Monomials
Multiplying Monomials and Raising
       Monomials to Powers
Vocabulary
• Monomials - a number, a variable, or a product of a
  number and one or more variables
    • 4x, 20x2yw3, -3, a2b3, and 3yz are all monomials.
• Constant – a monomial that is a number without a
  variable.
• Base – In an expression of the form xn, the base is x.
• Exponent – In an expression of the form xn, the
  exponent is n.
Writing - Using Exponents
Rewrite the following expressions using exponents:


        x x x x y y
The variables, x and y, represent the bases. The
number of times each base is multiplied by itself will
be the value of the exponent.


                                               4 2
    x x x x y y                             x y
Writing Expressions without
           Exponents
Write out each expression without exponents (as
multiplication):

       3   2
    8a b       8 a a a b b
           4
     xy        xy xy xy xy
                       or

               x x x x y y y y
Product of Powers
   Simplify the following expression:        (5a2)(a5)

      There are two monomials. Underline
      them.
      What operation is between the two
      monomials?
                   Multiplication
                   !
Step 1: Write out the expressions in expanded form.
             2       5
        5a       a            5 a a a a a a a

Step 2: Rewrite using exponents.
                      2       5         7        7
                 5a       a       5 a       5a
Product of Powers Rule
For any number a, and all integers m and n,
              am • an = am+n.
                    9           4                13
             1) a a                          a
                    2               10                    12
             2) w w                               w
                            5                6
             3) r r                      r
                        5           3                 8
             4) k               k                k
                    2           2                2        2
             5) x           y                x y
Multiplying Monomials
If the monomials have coefficients, multiply
those, but still add the powers.
                9            4              13
        1) 4a           2a                8a
                    2                10        12
        2) 7w           10w                 70w
                             5               6
        3) 2r           3r                6r
                5            3               8
        4) 3k           7k                21k
                    2            2            2 2
        5) 12 x          2y                24x y
Multiplying Monomials
These monomials have a mixture of
different variables. Only add powers of like
variables.
            9 3         4             13 4
     1) 4a b          2a b8a b
            2 5      10 2        12 7
     2) 7w y 10 w y           70w y
            3      5        6 3
     3) 2rt     3r       6r t
            5     4         3   3 3          8   4   7
     4) 3k mn          7k m n        21k m n
                2 3         2        3 5
     5) 12 x y        2xy         24x y
Power of Powers
                 Simplify the following: ( x3 ) 4

         The monomial is the term inside the
                    parentheses.
Step 1: Write out the expression in expanded form.
              3 4     3    3    3    3
          x          x x x x
                     x x x x x x x x x x x x
Step 2: Simplify, writing as a power.
               3 4    12
           x         x
                                    Note: 3 x 4 = 12.
Power of Powers Rule
                                                       n
                                                   m        mn
For any number, a, and all integers m and n,   a           a .

                      9 10        90
               1) b           b
                      3 3         9
               2) c           c
                      12 2            24
               3) w               w
Monomials to Powers
If the monomial inside the parentheses has a
coefficient, raise the coefficient to the power, but
still multiply the variable powers.

                     9 3       27
             1) 2b          8b
                     3 3            9
             2) 5c          125c
                     12 2           24
             3) 7w           49w
Monomials to Powers
        (Power of a Product)
If the monomial inside the parentheses has more
than one variable, raise each variable to the outside
power using the power of a power rule.

                  (ab)m = am•bm

              3   2 4       4       3 4       4       2 4
          5w xy         5       w         x       y
                                    34        4       24
                        625 w             x       y
                                12 4      8
                        625w x y
Monomials to Powers
       (Power of a Product)
Simplify each expression:

                9 4 3         27 12
        1) 2b c             8b c
                5 3 3           15 9
        2) 5a c             125a c
                12 4    2             24 8 2
        3) 7w y z             49w y z

Multiplying Monomials

  • 1.
    Monomials Multiplying Monomials andRaising Monomials to Powers
  • 2.
    Vocabulary • Monomials -a number, a variable, or a product of a number and one or more variables • 4x, 20x2yw3, -3, a2b3, and 3yz are all monomials. • Constant – a monomial that is a number without a variable. • Base – In an expression of the form xn, the base is x. • Exponent – In an expression of the form xn, the exponent is n.
  • 3.
    Writing - UsingExponents Rewrite the following expressions using exponents: x x x x y y The variables, x and y, represent the bases. The number of times each base is multiplied by itself will be the value of the exponent. 4 2 x x x x y y x y
  • 4.
    Writing Expressions without Exponents Write out each expression without exponents (as multiplication): 3 2 8a b 8 a a a b b 4 xy xy xy xy xy or x x x x y y y y
  • 5.
    Product of Powers Simplify the following expression: (5a2)(a5) There are two monomials. Underline them. What operation is between the two monomials? Multiplication ! Step 1: Write out the expressions in expanded form. 2 5 5a a 5 a a a a a a a Step 2: Rewrite using exponents. 2 5 7 7 5a a 5 a 5a
  • 6.
    Product of PowersRule For any number a, and all integers m and n, am • an = am+n. 9 4 13 1) a a a 2 10 12 2) w w w 5 6 3) r r r 5 3 8 4) k k k 2 2 2 2 5) x y x y
  • 7.
    Multiplying Monomials If themonomials have coefficients, multiply those, but still add the powers. 9 4 13 1) 4a 2a 8a 2 10 12 2) 7w 10w 70w 5 6 3) 2r 3r 6r 5 3 8 4) 3k 7k 21k 2 2 2 2 5) 12 x 2y 24x y
  • 8.
    Multiplying Monomials These monomialshave a mixture of different variables. Only add powers of like variables. 9 3 4 13 4 1) 4a b 2a b8a b 2 5 10 2 12 7 2) 7w y 10 w y 70w y 3 5 6 3 3) 2rt 3r 6r t 5 4 3 3 3 8 4 7 4) 3k mn 7k m n 21k m n 2 3 2 3 5 5) 12 x y 2xy 24x y
  • 9.
    Power of Powers Simplify the following: ( x3 ) 4 The monomial is the term inside the parentheses. Step 1: Write out the expression in expanded form. 3 4 3 3 3 3 x x x x x x x x x x x x x x x x x Step 2: Simplify, writing as a power. 3 4 12 x x Note: 3 x 4 = 12.
  • 10.
    Power of PowersRule n m mn For any number, a, and all integers m and n, a a . 9 10 90 1) b b 3 3 9 2) c c 12 2 24 3) w w
  • 11.
    Monomials to Powers Ifthe monomial inside the parentheses has a coefficient, raise the coefficient to the power, but still multiply the variable powers. 9 3 27 1) 2b 8b 3 3 9 2) 5c 125c 12 2 24 3) 7w 49w
  • 12.
    Monomials to Powers (Power of a Product) If the monomial inside the parentheses has more than one variable, raise each variable to the outside power using the power of a power rule. (ab)m = am•bm 3 2 4 4 3 4 4 2 4 5w xy 5 w x y 34 4 24 625 w x y 12 4 8 625w x y
  • 13.
    Monomials to Powers (Power of a Product) Simplify each expression: 9 4 3 27 12 1) 2b c 8b c 5 3 3 15 9 2) 5a c 125a c 12 4 2 24 8 2 3) 7w y z 49w y z