10
1.
1.
(a)
























m + n
n
n
























m + n
n
n
max 10x1 + 20x2
s . t .
2x1 + 8x2 ≥ 52 ⋯(1)
x1 + x2 ≤ 5 ⋯(2)
x1 ≥ 0, x2 ≥ 0
x1
x2
9
6 26
6.5
5
5
























m + n
n
n
max 10x1 + 20x2
s . t .
2x1 + 8x2 = 52 + x3 ⋯(1)
x1 + x2 + x4 = 5 ⋯(2)
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0
























m + n
n
n
max 10x1 + 20x2 − Mx5
s . t .
2x1 + 8x2 + x3 − x5 = 52 ⋯(1)
x1 + x2 + x4 = 5 ⋯(2)
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0,x5 ≥ 0












x3, x4 x1, x2
x3 = 2x1 + 8x2 − 52
x4 = 5 − x1 − x2
f = 10x1 + 20x2
x1, x2
(x1, x2, x3, x4) = (0, 0, − 52, 5)
x3
x3 = 2x1 + 8x2 − 52 + x5, x5 ≥ 0
x5 = 52 − 2x1 − 8x2 + x3
























m + n
n
n
max 10x1 + 20x2 − Mx5
s . t .
2x1 + 8x2 + x3 − x5 = 52 ⋯(1)
x1 + x2 + x4 = 5 ⋯(2)
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0,x5 ≥ 0










x4, x5 x1, x2, x3
x4 = 5 − x1 − x2
x5 = 52 − 2x1 − 8x2 + x3
f = 10x1 + 20x2 − M(52 − 2x1 − 8x2 + x3)
= (10 + 2M)x1 + (20 + 8M)x2 − 52M − Mx3
x1, x2, x3
(x1, x2, x3, x4, x5) = (0, 0, 0, 5, 52)
x1, x2
























m + n
n
n
max 10x1 + 20x2 − Mx5
s . t .
2x1 + 8x2 + x3 − x5 = 52 ⋯(1)
x1 + x2 + x4 = 5 ⋯(2)
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0,x5 ≥ 0










x4, x5 x1, x2, x3
x4 = 5 − x1 − x2
x5 = 52 − 2x1 − 8x2 + x3
f = (10 + 2M)x1 + (20 + 8M)x2 − 52M − Mx3
x1, x2, x3
(x1, x2, x3, x4, x5) = (0, 0, 0, 5, 52)
x1, x2
x2 x4
























m + n
n
n
max 10x1 + 20x2 − Mx5
s . t .
2x1 + 8x2 + x3 − x5 = 52 ⋯(1)
x1 + x2 + x4 = 5 ⋯(2)
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0,x5 ≥ 0










x2, x5 x1, x3, x4
x2 = 5 − x1 − x4
x5 = 12 + 6x1 + 8x4 + x3
f = 100 − (10 + 6M)x1 − (20 + 8M)x4 − Mx3 − 12M
x1, x3, x4
(x1, x2, x3, x4, x5) = (0, 5, 0, 0, 12)
x1, x3, x4
























m + n
n
n
max 10x1 + 20x2 − Mx5
s . t .
2x1 + 8x2 + x3 − x5 = 52 ⋯(1)
x1 + x2 + x4 = 5 ⋯(2)
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0,x5 ≥ 0












x2, x5 x1, x3, x4
x2 = 5 − x1 − x4
x5 = 12 + 6x1 + 8x4 + x3
f = 100 − (10 + 6M)x1 − (20 + 8M)x4 − Mx3 − 12M
x1, x3, x4
(x1, x2, x3, x4, x5) = (0, 5, 0, 0, 12)
x1, x3, x4
x5 = 12 > 0
























m + n
n
n
max 10x1 + 20x2 − Mx5
s . t .
2x1 + 8x2 + x3 − x5 = 52 ⋯(1)
x1 + x2 + x4 = 5 ⋯(2)
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0,x5 ≥ 0












x2, x5 x1, x3, x4
x2 = 5 − x1 − x4
x5 = 12 + 6x1 + 8x4 + x3
f = 100 − (10 + 6M)x1 − (20 + 8M)x4 − Mx3 − 12M
x1, x3, x4
(x1, x2, x3, x4, x5) = (0, 5, 0, 0, 12)
x1, x3, x4
x5 = 12 > 0


See you next time
10

ゲーム理論NEXT 線形計画問題第10回 -シンプレックス法5 人工変数続き-

  • 1.
  • 2.
  • 3.
  • 5.
  • 6.
    
 
 
 
 
 
 
 
 
 
 
 
 m + n n n max10x1 + 20x2 s . t . 2x1 + 8x2 ≥ 52 ⋯(1) x1 + x2 ≤ 5 ⋯(2) x1 ≥ 0, x2 ≥ 0 x1 x2 9 6 26 6.5 5 5
  • 7.
    
 
 
 
 
 
 
 
 
 
 
 
 m + n n n max10x1 + 20x2 s . t . 2x1 + 8x2 = 52 + x3 ⋯(1) x1 + x2 + x4 = 5 ⋯(2) x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0
  • 8.
    
 
 
 
 
 
 
 
 
 
 
 
 m + n n n max10x1 + 20x2 − Mx5 s . t . 2x1 + 8x2 + x3 − x5 = 52 ⋯(1) x1 + x2 + x4 = 5 ⋯(2) x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0,x5 ≥ 0 
 
 
 
 
 
 x3, x4 x1, x2 x3 = 2x1 + 8x2 − 52 x4 = 5 − x1 − x2 f = 10x1 + 20x2 x1, x2 (x1, x2, x3, x4) = (0, 0, − 52, 5) x3 x3 = 2x1 + 8x2 − 52 + x5, x5 ≥ 0 x5 = 52 − 2x1 − 8x2 + x3
  • 9.
    
 
 
 
 
 
 
 
 
 
 
 
 m + n n n max10x1 + 20x2 − Mx5 s . t . 2x1 + 8x2 + x3 − x5 = 52 ⋯(1) x1 + x2 + x4 = 5 ⋯(2) x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0,x5 ≥ 0 
 
 
 
 
 x4, x5 x1, x2, x3 x4 = 5 − x1 − x2 x5 = 52 − 2x1 − 8x2 + x3 f = 10x1 + 20x2 − M(52 − 2x1 − 8x2 + x3) = (10 + 2M)x1 + (20 + 8M)x2 − 52M − Mx3 x1, x2, x3 (x1, x2, x3, x4, x5) = (0, 0, 0, 5, 52) x1, x2
  • 10.
    
 
 
 
 
 
 
 
 
 
 
 
 m + n n n max10x1 + 20x2 − Mx5 s . t . 2x1 + 8x2 + x3 − x5 = 52 ⋯(1) x1 + x2 + x4 = 5 ⋯(2) x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0,x5 ≥ 0 
 
 
 
 
 x4, x5 x1, x2, x3 x4 = 5 − x1 − x2 x5 = 52 − 2x1 − 8x2 + x3 f = (10 + 2M)x1 + (20 + 8M)x2 − 52M − Mx3 x1, x2, x3 (x1, x2, x3, x4, x5) = (0, 0, 0, 5, 52) x1, x2 x2 x4
  • 11.
    
 
 
 
 
 
 
 
 
 
 
 
 m + n n n max10x1 + 20x2 − Mx5 s . t . 2x1 + 8x2 + x3 − x5 = 52 ⋯(1) x1 + x2 + x4 = 5 ⋯(2) x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0,x5 ≥ 0 
 
 
 
 
 x2, x5 x1, x3, x4 x2 = 5 − x1 − x4 x5 = 12 + 6x1 + 8x4 + x3 f = 100 − (10 + 6M)x1 − (20 + 8M)x4 − Mx3 − 12M x1, x3, x4 (x1, x2, x3, x4, x5) = (0, 5, 0, 0, 12) x1, x3, x4
  • 12.
    
 
 
 
 
 
 
 
 
 
 
 
 m + n n n max10x1 + 20x2 − Mx5 s . t . 2x1 + 8x2 + x3 − x5 = 52 ⋯(1) x1 + x2 + x4 = 5 ⋯(2) x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0,x5 ≥ 0 
 
 
 
 
 
 x2, x5 x1, x3, x4 x2 = 5 − x1 − x4 x5 = 12 + 6x1 + 8x4 + x3 f = 100 − (10 + 6M)x1 − (20 + 8M)x4 − Mx3 − 12M x1, x3, x4 (x1, x2, x3, x4, x5) = (0, 5, 0, 0, 12) x1, x3, x4 x5 = 12 > 0
  • 13.
    
 
 
 
 
 
 
 
 
 
 
 
 m + n n n max10x1 + 20x2 − Mx5 s . t . 2x1 + 8x2 + x3 − x5 = 52 ⋯(1) x1 + x2 + x4 = 5 ⋯(2) x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0,x5 ≥ 0 
 
 
 
 
 
 x2, x5 x1, x3, x4 x2 = 5 − x1 − x4 x5 = 12 + 6x1 + 8x4 + x3 f = 100 − (10 + 6M)x1 − (20 + 8M)x4 − Mx3 − 12M x1, x3, x4 (x1, x2, x3, x4, x5) = (0, 5, 0, 0, 12) x1, x3, x4 x5 = 12 > 0 

  • 15.
    See you nexttime 10