NUMBER SYSTEMS
AND
CODES
LESSON OUTLINE
• NUMBER SYSTEMS
• NUMBER NOTATIONS
• ARITHMETIC
• BASE CONVERSIONS
• SIGNED NUMBER REPRESENTATION
• CODES
• DECIMAL CODES
• GRAY CODE
• ASCII CODE
Number Systems and Codes 2
NUMBER SYSTEMS
THE DECIMAL (REAL), BINARY, OCTAL,
HEXADECIMAL NUMBER SYSTEMS ARE USED TO
REPRESENT INFORMATION IN DIGITAL SYSTEMS.
ANY NUMBER SYSTEM CONSISTS OF A SET OF
DIGITS AND A SET OF OPERATORS (+, , , ).
Number Systems and Codes 3
RADIX OR BASE
Decimal (base 10) 0 1 2 3 4 5 6 7 8 9
Binary (base 2) 0 1
Octal (base 8) 0 1 2 3 4 5 6 7
Hexadecimal (base 16) 0 1 2 3 4 5 6 7 8 9 A B C D E F
Number Systems and Codes 4
The radix or base of the number system
denotes the number of digits used in the
system.
Decimal Binary Octal Hexadecimal
00 0000 00 0
01 0001 01 1
02 0010 02 2
03 0011 03 3
04 0100 04 4
05 0101 05 5
06 0110 06 6
07 0111 07 7
08 1000 10 8
09 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F
Number Systems and Codes 5
POSITIONAL NOTATION
IT IS CONVENIENT TO REPRESENT A NUMBER
USING POSITIONAL NOTATION. A POSITIONAL
NOTATION IS WRITTEN AS A SEQUENCE OF
DIGITS WITH A RADIX POINT SEPARATING THE
INTEGER AND FRACTIONAL PART.
WHERE R IS THE RADIX, N IS THE NUMBER OF
DIGITS OF THE INTEGER PART, AND M IS THE
NUMBER DIGITS OF THE FRACTIONAL PART.
Number Systems and Codes 6
 r
m
n
n
r a
a
a
a
a
a
a
N 




 
 2
1
0
1
2
1 .
POLYNOMIAL NOTATION
A NUMBER CAN BE EXPLICITLY REPRESENTED IN POLYNOMIAL
NOTATION.
WHERE RP IS A WEIGHTED POSITION AND P IS THE POSITION
OF A DIGIT.
Number Systems and Codes 7
m
m
n
n
n
n
r r
a
r
a
r
a
r
a
r
a
r
a
r
a
N 








 














 
 2
2
1
1
0
0
1
1
2
2
1
1
EXAMPLES
IN BINARY NUMBER SYSTEM
IN OCTAL NUMBER SYSTEM
IN HEXADECIMAL NUMBER SYSTEM
Number Systems and Codes 8
  3
2
1
0
1
2
3
4
2 2
1
2
1
2
0
2
0
2
1
2
0
2
1
2
1
011
.
11010 


















  3
2
1
0
1
2
8 8
4
8
2
8
1
8
3
8
7
8
6
124
.
673 














  1
0
1
2
16 16
16
6
16
0
16
3
.
306 







 D
D
ARITHMETIC
(101101)2 +(11101)2
:
1111 1
+
101101
11101
1001010
Number Systems and Codes 9
Addition:
In binary number system,
ADDITION
(6254)8+(5173)8 : 1 1
+
6254
5173
13447
Number Systems and Codes 10
In octal number system,
(9F1B)16 +(4A36)16 : 1 1
+
9F1B
4A36
D951
In hexadecimal number system,
SUBTRACTION
(101101)2 -(11011)2
:
10 10
-
101101
11011
10010
Number Systems and Codes 11
In binary number system,
SUBTRACTION
(9F1B)16 -(4A36)16 : 16
-
9F1B
4A36
54E5
Number Systems and Codes 12
In octal number system,
In hexadecimal number system,
(6254)8 -(5173)8 : 8
-
6254
5173
1061
MULTIPLICATION
(1101)2  (1001)2 :

1101
1001
1101
0000
0000
1101
1110101
Number Systems and Codes 13
In binary number system,
DIVISION
(1110111)2 (1001)2 : 1101
1001 1110111
1001
1011
1001
1011
1001
10
Number Systems and Codes 14
In binary number system,
BASE CONVERSIONS
CONVERT (100111010)2 TO BASE 8
Number Systems and Codes 15
 
 8
0
1
2
0
1
1
1
2
0
1
2
3
4
5
6
7
8
2
472
8
2
8
7
8
4
8
2
8
1
8
2
8
4
8
4
2
0
2
1
2
0
2
1
2
1
2
1
2
0
2
0
2
1
100111010



































   
 8
2
2
472
2
7
4
010
111
100
100111010



BASE CONVERSION
CONVERT (100111010)2 TO BASE 10
Number Systems and Codes 16
 
         
 10
10
10
10
10
10
0
1
2
3
4
5
6
7
8
2
314
2
8
16
32
256
2
0
2
1
2
0
2
1
2
1
2
1
2
0
2
0
2
1
100111010
























BASE CONVERSION
CONVERT (100111010)2 TO BASE 16
Number Systems and Codes 17
 
 16
0
1
2
0
0
1
1
2
0
1
2
3
4
5
6
7
8
2
13
16
16
3
16
1
16
2
16
8
16
1
16
2
16
1
2
0
2
1
2
0
2
1
2
1
2
1
2
0
2
0
2
1
100111010
A
A



































   
 16
2
2
13
3
1
1010
0011
0001
100111010
A
A 


BASE CONVERSION FROM BASE 8
• CONVERT (372)8 TO BASE 2
• CONVERT (372)8 TO BASE 10
• CONVERT (372)8 TO BASE 16
Number Systems and Codes 18
 
 2
8
11111010
010
111
011
2
7
3
372



 
     
 10
10
10
10
0
1
2
8
250
2
56
192
8
2
8
7
8
3
372










   
 16
2
8 1010
1111
372
FA
A
F 


BASE CONVERSION FROM BASE 16
• CONVERT (9F2)16 TO BASE 2
• CONVERT (9F2)16 TO BASE 8
• CONVERT (9F2)16 TO BASE 10
19
 
 2
16
10
1001111100
0010
1111
1001
2
9
2
9


 F
F
 
   8
2
16
4762
)
2
010
6
110
7
111
4
100
(
0010
1111
1001
2
9
2
9



 F
F
 
     
 10
10
10
10
0
1
2
16
2546
2
240
2304
16
2
16
16
9
2
9









 F
F
BINOMIAL EXPANSION
(SERIES SUBSTITUTION)
TO CONVERT A NUMBER IN BASE R TO BASE P.
• REPRESENT THE NUMBER IN BASE P IN BINOMIAL SERIES.
• CHANGE THE RADIX OR BASE OF EACH TERM TO BASE P.
• SIMPLIFY.
Number Systems and Codes 20
CONVERT BASE 10 TO BASE R
CONVERT (174)10 TO BASE 8
THEREFORE (174)10 = (256)8
8 1 7 4 6 LSB
8 2 1 5
8 2 2 MSB
0 0
Number Systems and Codes 21
CONVERT BASE 10 TO BASE R
CONVERT (0.275)10 TO BASE 8
THEREFORE (0.275)10 = (0.21463)8
8  0.275  2.200 MSD
8  0.200  1.600
8  0.600  4.800
8  0.800  6.400
8  0.400  3.200 LSD
Number Systems and Codes 22
CONVERT BASE 10 TO BASE R
CONVERT (0.68475)10 TO BASE 2
THEREFORE (0.68475)10 = (0.10101)2
2  0.68475  1. 3695 MSD
2  0.3695  0.7390
2  0.7390  1.4780
2  0.4780  0.9560
2  0.9560  1.9120 LSD
Number Systems and Codes 23
SIGNED NUMBER
REPRESENTATION
THERE ARE 3 SYSTEMS TO REPRESENT SIGNED NUMBERS IN
BINARY NUMBER SYSTEM:
• SIGNED-MAGNITUDE
• 1'S COMPLEMENT
• 2'S COMPLEMENT
Number Systems and Codes 24
SIGNED-MAGNITUDE SYSTEM
IN SIGNED-MAGNITUDE SYSTEMS, THE MOST SIGNIFICANT
BIT REPRESENTS THE NUMBER'S SIGN, WHILE THE
REMAINING BITS REPRESENT ITS ABSOLUTE VALUE AS AN
UNSIGNED BINARY MAGNITUDE.
• IF THE SIGN BIT IS A 0, THE NUMBER IS POSITIVE.
• IF THE SIGN BIT IS A 1, THE NUMBER IS NEGATIVE.
Number Systems and Codes 25
SIGNED-MAGNITUDE SYSTEM
Number Systems and Codes 26
1'S COMPLEMENT SYSTEM
• A 1'S COMPLEMENT SYSTEM REPRESENTS THE
POSITIVE NUMBERS THE SAME WAY AS IN THE
SIGNED-MAGNITUDE SYSTEM. THE ONLY
DIFFERENCE IS NEGATIVE NUMBER
REPRESENTATIONS.
• LET BE N ANY POSITIVE INTEGER NUMBER AND
BE A NEGATIVE 1'S COMPLEMENT INTEGER OF N.
IF THE NUMBER LENGTH IS N BITS, THEN
Number Systems and Codes 27
__
N
.
)
1
2
( N
N n



EXAMPLE OF 1'S COMPLEMENT
FOR EXAMPLE IN A 4-BIT SYSTEM, 0101 REPRESENTS +5 AND
1010 REPRESENTS 5
Number Systems and Codes 28
 
1010
0101
1111
0101
)
0001
10000
(
0101
0001
24








1'S COMPLEMENT SYSTEM
Number Systems and Codes 29
2'S COMPLEMENT SYSTEM
• A 2'S COMPLEMENT SYSTEM IS SIMILAR TO 1'S
COMPLEMENT SYSTEM, EXCEPT THAT THERE IS ONLY ONE
REPRESENTATION FOR ZERO.
• LET BE N ANY POSITIVE INTEGER NUMBER AND
BE A NEGATIVE 2'S COMPLEMENT INTEGER OF N. IF THE
NUMBER LENGTH IS N BITS, THEN
Number Systems and Codes 30
__
N
.
2 N
N n


EXAMPLE OF 2'S COMPLEMENT
FOR EXAMPLE IN A 4-BIT SYSTEM, 0101 REPRESENTS +5 AND
1011 REPRESENTS 5
CS 3402--Digital Logic
Number Systems and Codes 31
1011
0101
10000
0101
24




2'S COMPLEMENT SYSTEM
Number Systems and Codes 32
ADDITION AND SUBTRACTION IN
SIGNED AND MAGNITUDE
Number Systems and Codes 33
(a) 5
+2
0101
+0010
7 0111
(b) -5
-2
1101
+1010
-7 1111
(c) 5
-2
0101
+1010
3 0011
(d) -5
+2
1101
+0010
-3 1011
(a) 5
+2
0101
+0010
7 0111
(b) -5
-2
1010
+1101
-7 1 0111
1
1000
(c) 5
-2
0101
+1101
3 1 0010
1
0011
(d) -5
+2
1010
+0010
-3 1100
ADDITION AND SUBTRACTION IN
1’S COMPLEMENT
Number Systems and Codes 34
(a) 5
+2
0101
+0010
7 0111
(b) -5
-2
1011
+1110
-7 1 1001
(c) 5
-2
0101
+1110
3 1 0011
(d) -5
+2
1011
+0010
-3 1101
ADDITION AND SUBTRACTION IN
2’S COMPLEMENT
Number Systems and Codes 35
OVERFLOW CONDITIONS
CARRY-IN  CARRY-OUT
0111 1000
5 0101 -5 1011
+3 +0011 -4 +1100
-8 1000 7 10111
CARRY-IN = CARRY-OUT
0000 1110
+5 0101 -2 1110
+2 +0010 -6 +1010
7 0111 -8 11000
Number Systems and Codes
36
ADDITION AND SUBTRACTION IN
HEXADECIMAL SYSTEM
Number Systems and Codes 37
(9F1B)16 -(4A36)16 : 16
9F1B
-
4A36
54E5
(9F1B)16 +(4A36)16 : 1 1
9F1B
+
4A36
E951
Addition
Subtraction
CODES
• DECIMAL CODES
• GRAY CODE
• ASCII CODE
Number Systems and Codes 38
IN HISTORY: CODE BREAKERS
• ALAN TURING, WHO CRACKED NAZI CODE TO WIN WORLD
WAR II. TURING'S ELECTRO-MECHANICAL MACHINE, A
FORERUNNER OF MODERN COMPUTERS, UNRAVELED THE
ENIGMA CODE USED BY NAZI GERMANY AND HELPED GIVE
THE ALLIES AN ADVANTAGE IN THE NAVAL STRUGGLE FOR
CONTROL OF THE ATLANTIC.
39
CODES
• WHAT ARE THE USES OF CODES?
SIMPLY PUT, CODING IS USED FOR COMMUNICATING WITH
COMPUTERS. PEOPLE USE CODING TO GIVE COMPUTERS AND
OTHER MACHINES INSTRUCTIONS ON WHAT ACTIONS TO
PERFORM. FURTHER, WE USE IT TO PROGRAM THE WEBSITES,
APPS, AND OTHER TECHNOLOGIES WE INTERACT WITH EVERY
DAY.
WHAT ARE SOME CODES WE USE EVERYDAY??
EX. BRAILLE, MORSE CODE, BARD CODES, POST CODES,
TELEPHONE NUMBERS
Number Systems and Codes 40
DECIMAL CODES
Decimal Digit BCD Excess-3 2421
8421
0 0000 0011 0000
1 0001 0100 0001
2 0010 0101 0010
3 0011 0110 0011
4 0100 0111 0100
5 0101 1000 1011
6 0110 1001 1100
7 0111 1010 1101
8 1000 1011 1110
9 1001 1100 1111
Number Systems and Codes 41
BCD CODE
Number Systems and Codes 42
BCD was commonly used for displaying
alpha-numeric in the past but in modern-
day BCD is still used with real-time clocks
or RTC chips to keep track of wall-clock
time and it's becoming more common for
embedded microprocessors to include an
RTC.
GRAY CODE
Decimal Equivalent Binary Code Gray Code
0 0000 0000
1 0001 0001
2 0010 0011
3 0011 0010
4 0100 0110
5 0101 0111
6 0110 0101
7 0111 0100
8 1000 1100
9 1001 1101
10 1010 1111
11 1011 1110
12 1100 1010
13 1101 1011
14 1110 1001
15 1111 1000
Number Systems and Codes 43
GRAY CODE
Number Systems and Codes 44
Gray codes are widely used to prevent
spurious output from electromechanical
switches and to facilitate error correction in
digital communications such as digital
terrestrial television and some cable TV
systems.
ASCII CODE
• ASCII: AMERICAN STANDARD CODE FOR
INFORMATION INTERCHANGE.
• USED TO REPRESENT CHARACTERS AND
TEXTUAL INFORMATION
• EACH CHARACTER IS REPRESENTED WITH 1
BYTE
• UPPER AND LOWER CASE LETTERS: A..Z AND A..Z
• DECIMAL DIGITS -- 0,1,…,9
• PUNCTUATION CHARACTERS -- ; , . :
• SPECIAL CHARACTERS --$ & @ / {
• CONTROL CHARACTERS -- CARRIAGE RETURN (CR) ,
LINE FEED (LF), BEEP
Number Systems and Codes 45
ASCII CODE
Number Systems and Codes 46
END TASK
Number Systems and Codes 47
• TASK (ASSIGNMENT):
USING THE ASCII CODE CONVERSION TABLE, DECODE THE
FOLLOWING DIGITS SET:
067 101 098 117 032 084 101 099 104 110 111 108 111
103 105 099 097 108 032 085 110 105 118 101 114 115
105 116 121.
WHAT IS THE TEXT EQUIVALENT? WHAT IS THE BINARY VALUE
OF THIS CHARACTER SET?

NUMBER SYSTEMS.ppt

  • 1.
  • 2.
    LESSON OUTLINE • NUMBERSYSTEMS • NUMBER NOTATIONS • ARITHMETIC • BASE CONVERSIONS • SIGNED NUMBER REPRESENTATION • CODES • DECIMAL CODES • GRAY CODE • ASCII CODE Number Systems and Codes 2
  • 3.
    NUMBER SYSTEMS THE DECIMAL(REAL), BINARY, OCTAL, HEXADECIMAL NUMBER SYSTEMS ARE USED TO REPRESENT INFORMATION IN DIGITAL SYSTEMS. ANY NUMBER SYSTEM CONSISTS OF A SET OF DIGITS AND A SET OF OPERATORS (+, , , ). Number Systems and Codes 3
  • 4.
    RADIX OR BASE Decimal(base 10) 0 1 2 3 4 5 6 7 8 9 Binary (base 2) 0 1 Octal (base 8) 0 1 2 3 4 5 6 7 Hexadecimal (base 16) 0 1 2 3 4 5 6 7 8 9 A B C D E F Number Systems and Codes 4 The radix or base of the number system denotes the number of digits used in the system.
  • 5.
    Decimal Binary OctalHexadecimal 00 0000 00 0 01 0001 01 1 02 0010 02 2 03 0011 03 3 04 0100 04 4 05 0101 05 5 06 0110 06 6 07 0111 07 7 08 1000 10 8 09 1001 11 9 10 1010 12 A 11 1011 13 B 12 1100 14 C 13 1101 15 D 14 1110 16 E 15 1111 17 F Number Systems and Codes 5
  • 6.
    POSITIONAL NOTATION IT ISCONVENIENT TO REPRESENT A NUMBER USING POSITIONAL NOTATION. A POSITIONAL NOTATION IS WRITTEN AS A SEQUENCE OF DIGITS WITH A RADIX POINT SEPARATING THE INTEGER AND FRACTIONAL PART. WHERE R IS THE RADIX, N IS THE NUMBER OF DIGITS OF THE INTEGER PART, AND M IS THE NUMBER DIGITS OF THE FRACTIONAL PART. Number Systems and Codes 6  r m n n r a a a a a a a N         2 1 0 1 2 1 .
  • 7.
    POLYNOMIAL NOTATION A NUMBERCAN BE EXPLICITLY REPRESENTED IN POLYNOMIAL NOTATION. WHERE RP IS A WEIGHTED POSITION AND P IS THE POSITION OF A DIGIT. Number Systems and Codes 7 m m n n n n r r a r a r a r a r a r a r a N                             2 2 1 1 0 0 1 1 2 2 1 1
  • 8.
    EXAMPLES IN BINARY NUMBERSYSTEM IN OCTAL NUMBER SYSTEM IN HEXADECIMAL NUMBER SYSTEM Number Systems and Codes 8   3 2 1 0 1 2 3 4 2 2 1 2 1 2 0 2 0 2 1 2 0 2 1 2 1 011 . 11010                      3 2 1 0 1 2 8 8 4 8 2 8 1 8 3 8 7 8 6 124 . 673                  1 0 1 2 16 16 16 6 16 0 16 3 . 306          D D
  • 9.
    ARITHMETIC (101101)2 +(11101)2 : 1111 1 + 101101 11101 1001010 NumberSystems and Codes 9 Addition: In binary number system,
  • 10.
    ADDITION (6254)8+(5173)8 : 11 + 6254 5173 13447 Number Systems and Codes 10 In octal number system, (9F1B)16 +(4A36)16 : 1 1 + 9F1B 4A36 D951 In hexadecimal number system,
  • 11.
    SUBTRACTION (101101)2 -(11011)2 : 10 10 - 101101 11011 10010 NumberSystems and Codes 11 In binary number system,
  • 12.
    SUBTRACTION (9F1B)16 -(4A36)16 :16 - 9F1B 4A36 54E5 Number Systems and Codes 12 In octal number system, In hexadecimal number system, (6254)8 -(5173)8 : 8 - 6254 5173 1061
  • 13.
    MULTIPLICATION (1101)2  (1001)2:  1101 1001 1101 0000 0000 1101 1110101 Number Systems and Codes 13 In binary number system,
  • 14.
    DIVISION (1110111)2 (1001)2 :1101 1001 1110111 1001 1011 1001 1011 1001 10 Number Systems and Codes 14 In binary number system,
  • 15.
    BASE CONVERSIONS CONVERT (100111010)2TO BASE 8 Number Systems and Codes 15    8 0 1 2 0 1 1 1 2 0 1 2 3 4 5 6 7 8 2 472 8 2 8 7 8 4 8 2 8 1 8 2 8 4 8 4 2 0 2 1 2 0 2 1 2 1 2 1 2 0 2 0 2 1 100111010                                         8 2 2 472 2 7 4 010 111 100 100111010   
  • 16.
    BASE CONVERSION CONVERT (100111010)2TO BASE 10 Number Systems and Codes 16              10 10 10 10 10 10 0 1 2 3 4 5 6 7 8 2 314 2 8 16 32 256 2 0 2 1 2 0 2 1 2 1 2 1 2 0 2 0 2 1 100111010                        
  • 17.
    BASE CONVERSION CONVERT (100111010)2TO BASE 16 Number Systems and Codes 17    16 0 1 2 0 0 1 1 2 0 1 2 3 4 5 6 7 8 2 13 16 16 3 16 1 16 2 16 8 16 1 16 2 16 1 2 0 2 1 2 0 2 1 2 1 2 1 2 0 2 0 2 1 100111010 A A                                         16 2 2 13 3 1 1010 0011 0001 100111010 A A   
  • 18.
    BASE CONVERSION FROMBASE 8 • CONVERT (372)8 TO BASE 2 • CONVERT (372)8 TO BASE 10 • CONVERT (372)8 TO BASE 16 Number Systems and Codes 18    2 8 11111010 010 111 011 2 7 3 372             10 10 10 10 0 1 2 8 250 2 56 192 8 2 8 7 8 3 372                16 2 8 1010 1111 372 FA A F   
  • 19.
    BASE CONVERSION FROMBASE 16 • CONVERT (9F2)16 TO BASE 2 • CONVERT (9F2)16 TO BASE 8 • CONVERT (9F2)16 TO BASE 10 19    2 16 10 1001111100 0010 1111 1001 2 9 2 9    F F      8 2 16 4762 ) 2 010 6 110 7 111 4 100 ( 0010 1111 1001 2 9 2 9     F F          10 10 10 10 0 1 2 16 2546 2 240 2304 16 2 16 16 9 2 9           F F
  • 20.
    BINOMIAL EXPANSION (SERIES SUBSTITUTION) TOCONVERT A NUMBER IN BASE R TO BASE P. • REPRESENT THE NUMBER IN BASE P IN BINOMIAL SERIES. • CHANGE THE RADIX OR BASE OF EACH TERM TO BASE P. • SIMPLIFY. Number Systems and Codes 20
  • 21.
    CONVERT BASE 10TO BASE R CONVERT (174)10 TO BASE 8 THEREFORE (174)10 = (256)8 8 1 7 4 6 LSB 8 2 1 5 8 2 2 MSB 0 0 Number Systems and Codes 21
  • 22.
    CONVERT BASE 10TO BASE R CONVERT (0.275)10 TO BASE 8 THEREFORE (0.275)10 = (0.21463)8 8  0.275  2.200 MSD 8  0.200  1.600 8  0.600  4.800 8  0.800  6.400 8  0.400  3.200 LSD Number Systems and Codes 22
  • 23.
    CONVERT BASE 10TO BASE R CONVERT (0.68475)10 TO BASE 2 THEREFORE (0.68475)10 = (0.10101)2 2  0.68475  1. 3695 MSD 2  0.3695  0.7390 2  0.7390  1.4780 2  0.4780  0.9560 2  0.9560  1.9120 LSD Number Systems and Codes 23
  • 24.
    SIGNED NUMBER REPRESENTATION THERE ARE3 SYSTEMS TO REPRESENT SIGNED NUMBERS IN BINARY NUMBER SYSTEM: • SIGNED-MAGNITUDE • 1'S COMPLEMENT • 2'S COMPLEMENT Number Systems and Codes 24
  • 25.
    SIGNED-MAGNITUDE SYSTEM IN SIGNED-MAGNITUDESYSTEMS, THE MOST SIGNIFICANT BIT REPRESENTS THE NUMBER'S SIGN, WHILE THE REMAINING BITS REPRESENT ITS ABSOLUTE VALUE AS AN UNSIGNED BINARY MAGNITUDE. • IF THE SIGN BIT IS A 0, THE NUMBER IS POSITIVE. • IF THE SIGN BIT IS A 1, THE NUMBER IS NEGATIVE. Number Systems and Codes 25
  • 26.
  • 27.
    1'S COMPLEMENT SYSTEM •A 1'S COMPLEMENT SYSTEM REPRESENTS THE POSITIVE NUMBERS THE SAME WAY AS IN THE SIGNED-MAGNITUDE SYSTEM. THE ONLY DIFFERENCE IS NEGATIVE NUMBER REPRESENTATIONS. • LET BE N ANY POSITIVE INTEGER NUMBER AND BE A NEGATIVE 1'S COMPLEMENT INTEGER OF N. IF THE NUMBER LENGTH IS N BITS, THEN Number Systems and Codes 27 __ N . ) 1 2 ( N N n   
  • 28.
    EXAMPLE OF 1'SCOMPLEMENT FOR EXAMPLE IN A 4-BIT SYSTEM, 0101 REPRESENTS +5 AND 1010 REPRESENTS 5 Number Systems and Codes 28   1010 0101 1111 0101 ) 0001 10000 ( 0101 0001 24        
  • 29.
    1'S COMPLEMENT SYSTEM NumberSystems and Codes 29
  • 30.
    2'S COMPLEMENT SYSTEM •A 2'S COMPLEMENT SYSTEM IS SIMILAR TO 1'S COMPLEMENT SYSTEM, EXCEPT THAT THERE IS ONLY ONE REPRESENTATION FOR ZERO. • LET BE N ANY POSITIVE INTEGER NUMBER AND BE A NEGATIVE 2'S COMPLEMENT INTEGER OF N. IF THE NUMBER LENGTH IS N BITS, THEN Number Systems and Codes 30 __ N . 2 N N n  
  • 31.
    EXAMPLE OF 2'SCOMPLEMENT FOR EXAMPLE IN A 4-BIT SYSTEM, 0101 REPRESENTS +5 AND 1011 REPRESENTS 5 CS 3402--Digital Logic Number Systems and Codes 31 1011 0101 10000 0101 24    
  • 32.
    2'S COMPLEMENT SYSTEM NumberSystems and Codes 32
  • 33.
    ADDITION AND SUBTRACTIONIN SIGNED AND MAGNITUDE Number Systems and Codes 33 (a) 5 +2 0101 +0010 7 0111 (b) -5 -2 1101 +1010 -7 1111 (c) 5 -2 0101 +1010 3 0011 (d) -5 +2 1101 +0010 -3 1011
  • 34.
    (a) 5 +2 0101 +0010 7 0111 (b)-5 -2 1010 +1101 -7 1 0111 1 1000 (c) 5 -2 0101 +1101 3 1 0010 1 0011 (d) -5 +2 1010 +0010 -3 1100 ADDITION AND SUBTRACTION IN 1’S COMPLEMENT Number Systems and Codes 34
  • 35.
    (a) 5 +2 0101 +0010 7 0111 (b)-5 -2 1011 +1110 -7 1 1001 (c) 5 -2 0101 +1110 3 1 0011 (d) -5 +2 1011 +0010 -3 1101 ADDITION AND SUBTRACTION IN 2’S COMPLEMENT Number Systems and Codes 35
  • 36.
    OVERFLOW CONDITIONS CARRY-IN CARRY-OUT 0111 1000 5 0101 -5 1011 +3 +0011 -4 +1100 -8 1000 7 10111 CARRY-IN = CARRY-OUT 0000 1110 +5 0101 -2 1110 +2 +0010 -6 +1010 7 0111 -8 11000 Number Systems and Codes 36
  • 37.
    ADDITION AND SUBTRACTIONIN HEXADECIMAL SYSTEM Number Systems and Codes 37 (9F1B)16 -(4A36)16 : 16 9F1B - 4A36 54E5 (9F1B)16 +(4A36)16 : 1 1 9F1B + 4A36 E951 Addition Subtraction
  • 38.
    CODES • DECIMAL CODES •GRAY CODE • ASCII CODE Number Systems and Codes 38
  • 39.
    IN HISTORY: CODEBREAKERS • ALAN TURING, WHO CRACKED NAZI CODE TO WIN WORLD WAR II. TURING'S ELECTRO-MECHANICAL MACHINE, A FORERUNNER OF MODERN COMPUTERS, UNRAVELED THE ENIGMA CODE USED BY NAZI GERMANY AND HELPED GIVE THE ALLIES AN ADVANTAGE IN THE NAVAL STRUGGLE FOR CONTROL OF THE ATLANTIC. 39
  • 40.
    CODES • WHAT ARETHE USES OF CODES? SIMPLY PUT, CODING IS USED FOR COMMUNICATING WITH COMPUTERS. PEOPLE USE CODING TO GIVE COMPUTERS AND OTHER MACHINES INSTRUCTIONS ON WHAT ACTIONS TO PERFORM. FURTHER, WE USE IT TO PROGRAM THE WEBSITES, APPS, AND OTHER TECHNOLOGIES WE INTERACT WITH EVERY DAY. WHAT ARE SOME CODES WE USE EVERYDAY?? EX. BRAILLE, MORSE CODE, BARD CODES, POST CODES, TELEPHONE NUMBERS Number Systems and Codes 40
  • 41.
    DECIMAL CODES Decimal DigitBCD Excess-3 2421 8421 0 0000 0011 0000 1 0001 0100 0001 2 0010 0101 0010 3 0011 0110 0011 4 0100 0111 0100 5 0101 1000 1011 6 0110 1001 1100 7 0111 1010 1101 8 1000 1011 1110 9 1001 1100 1111 Number Systems and Codes 41
  • 42.
    BCD CODE Number Systemsand Codes 42 BCD was commonly used for displaying alpha-numeric in the past but in modern- day BCD is still used with real-time clocks or RTC chips to keep track of wall-clock time and it's becoming more common for embedded microprocessors to include an RTC.
  • 43.
    GRAY CODE Decimal EquivalentBinary Code Gray Code 0 0000 0000 1 0001 0001 2 0010 0011 3 0011 0010 4 0100 0110 5 0101 0111 6 0110 0101 7 0111 0100 8 1000 1100 9 1001 1101 10 1010 1111 11 1011 1110 12 1100 1010 13 1101 1011 14 1110 1001 15 1111 1000 Number Systems and Codes 43
  • 44.
    GRAY CODE Number Systemsand Codes 44 Gray codes are widely used to prevent spurious output from electromechanical switches and to facilitate error correction in digital communications such as digital terrestrial television and some cable TV systems.
  • 45.
    ASCII CODE • ASCII:AMERICAN STANDARD CODE FOR INFORMATION INTERCHANGE. • USED TO REPRESENT CHARACTERS AND TEXTUAL INFORMATION • EACH CHARACTER IS REPRESENTED WITH 1 BYTE • UPPER AND LOWER CASE LETTERS: A..Z AND A..Z • DECIMAL DIGITS -- 0,1,…,9 • PUNCTUATION CHARACTERS -- ; , . : • SPECIAL CHARACTERS --$ & @ / { • CONTROL CHARACTERS -- CARRIAGE RETURN (CR) , LINE FEED (LF), BEEP Number Systems and Codes 45
  • 46.
  • 47.
    END TASK Number Systemsand Codes 47 • TASK (ASSIGNMENT): USING THE ASCII CODE CONVERSION TABLE, DECODE THE FOLLOWING DIGITS SET: 067 101 098 117 032 084 101 099 104 110 111 108 111 103 105 099 097 108 032 085 110 105 118 101 114 115 105 116 121. WHAT IS THE TEXT EQUIVALENT? WHAT IS THE BINARY VALUE OF THIS CHARACTER SET?