This model includes the "bulking"
of fluid volume by the addition of air and the buoyancy effects associated with entrained air. Two
coefficients should be set, the air entrainment rate coefficient is set 0.5 and the surface rate coefficient
is set 0.073.
Solving procedure
Initially, water is present in the tank while air is in the rest of the computational domain (Fig. 2 and
Fig. 3). The water flows through the exit of the tank due to gravity. The RANS equations and the
transport equations of turbulent kinetic energy and dissipation rate are non-linear and coupled which
means that during a time step several iterations of the solution loop are performed before a converged
solution is obtained. The volume fraction equation is also solved, with regard to the VOF method, once
for each time step.
Figure 2. Computational domain for the FLUENT CFD code.
COASTAL ENGINEERING 20124
Figure 3. Computational domain for the FLOW 3D CFD code.
ANALYSIS OF THE RESULTS
Fig. 4 shows the variation of the computed flow depth with time, for water volume of the
simulator equal to 2000 l/m, at four different locations (Board 1,2,3 and 5). In the same figure the
variation of the experimental flow depth with time is shown for three different waves (Exp. Data 1-3)
with the same volume, at the same locations. It is observed that the flow depth increases suddenly in
the beginning as the wave passes from a particular location. The maximum flow depth is higher at
Board 1 than that at the other Boards which means that it decreases as the wave travels along the
landward slope of the dike. Moreover the maximum computed flow depth is in good agreement with
the maximum experimental flow depth at Board 1 and 5 but it is higher at the other two Boards.
However, the duration of the experimental maximum flow depth is higher than that of the numerical
simulations. Moreover the computed results increase at Boards 3 and 5 faster than the experimental
results which means that the numerical waves travel faster.
In Fig. 5 the variation of computed the flow depth with time is shown at the same locations (Board
1,2,3 and 5) together with the variation of the experimental flow depth, from three waves, for 3000
l/m water volume. The maximum computed flow depth is in satisfactory agreement with the maximum
experimental flow depth. Flow depth computed by Flow 3D CFD code (model with air entrainment) is
a little higher than that of Fluent CFD code simulation (model without air entrainment).
Fig. 6 shows the variation of the computed flow depth with time at four locations (Board 1,2,3 and
5) together with the variation of the experimental flow depth, from three waves, for 5000 l/m water
volume. The maximum computed flow depth by Flow 3D is in good agreement with the maximum
experimental flow depth with the exception of this at Board 2 where experimental flow depth is much
higher.
In Fig. 7 the variation of the computed flow velocity with time is shown at the Boards 1, 2, 3 and
5, for water volume equal to 2000 l/m. Experimental results for the three waves are available only at
Board 5. The flow velocity increases suddenly in the beginning as the wave passes from a particular
location. The computed flow velocity by the Flow 3D is lower than this computed by Fluent and it is in
quite good agreement with experimental results at Board 5.
Fig. 8 shows the variation of the computed flow velocity with time at the same locations (3000 l/m
water volume). Available experimental results are also shown in the same figure, for the same water
volume. It is observed that the maximum computed velocity by the Flow 3D is approximately the
same at all the locations studied. Moreover at Board 3 computed velocities are much higher than
experimental velocities, but at Board 5 velocities by Flow 3D are in quite good agreement with these
which arises from the experiments.
In Fig. 9 the variation of the computed flow velocity with time is shown at the Boards 1,2,3 and 5,
for water volume equal to 5000 l/m, together with available experimental results where they are
available. The flow velocity which is computed by Flow 3d is lower than that computed by Fluent.
Moreover the flow velocity computed by Flow 3D is quite higher than the experimental flow velocity
at Board 3 but it is in good agreement with it at the Board 5.
COASTAL ENGINEERING 2012 5
Figure 4. Variation of flow depth with time (water volume 2000 l/m).
Figure 5. Variation of flow depth with time (water volume 3000 l/m).
COASTAL ENGINEERING 20126
Figure 6. Variation of flow depth with time (water volume 5000 l/m).
Figure 7. Variation of flow velocity with time for water volume 2000 l/m at four different locations.
COASTAL ENGINEERING 2012 7
Figure 8. Variation of flow velocity with time (water volume 3000 l/m).
Figure 9. Variation of flow velocity with time (water volume 5000 l/m).
COASTAL ENGINEERING 20128
Comparison with empirical relationships
In Fig. 10 the variation of the computed maximum flow depth and velocity with the overtopping
wave volume is shown together with an empirical relationship, based on field measurements with the
wave overtopping simulator, proposed by Van der Meer et al. (2010). The agreement between the
computed maximum flow depth and that predicted by the expression h=0.133V0.5
(h= flow depth (m)
and V= water volume (m3
/m)) is quite satisfactory for the Board 1 (dike crest) and Board 2 while the
flow depth at the other Boards in the landward slope of the dike is lower. Similar behavior is indicated
by the measured flow depths of Van der Meer et al. (2010). The computed maximum velocities are
shown to be increased with regard to those of the proposed relationship u=0.5V0.34
(u= flow velocity
(m/s)), however the results from the model with air entrainment (Flow 3D) are better than those of the
model without air entrainment (Fluent). The difficulty in measuring the maximum velocity in the field
as well as the difficulty of simulating the air entrainment in the computations may contribute to such
discrepancies.
Figure 10. Variation of maximum flow depth and velocity with wave volume.
CONCLUSIONS
Wave overtopping and the propagation of the waves on the crest and the landward slope of a
coastal dike is investigated numerically. Wave overtopping conditions are simulated using the concept
of the Wave Overtopping Simulator. The unsteady RANS equations in conjunction with a turbulence
model of the RNG k-ε type and the VOF method are solved numerically, for “tracking” the free surface
and the head of the “current” from the dike crest to the toe of the landward dike slope. Computed
results of two models (with and without air entrainment ) are compared with each other and also
against proposed empirical relationships based on available field measurements of Van der Meer et al.
(2010) and experimental data. The following conclusions can be derived:
 Maximum computed flow depth is in agreement with maximum experimental flow depth. It is also
in quite good agreement at Board-1 with the empirical relationship presented by Van der Meer et
al. (2010).
 Computed velocities by Fluent (model without air entrainment) are higher than those of the Flow
3D (model with air entrainment). Moreover they are higher than experimental velocities and the
velocities from the empirical relationship (Van der Meer et al. 2010). However, the difficulty in
measuring the maximum velocity in the field as well as the omission of the air entrainment in the
computations (model without air entrainment - Fluent) make such a comparison to be considered
with caution.
 Computed velocities by Flow 3D (model with air entrainment) are in better agreement with
experimental velocities and also with the velocities which arise from the empirical relationship
(Van der Meer et al. 2010).
 The higher the initial volume of the water the better the agreement between computed results and
experimental data.
COASTAL ENGINEERING 2012 9
ACKNOWLEDGMENTS
The support of the European Commission through FP7.2009-1, Contract 244104 - THESEUS
(“Innovative technologies for safer European coasts in a changing climate”), is gratefully
acknowledged.
REFERENCES
Akkerman, G.J., Bernadini, P., Van der Meer, J.W., and Van Hoven, A. 2007a. Field tests on sea
defences subject to wave overtopping, Proceedings of Coastal structures, ASCE, Venice, Italy.
Akkerman, G.J., Van Gerven, K.A.J., Schaap, H.A. and Van der Meer, J.W. 2007b. Wave overtopping
erosion tests at Groningen sea dyke, ComCoast, Workpackage 3: Development of Alternative
Overtopping-Resistant Sea Defences, phase 3. (www.comcoast.org).
ANSYS. Fluent Inc. 2001. Fluent 6.0 Documentation, Lebanon, USA.
FLOW 3D. 2010. User Manual Version 9.4, Flow Science, Inc., Santa Fe.
Hirt C.W. 2003. Modeling turbulent entrainment of air at a free surface, Technical note 61, Flow
Science, Inc. (FSi-03-TN61).
Hirt C.W., Nichols B.D. 1981. Volume of fluid (VOF) method for the dynamics of free boundaries,
Journal of Computational Physics, 39, 201-225.
Steendam, G., De Vries, W., Van der Meer, J.W., Van Hoven, A, De Raat, G. And Frissel, J.Y. 2008.
Influence of management and maintenance on erosive impact of wave overtopping on grass
covered slopes of dikes, Proceedings of Flood Risk Management: Research and Practice, Oxford,
UK, 95 pp. (full paper available in CD-ROM).
Van der Meer, J.W., Snijders, W. and Regegling, E. 2006. The wave overtopping simulator,
Proceedings of ICCE 2006, ASCE, San Diego, USA, 4654-4666.
Van der Meer, J.W. 2007. Design, contruction, calibration and use of the wave overtopping simulator.
ComCoast, Workpackage 3: Decelopment of Alternstive Overtopping-Resistant Sea Defences,
phase 3. (www.comcoast.org.)
Van der Meer, J.W., Bernadini, P., Akkerman, G.J. and Hoffmans, G.J.C.M. 2007. The wave
overtopping simulator in action, Proceedings of Coastal Structures, ASCE, Venice, Italy, 645-
656.
Van der Meer, J.W., Steendam, G., de Raat and Bernadini, P. 2008. Further developments on the wave
overtopping simulator, Proceeding of ICCE 2008, ASCE, Hamburg, Germany, 2957-2969.
Van der Meer, J.W., Hardeman, B., Steendam, G., Schuttrumpf, H. And Verheij, H. 2010. Flow depths
and velocities at crest and inner slope of a dike, in theory and with the wave overtopping
simulator, Proceedings of ICCE 2010, Shanghai, China.
Yakhot, V., Orszag, S.A., Thangam, S., Gatski, T.B. and Speziale, C.G. 1992. Development of
turbulence models for shear flows by a double expansion technique, Physics of Fluids A, 4, 1510-
1520.

More Related Content

What's hot

Lattice boltzmann simulation of non newtonian fluid flow in a lid driven cavit
Lattice boltzmann simulation of non newtonian fluid flow in a lid driven cavitLattice boltzmann simulation of non newtonian fluid flow in a lid driven cavit
Lattice boltzmann simulation of non newtonian fluid flow in a lid driven cavitIAEME Publication
 
Multi-Fidelity Optimization of a High Speed, Foil-Assisted Catamaran for Low ...
Multi-Fidelity Optimization of a High Speed, Foil-Assisted Catamaran for Low ...Multi-Fidelity Optimization of a High Speed, Foil-Assisted Catamaran for Low ...
Multi-Fidelity Optimization of a High Speed, Foil-Assisted Catamaran for Low ...Kellen Betts
 
Application of inverse routing methods to euphrates river iraq
Application of inverse routing methods to euphrates river iraqApplication of inverse routing methods to euphrates river iraq
Application of inverse routing methods to euphrates river iraqIAEME Publication
 
Seismic time fractal dimension for characterizing Shajara Reservoirs of The P...
Seismic time fractal dimension for characterizing Shajara Reservoirs of The P...Seismic time fractal dimension for characterizing Shajara Reservoirs of The P...
Seismic time fractal dimension for characterizing Shajara Reservoirs of The P...Khalid Al-Khidir
 
Geotechnical Engineering-I [Lec #27A: Flow Calculation From Flow Nets]
Geotechnical Engineering-I [Lec #27A: Flow Calculation From Flow Nets]Geotechnical Engineering-I [Lec #27A: Flow Calculation From Flow Nets]
Geotechnical Engineering-I [Lec #27A: Flow Calculation From Flow Nets]Muhammad Irfan
 
Aerodynamic and Acoustic Parameters of a Coandã Flow – a Numerical Investigation
Aerodynamic and Acoustic Parameters of a Coandã Flow – a Numerical InvestigationAerodynamic and Acoustic Parameters of a Coandã Flow – a Numerical Investigation
Aerodynamic and Acoustic Parameters of a Coandã Flow – a Numerical Investigationdrboon
 
Experimental conceptualisation of the Flow Net system construction inside the...
Experimental conceptualisation of the Flow Net system construction inside the...Experimental conceptualisation of the Flow Net system construction inside the...
Experimental conceptualisation of the Flow Net system construction inside the...Dr.Costas Sachpazis
 
Physical and numerical modelling of urban flood flows
Physical and numerical modelling of urban flood flows Physical and numerical modelling of urban flood flows
Physical and numerical modelling of urban flood flows Albert Chen
 
Dimensional analysis Similarity laws Model laws
Dimensional analysis Similarity laws Model laws Dimensional analysis Similarity laws Model laws
Dimensional analysis Similarity laws Model laws R A Shah
 
YAO_YUAN_Publication
YAO_YUAN_PublicationYAO_YUAN_Publication
YAO_YUAN_PublicationYao Yuan
 
Dimension less numbers in applied fluid mechanics
Dimension less numbers in applied fluid mechanicsDimension less numbers in applied fluid mechanics
Dimension less numbers in applied fluid mechanicstirath prajapati
 
Modification of the casagrandes equation of phreatic line
Modification of the casagrandes equation of phreatic lineModification of the casagrandes equation of phreatic line
Modification of the casagrandes equation of phreatic lineIAEME Publication
 
Q921 re1 lec5 v1
Q921 re1 lec5 v1Q921 re1 lec5 v1
Q921 re1 lec5 v1AFATous
 
Geotechnical Engineering-I [Lec #27: Flow Nets]
Geotechnical Engineering-I [Lec #27: Flow Nets]Geotechnical Engineering-I [Lec #27: Flow Nets]
Geotechnical Engineering-I [Lec #27: Flow Nets]Muhammad Irfan
 
PDEs Coursework
PDEs CourseworkPDEs Coursework
PDEs CourseworkJawad Khan
 
H-infinity controller with graphical LMI region profile for liquid slosh supp...
H-infinity controller with graphical LMI region profile for liquid slosh supp...H-infinity controller with graphical LMI region profile for liquid slosh supp...
H-infinity controller with graphical LMI region profile for liquid slosh supp...TELKOMNIKA JOURNAL
 

What's hot (20)

Lattice boltzmann simulation of non newtonian fluid flow in a lid driven cavit
Lattice boltzmann simulation of non newtonian fluid flow in a lid driven cavitLattice boltzmann simulation of non newtonian fluid flow in a lid driven cavit
Lattice boltzmann simulation of non newtonian fluid flow in a lid driven cavit
 
Multi-Fidelity Optimization of a High Speed, Foil-Assisted Catamaran for Low ...
Multi-Fidelity Optimization of a High Speed, Foil-Assisted Catamaran for Low ...Multi-Fidelity Optimization of a High Speed, Foil-Assisted Catamaran for Low ...
Multi-Fidelity Optimization of a High Speed, Foil-Assisted Catamaran for Low ...
 
Application of inverse routing methods to euphrates river iraq
Application of inverse routing methods to euphrates river iraqApplication of inverse routing methods to euphrates river iraq
Application of inverse routing methods to euphrates river iraq
 
Seismic time fractal dimension for characterizing Shajara Reservoirs of The P...
Seismic time fractal dimension for characterizing Shajara Reservoirs of The P...Seismic time fractal dimension for characterizing Shajara Reservoirs of The P...
Seismic time fractal dimension for characterizing Shajara Reservoirs of The P...
 
Geotechnical Engineering-I [Lec #27A: Flow Calculation From Flow Nets]
Geotechnical Engineering-I [Lec #27A: Flow Calculation From Flow Nets]Geotechnical Engineering-I [Lec #27A: Flow Calculation From Flow Nets]
Geotechnical Engineering-I [Lec #27A: Flow Calculation From Flow Nets]
 
Aerodynamic and Acoustic Parameters of a Coandã Flow – a Numerical Investigation
Aerodynamic and Acoustic Parameters of a Coandã Flow – a Numerical InvestigationAerodynamic and Acoustic Parameters of a Coandã Flow – a Numerical Investigation
Aerodynamic and Acoustic Parameters of a Coandã Flow – a Numerical Investigation
 
Experimental conceptualisation of the Flow Net system construction inside the...
Experimental conceptualisation of the Flow Net system construction inside the...Experimental conceptualisation of the Flow Net system construction inside the...
Experimental conceptualisation of the Flow Net system construction inside the...
 
Unit4 kvv
Unit4 kvvUnit4 kvv
Unit4 kvv
 
Physical and numerical modelling of urban flood flows
Physical and numerical modelling of urban flood flows Physical and numerical modelling of urban flood flows
Physical and numerical modelling of urban flood flows
 
Fanno Flow
Fanno FlowFanno Flow
Fanno Flow
 
Dimensional analysis Similarity laws Model laws
Dimensional analysis Similarity laws Model laws Dimensional analysis Similarity laws Model laws
Dimensional analysis Similarity laws Model laws
 
YAO_YUAN_Publication
YAO_YUAN_PublicationYAO_YUAN_Publication
YAO_YUAN_Publication
 
Dimension less numbers in applied fluid mechanics
Dimension less numbers in applied fluid mechanicsDimension less numbers in applied fluid mechanics
Dimension less numbers in applied fluid mechanics
 
Modification of the casagrandes equation of phreatic line
Modification of the casagrandes equation of phreatic lineModification of the casagrandes equation of phreatic line
Modification of the casagrandes equation of phreatic line
 
Vishnu hybrid model
Vishnu hybrid model Vishnu hybrid model
Vishnu hybrid model
 
K0457278
K0457278K0457278
K0457278
 
Q921 re1 lec5 v1
Q921 re1 lec5 v1Q921 re1 lec5 v1
Q921 re1 lec5 v1
 
Geotechnical Engineering-I [Lec #27: Flow Nets]
Geotechnical Engineering-I [Lec #27: Flow Nets]Geotechnical Engineering-I [Lec #27: Flow Nets]
Geotechnical Engineering-I [Lec #27: Flow Nets]
 
PDEs Coursework
PDEs CourseworkPDEs Coursework
PDEs Coursework
 
H-infinity controller with graphical LMI region profile for liquid slosh supp...
H-infinity controller with graphical LMI region profile for liquid slosh supp...H-infinity controller with graphical LMI region profile for liquid slosh supp...
H-infinity controller with graphical LMI region profile for liquid slosh supp...
 

Viewers also liked

Lead auditor qms
Lead auditor  qmsLead auditor  qms
Lead auditor qmsalabs
 
Grupo la imagen
Grupo la imagenGrupo la imagen
Grupo la imagenvivianag18
 
Open Government: prospettive e opportunità - ForumPa 2013
Open Government: prospettive e opportunità - ForumPa 2013Open Government: prospettive e opportunità - ForumPa 2013
Open Government: prospettive e opportunità - ForumPa 2013Marco Ciaffone
 
Dati trasparenti ed identità marcate - Internet Festival di Pisa 2013
Dati trasparenti ed identità marcate - Internet Festival di Pisa 2013Dati trasparenti ed identità marcate - Internet Festival di Pisa 2013
Dati trasparenti ed identità marcate - Internet Festival di Pisa 2013Marco Ciaffone
 
Su-25TM slide show
Su-25TM slide showSu-25TM slide show
Su-25TM slide showjahmjah
 
Lost sound analysis, by Casey and Amy
Lost sound analysis, by Casey and AmyLost sound analysis, by Casey and Amy
Lost sound analysis, by Casey and Amybeef_boy
 
Currency rate 31 march 2012
Currency rate 31 march 2012Currency rate 31 march 2012
Currency rate 31 march 2012yuvraj_dhage
 
Awareness of qms
Awareness of qmsAwareness of qms
Awareness of qmsalabs
 
Тиждень військово патріотичного виховання
Тиждень військово патріотичного вихованняТиждень військово патріотичного виховання
Тиждень військово патріотичного вихованняЛюдмила Губа
 
Le référencement naturel de cas complexes sur WordPress
Le référencement naturel de cas complexes sur WordPressLe référencement naturel de cas complexes sur WordPress
Le référencement naturel de cas complexes sur WordPressDaniel Roch - SeoMix
 
Alfonso pinilla ej tema 4
Alfonso pinilla ej tema 4Alfonso pinilla ej tema 4
Alfonso pinilla ej tema 4Slavah
 
Alfonso pinilla ej tema 4
Alfonso pinilla ej tema 4Alfonso pinilla ej tema 4
Alfonso pinilla ej tema 4Slavah
 

Viewers also liked (16)

Lead auditor qms
Lead auditor  qmsLead auditor  qms
Lead auditor qms
 
Grupo la imagen
Grupo la imagenGrupo la imagen
Grupo la imagen
 
Open Government: prospettive e opportunità - ForumPa 2013
Open Government: prospettive e opportunità - ForumPa 2013Open Government: prospettive e opportunità - ForumPa 2013
Open Government: prospettive e opportunità - ForumPa 2013
 
Dati trasparenti ed identità marcate - Internet Festival di Pisa 2013
Dati trasparenti ed identità marcate - Internet Festival di Pisa 2013Dati trasparenti ed identità marcate - Internet Festival di Pisa 2013
Dati trasparenti ed identità marcate - Internet Festival di Pisa 2013
 
Su-25TM slide show
Su-25TM slide showSu-25TM slide show
Su-25TM slide show
 
Power point pres. 2011
Power point pres. 2011Power point pres. 2011
Power point pres. 2011
 
Lost sound analysis, by Casey and Amy
Lost sound analysis, by Casey and AmyLost sound analysis, by Casey and Amy
Lost sound analysis, by Casey and Amy
 
Currency rate 31 march 2012
Currency rate 31 march 2012Currency rate 31 march 2012
Currency rate 31 march 2012
 
Awareness of qms
Awareness of qmsAwareness of qms
Awareness of qms
 
Тиждень військово патріотичного виховання
Тиждень військово патріотичного вихованняТиждень військово патріотичного виховання
Тиждень військово патріотичного виховання
 
Den nezalezhnosti
Den nezalezhnostiDen nezalezhnosti
Den nezalezhnosti
 
Тиждень психології
Тиждень психологіїТиждень психології
Тиждень психології
 
Нові підходи
Нові підходиНові підходи
Нові підходи
 
Le référencement naturel de cas complexes sur WordPress
Le référencement naturel de cas complexes sur WordPressLe référencement naturel de cas complexes sur WordPress
Le référencement naturel de cas complexes sur WordPress
 
Alfonso pinilla ej tema 4
Alfonso pinilla ej tema 4Alfonso pinilla ej tema 4
Alfonso pinilla ej tema 4
 
Alfonso pinilla ej tema 4
Alfonso pinilla ej tema 4Alfonso pinilla ej tema 4
Alfonso pinilla ej tema 4
 

Similar to 240708

CFD simulation of Lid driven cavity flow
CFD simulation of Lid driven cavity flowCFD simulation of Lid driven cavity flow
CFD simulation of Lid driven cavity flowIJSRD
 
Numerical study on free-surface flow
Numerical study on free-surface flowNumerical study on free-surface flow
Numerical study on free-surface flowmiguelpgomes07
 
Modeling of soil erosion by water
Modeling of soil erosion by waterModeling of soil erosion by water
Modeling of soil erosion by waterIAEME Publication
 
CFD and Artificial Neural Networks Analysis of Plane Sudden Expansion Flows
CFD and Artificial Neural Networks Analysis of Plane Sudden Expansion FlowsCFD and Artificial Neural Networks Analysis of Plane Sudden Expansion Flows
CFD and Artificial Neural Networks Analysis of Plane Sudden Expansion FlowsCSCJournals
 
On The Form Factor Prediction Of A Displacement Type Vessel: JBC Case
On The Form Factor Prediction Of A Displacement Type Vessel: JBC CaseOn The Form Factor Prediction Of A Displacement Type Vessel: JBC Case
On The Form Factor Prediction Of A Displacement Type Vessel: JBC CaseIsmail Topal
 
Three modeling of soil erosion by water
Three modeling of soil erosion by waterThree modeling of soil erosion by water
Three modeling of soil erosion by waterIAEME Publication
 
Phase Change Material Based Solar Water Heater
Phase Change Material Based Solar Water HeaterPhase Change Material Based Solar Water Heater
Phase Change Material Based Solar Water Heaterinventionjournals
 
A study on evacuation performance of sit type water closet by computational f...
A study on evacuation performance of sit type water closet by computational f...A study on evacuation performance of sit type water closet by computational f...
A study on evacuation performance of sit type water closet by computational f...combi07
 
Aerodynamic Analysis of Low Speed Turbulent Flow Over A Delta Wing
Aerodynamic Analysis of Low Speed Turbulent Flow Over A Delta WingAerodynamic Analysis of Low Speed Turbulent Flow Over A Delta Wing
Aerodynamic Analysis of Low Speed Turbulent Flow Over A Delta WingIJRES Journal
 
ANALYSIS OF VORTEX INDUCED VIBRATION USING IFS
ANALYSIS OF VORTEX INDUCED VIBRATION USING IFSANALYSIS OF VORTEX INDUCED VIBRATION USING IFS
ANALYSIS OF VORTEX INDUCED VIBRATION USING IFSIJCI JOURNAL
 
International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)ijceronline
 
Flood routing by kinematic wave model
Flood routing by kinematic wave modelFlood routing by kinematic wave model
Flood routing by kinematic wave modelIOSR Journals
 
CFD Class Final Paper
CFD Class Final PaperCFD Class Final Paper
CFD Class Final PaperNathan Butt
 
Flow Inside a Pipe with Fluent Modelling
Flow Inside a Pipe with Fluent Modelling Flow Inside a Pipe with Fluent Modelling
Flow Inside a Pipe with Fluent Modelling Andi Firdaus
 

Similar to 240708 (20)

CFD simulation of Lid driven cavity flow
CFD simulation of Lid driven cavity flowCFD simulation of Lid driven cavity flow
CFD simulation of Lid driven cavity flow
 
C04651725
C04651725C04651725
C04651725
 
Numerical study on free-surface flow
Numerical study on free-surface flowNumerical study on free-surface flow
Numerical study on free-surface flow
 
Modeling of soil erosion by water
Modeling of soil erosion by waterModeling of soil erosion by water
Modeling of soil erosion by water
 
Ijmet 06 10_001
Ijmet 06 10_001Ijmet 06 10_001
Ijmet 06 10_001
 
CFD and Artificial Neural Networks Analysis of Plane Sudden Expansion Flows
CFD and Artificial Neural Networks Analysis of Plane Sudden Expansion FlowsCFD and Artificial Neural Networks Analysis of Plane Sudden Expansion Flows
CFD and Artificial Neural Networks Analysis of Plane Sudden Expansion Flows
 
On The Form Factor Prediction Of A Displacement Type Vessel: JBC Case
On The Form Factor Prediction Of A Displacement Type Vessel: JBC CaseOn The Form Factor Prediction Of A Displacement Type Vessel: JBC Case
On The Form Factor Prediction Of A Displacement Type Vessel: JBC Case
 
Three modeling of soil erosion by water
Three modeling of soil erosion by waterThree modeling of soil erosion by water
Three modeling of soil erosion by water
 
Phase Change Material Based Solar Water Heater
Phase Change Material Based Solar Water HeaterPhase Change Material Based Solar Water Heater
Phase Change Material Based Solar Water Heater
 
A study on evacuation performance of sit type water closet by computational f...
A study on evacuation performance of sit type water closet by computational f...A study on evacuation performance of sit type water closet by computational f...
A study on evacuation performance of sit type water closet by computational f...
 
Aerodynamic Analysis of Low Speed Turbulent Flow Over A Delta Wing
Aerodynamic Analysis of Low Speed Turbulent Flow Over A Delta WingAerodynamic Analysis of Low Speed Turbulent Flow Over A Delta Wing
Aerodynamic Analysis of Low Speed Turbulent Flow Over A Delta Wing
 
ANALYSIS OF VORTEX INDUCED VIBRATION USING IFS
ANALYSIS OF VORTEX INDUCED VIBRATION USING IFSANALYSIS OF VORTEX INDUCED VIBRATION USING IFS
ANALYSIS OF VORTEX INDUCED VIBRATION USING IFS
 
International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)
 
Flood routing by kinematic wave model
Flood routing by kinematic wave modelFlood routing by kinematic wave model
Flood routing by kinematic wave model
 
CFD Class Final Paper
CFD Class Final PaperCFD Class Final Paper
CFD Class Final Paper
 
Flow Inside a Pipe with Fluent Modelling
Flow Inside a Pipe with Fluent Modelling Flow Inside a Pipe with Fluent Modelling
Flow Inside a Pipe with Fluent Modelling
 
Ijciet 10 01_165
Ijciet 10 01_165Ijciet 10 01_165
Ijciet 10 01_165
 
Ijciet 10 01_058
Ijciet 10 01_058Ijciet 10 01_058
Ijciet 10 01_058
 
Af03101880194
Af03101880194Af03101880194
Af03101880194
 
Final-Thesis-present.pptx
Final-Thesis-present.pptxFinal-Thesis-present.pptx
Final-Thesis-present.pptx
 

Recently uploaded

Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)wesley chun
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsJoaquim Jorge
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?Igalia
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processorsdebabhi2
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationRadu Cotescu
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024The Digital Insurer
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century educationjfdjdjcjdnsjd
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsMaria Levchenko
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdfhans926745
 
HTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation StrategiesHTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation StrategiesBoston Institute of Analytics
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...apidays
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationSafe Software
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Miguel Araújo
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationMichael W. Hawkins
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProduct Anonymous
 

Recently uploaded (20)

Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed texts
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
HTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation StrategiesHTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation Strategies
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day Presentation
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 

240708

  • 1. 1 A NUMERICAL SIMULATION OF THE WOS AND THE WAVE PROPAGATION ALONG A COASTAL DIKE Panayotis Prinos1 , Maria Tsakiri1 and Dimitris Souliotis1 Wave overtopping and the propagation of the waves on the crest and the landward slope of a coastal dike is investigated numerically. Wave overtopping conditions are simulated using the concept of the Wave Overtopping Simulator (WOS). Two numerical models of the WOS are constructed using the FLUENT 6.0.12 (FLUENT Inc. 2001) and the FLOW 3D 9.4 (FLOW 3D 2010) CFD codes. The former simulates the WOS without accounting for air entrainment while the latter accounts for air entrainment. The unsteady RANS equations, the RNG k-ε turbulence model and the VOF method are solved numerically, for "tracking" the free surface and the head of the "current" from the dike crest to the landward dike slope. The computed results from the two models are compared with each other and also against field measurements and proposed empirical relationships (Van der Meer et al. 2010). Keywords: wave overtopping simulator; coastal dike; dike crest; landward slope; air entrainment INTRODUCTION Coastal dikes are widely used to protect low-lying areas against floods. As such, they have been widely applied in countries such as Vietnam, Bangladesh, Thailand, the Netherlands and the USA. Dikes have been extensively utilized as flood defenses in the Netherlands over the past several hundred years as 25% of its area and 21% of its population is located below the sea level. Moreover, 800 km sea dikes are used in Vietnam in order to be protected by floods. Due to changing physical circumstances, a sea level rise is predicted and in addition to stronger storms and more wave attack, wave overtopping on the current dikes will increase. For that reason it is essential to estimate the resistant of the existing dikes and also to propose construction methods in order to increase the strength of dikes for cases which is necessary. In order to create full scale overtopping conditions on a real landward slope of a dike the Wave Overtopping Simulator has been developed. The Wave Overtopping Simulator was first developed in the Netherlands. It is a water reservoir which is continuously filled by pumps with a certain and constant discharge of water and emptied at predefined moments through bottom valves in a way that the volumes simulate the overtopping wave tongues on the dike crest and then on the landward slope. The maximum capacity is 5500 l/m giving a total volume of 22000 l for a simulator with wide equal to 4 m. The design and the calibration of the Wave Overtopping Simulator have been described by Van der Meer (2007) and also Van der Meer et al. (2006, 2007 and 2008). In the past years, several field experiments have been performed in order to evaluate the effect of wave overtopping on coastal dikes, using the Wave Overtopping Simulator and results have been described by Akkerman et al. (2007a and 2007b) and Steendam et al. (2008). Experimental results, using the Wave Overtopping Simulator, as well as empirical equations for flow depth and flow velocity under wave overtopping have been also presented by Van der Meer et al. (2010). In the present work the effect of wave overtopping on the crest and the landward slope of a sea dike is studied numerically for wave volumes of 2000, 3000 and 5000 l/m. The wave overtopping conditions are created by simulating the Wave Overtopping Simulator (WOS) using two different models. The first model simulates the wave overtopping without accounting for the air entrainment while the second model takes into account air entrainment (Hirt 2003). The two models are based on the FLUENT 6.0.12 (FLUENT Inc. 2001) and the FLOW 3D 9.4 (FLOW 3D 2010) respectively. The computed results from the two models are compared with each other and also against available field experiments and empirical relationships for the prediction of maximum flow depth and velocity at various locations (Van der Meer et al. 2010). CASES STUDIED The dike geometry has been presented by Van der Meer et al. (2010). The length of the dike crest is 2 m at a height of 2.6 m above the ground. The landward slope is equal to 1:3.7 at the upper part, while at the lower part is equal to 1:5.2. Five measurement locations have been selected as it is shown in Fig. 1. The first location is at the end of the crest (Board 1), while the next four locations are along 1 Hydraulics Laboratory, Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124 Greece
  • 2. COASTAL ENGINEERING 20122 the landward slope (Board 2 to 5). Specifically Boards-2 and 3 are at the upper part (slope 1:3.7), while Boards 4 and 5 are in the region where the slope is equal to 1:5.2. In the present study, cases with three different overtopping volumes, equal to 2000, 3000 and 5000 l/m are simulated. Figure 1. Wave overtopping simulator, dike geometry and measurements boards. NUMERICAL PROCEDURE General In this work, two CFD codes are used for simulating the wave overtopping conditions. The first code is the FLUENT 6.0.12 (FLUENT Inc. 2001) which does not take into account the air entrainment in the flow while the second code is the FLOW 3D 9.4 (FLOW 3D 2010) which takes into account the air entrainment. Mathematical model The CFD codes solve the unsteady Reynolds-Averaged Navier-Stokes (RANS) equations (Eq. 1 and Eq. 2) in conjunction with the transport equations of turbulent kinetic energy k (Eq. 3) and dissipation rate ε (Eq. 4) of the RNG k-ε type turbulence model (Yakhot et al. 1992). The VOF method (Hirt and Nichols 1981) is also enabled for “tracking” the free surface from the dike crest to the toe of the landward dike slope with the volume fraction equation (Eq. 5). U q i,qq 0 t x i           (1) U U p q i,q q i,q q U u u j,q q i jt x x x qj i j                                  (2) k k k U q q q q t,q q i,q U u u j,q q i j q qt x x x xqj j k j j                                               (3)       2 q q q q t,q q q i,q q* j,q 1 q i j 2 q q j j j q j q U U C u u C t x x x k x k                                      (4)
  • 3. COASTAL ENGINEERING 2012 3    q q q q i,q q i 1 U 0 t x               (5) The subscript q refers to the phase q while ρq is the density of each phase, αq is the volume fraction, Ui,q is the velocity in the i direction, pq is the effective pressure (the difference between the static and the hydrostatic pressure), u u i j q      are the turbulent stresses , μt,q is the eddy viscosity , σk, σε, C1ε and C2ε are coefficients,   i,q q i j q j U u u x     is the production of turbulent kinetic energy and C* 2ε is given by the equation:  3C 1 / 0*C C 2 2 31           (6) where η=Sk/ε (S is the rate of strain tensor), Cμ, C2ε, η0 and β are coefficients. Initial conditions The FLUENT CFD code (FLUENT Inc. 2001) uses a control-volume technique in order to convert the governing equations to algebraic equations which can be solved numerically. For the construction of the grids the GAMBIT program is used. The grids are two-dimensional, structured and the shape of the cells is orthogonal. The number of computational cells for the cases which are studied is equal to 200000. The initial values of turbulent kinetic energy and dissipation rate are equal to 10-4 and 10-5 respectively. The simulations are time-dependent and the time step which is used is equal to 5x10-4 s. The FLOW 3D CFD code (FLOW 3D 2010) is applied in order to convert the governing equations to algebraic equations. For the geometric construction of the model the AutoCAD program is used while the mesh is constructed with the FLOW 3D. The grids are two-dimensional, structured and the shape of the cells is orthogonal. The number of computational cells varies between 300000 and 600000 for the cases studied. In order to simulate air entrainment, the second option of air entrainment model is used which is based on a variable density formulation (Hirt 2003). This model includes the "bulking" of fluid volume by the addition of air and the buoyancy effects associated with entrained air. Two coefficients should be set, the air entrainment rate coefficient is set 0.5 and the surface rate coefficient is set 0.073. Solving procedure Initially, water is present in the tank while air is in the rest of the computational domain (Fig. 2 and Fig. 3). The water flows through the exit of the tank due to gravity. The RANS equations and the transport equations of turbulent kinetic energy and dissipation rate are non-linear and coupled which means that during a time step several iterations of the solution loop are performed before a converged solution is obtained. The volume fraction equation is also solved, with regard to the VOF method, once for each time step. Figure 2. Computational domain for the FLUENT CFD code.
  • 4. COASTAL ENGINEERING 20124 Figure 3. Computational domain for the FLOW 3D CFD code. ANALYSIS OF THE RESULTS Fig. 4 shows the variation of the computed flow depth with time, for water volume of the simulator equal to 2000 l/m, at four different locations (Board 1,2,3 and 5). In the same figure the variation of the experimental flow depth with time is shown for three different waves (Exp. Data 1-3) with the same volume, at the same locations. It is observed that the flow depth increases suddenly in the beginning as the wave passes from a particular location. The maximum flow depth is higher at Board 1 than that at the other Boards which means that it decreases as the wave travels along the landward slope of the dike. Moreover the maximum computed flow depth is in good agreement with the maximum experimental flow depth at Board 1 and 5 but it is higher at the other two Boards. However, the duration of the experimental maximum flow depth is higher than that of the numerical simulations. Moreover the computed results increase at Boards 3 and 5 faster than the experimental results which means that the numerical waves travel faster. In Fig. 5 the variation of computed the flow depth with time is shown at the same locations (Board 1,2,3 and 5) together with the variation of the experimental flow depth, from three waves, for 3000 l/m water volume. The maximum computed flow depth is in satisfactory agreement with the maximum experimental flow depth. Flow depth computed by Flow 3D CFD code (model with air entrainment) is a little higher than that of Fluent CFD code simulation (model without air entrainment). Fig. 6 shows the variation of the computed flow depth with time at four locations (Board 1,2,3 and 5) together with the variation of the experimental flow depth, from three waves, for 5000 l/m water volume. The maximum computed flow depth by Flow 3D is in good agreement with the maximum experimental flow depth with the exception of this at Board 2 where experimental flow depth is much higher. In Fig. 7 the variation of the computed flow velocity with time is shown at the Boards 1, 2, 3 and 5, for water volume equal to 2000 l/m. Experimental results for the three waves are available only at Board 5. The flow velocity increases suddenly in the beginning as the wave passes from a particular location. The computed flow velocity by the Flow 3D is lower than this computed by Fluent and it is in quite good agreement with experimental results at Board 5. Fig. 8 shows the variation of the computed flow velocity with time at the same locations (3000 l/m water volume). Available experimental results are also shown in the same figure, for the same water volume. It is observed that the maximum computed velocity by the Flow 3D is approximately the same at all the locations studied. Moreover at Board 3 computed velocities are much higher than experimental velocities, but at Board 5 velocities by Flow 3D are in quite good agreement with these which arises from the experiments. In Fig. 9 the variation of the computed flow velocity with time is shown at the Boards 1,2,3 and 5, for water volume equal to 5000 l/m, together with available experimental results where they are available. The flow velocity which is computed by Flow 3d is lower than that computed by Fluent. Moreover the flow velocity computed by Flow 3D is quite higher than the experimental flow velocity at Board 3 but it is in good agreement with it at the Board 5.
  • 5. COASTAL ENGINEERING 2012 5 Figure 4. Variation of flow depth with time (water volume 2000 l/m). Figure 5. Variation of flow depth with time (water volume 3000 l/m).
  • 6. COASTAL ENGINEERING 20126 Figure 6. Variation of flow depth with time (water volume 5000 l/m). Figure 7. Variation of flow velocity with time for water volume 2000 l/m at four different locations.
  • 7. COASTAL ENGINEERING 2012 7 Figure 8. Variation of flow velocity with time (water volume 3000 l/m). Figure 9. Variation of flow velocity with time (water volume 5000 l/m).
  • 8. COASTAL ENGINEERING 20128 Comparison with empirical relationships In Fig. 10 the variation of the computed maximum flow depth and velocity with the overtopping wave volume is shown together with an empirical relationship, based on field measurements with the wave overtopping simulator, proposed by Van der Meer et al. (2010). The agreement between the computed maximum flow depth and that predicted by the expression h=0.133V0.5 (h= flow depth (m) and V= water volume (m3 /m)) is quite satisfactory for the Board 1 (dike crest) and Board 2 while the flow depth at the other Boards in the landward slope of the dike is lower. Similar behavior is indicated by the measured flow depths of Van der Meer et al. (2010). The computed maximum velocities are shown to be increased with regard to those of the proposed relationship u=0.5V0.34 (u= flow velocity (m/s)), however the results from the model with air entrainment (Flow 3D) are better than those of the model without air entrainment (Fluent). The difficulty in measuring the maximum velocity in the field as well as the difficulty of simulating the air entrainment in the computations may contribute to such discrepancies. Figure 10. Variation of maximum flow depth and velocity with wave volume. CONCLUSIONS Wave overtopping and the propagation of the waves on the crest and the landward slope of a coastal dike is investigated numerically. Wave overtopping conditions are simulated using the concept of the Wave Overtopping Simulator. The unsteady RANS equations in conjunction with a turbulence model of the RNG k-ε type and the VOF method are solved numerically, for “tracking” the free surface and the head of the “current” from the dike crest to the toe of the landward dike slope. Computed results of two models (with and without air entrainment ) are compared with each other and also against proposed empirical relationships based on available field measurements of Van der Meer et al. (2010) and experimental data. The following conclusions can be derived:  Maximum computed flow depth is in agreement with maximum experimental flow depth. It is also in quite good agreement at Board-1 with the empirical relationship presented by Van der Meer et al. (2010).  Computed velocities by Fluent (model without air entrainment) are higher than those of the Flow 3D (model with air entrainment). Moreover they are higher than experimental velocities and the velocities from the empirical relationship (Van der Meer et al. 2010). However, the difficulty in measuring the maximum velocity in the field as well as the omission of the air entrainment in the computations (model without air entrainment - Fluent) make such a comparison to be considered with caution.  Computed velocities by Flow 3D (model with air entrainment) are in better agreement with experimental velocities and also with the velocities which arise from the empirical relationship (Van der Meer et al. 2010).  The higher the initial volume of the water the better the agreement between computed results and experimental data.
  • 9. COASTAL ENGINEERING 2012 9 ACKNOWLEDGMENTS The support of the European Commission through FP7.2009-1, Contract 244104 - THESEUS (“Innovative technologies for safer European coasts in a changing climate”), is gratefully acknowledged. REFERENCES Akkerman, G.J., Bernadini, P., Van der Meer, J.W., and Van Hoven, A. 2007a. Field tests on sea defences subject to wave overtopping, Proceedings of Coastal structures, ASCE, Venice, Italy. Akkerman, G.J., Van Gerven, K.A.J., Schaap, H.A. and Van der Meer, J.W. 2007b. Wave overtopping erosion tests at Groningen sea dyke, ComCoast, Workpackage 3: Development of Alternative Overtopping-Resistant Sea Defences, phase 3. (www.comcoast.org). ANSYS. Fluent Inc. 2001. Fluent 6.0 Documentation, Lebanon, USA. FLOW 3D. 2010. User Manual Version 9.4, Flow Science, Inc., Santa Fe. Hirt C.W. 2003. Modeling turbulent entrainment of air at a free surface, Technical note 61, Flow Science, Inc. (FSi-03-TN61). Hirt C.W., Nichols B.D. 1981. Volume of fluid (VOF) method for the dynamics of free boundaries, Journal of Computational Physics, 39, 201-225. Steendam, G., De Vries, W., Van der Meer, J.W., Van Hoven, A, De Raat, G. And Frissel, J.Y. 2008. Influence of management and maintenance on erosive impact of wave overtopping on grass covered slopes of dikes, Proceedings of Flood Risk Management: Research and Practice, Oxford, UK, 95 pp. (full paper available in CD-ROM). Van der Meer, J.W., Snijders, W. and Regegling, E. 2006. The wave overtopping simulator, Proceedings of ICCE 2006, ASCE, San Diego, USA, 4654-4666. Van der Meer, J.W. 2007. Design, contruction, calibration and use of the wave overtopping simulator. ComCoast, Workpackage 3: Decelopment of Alternstive Overtopping-Resistant Sea Defences, phase 3. (www.comcoast.org.) Van der Meer, J.W., Bernadini, P., Akkerman, G.J. and Hoffmans, G.J.C.M. 2007. The wave overtopping simulator in action, Proceedings of Coastal Structures, ASCE, Venice, Italy, 645- 656. Van der Meer, J.W., Steendam, G., de Raat and Bernadini, P. 2008. Further developments on the wave overtopping simulator, Proceeding of ICCE 2008, ASCE, Hamburg, Germany, 2957-2969. Van der Meer, J.W., Hardeman, B., Steendam, G., Schuttrumpf, H. And Verheij, H. 2010. Flow depths and velocities at crest and inner slope of a dike, in theory and with the wave overtopping simulator, Proceedings of ICCE 2010, Shanghai, China. Yakhot, V., Orszag, S.A., Thangam, S., Gatski, T.B. and Speziale, C.G. 1992. Development of turbulence models for shear flows by a double expansion technique, Physics of Fluids A, 4, 1510- 1520.