SlideShare a Scribd company logo
1 of 53
ROLE OF MICROORGANISMS IN
THE ABATEMENT OF POLLUTANTS
by Azis Kemal Fauzie
Department of Studies in Environmental Science
University of Mysore
December 2016
OVERVIEW
• Biodegradable
Pollutants
• Hydrocarbons
• PAHs
• PCBs
• Pesticides
• Plastics
• Dyes
• Heavy Metals
• Radionuclides
• Bacterial Degradation
• Hydrocarbon-degrading bacteria
• PAH-degrading bacteria
• PCB-degrading bacteria
• Pesticide-degrading bacteria
• Plastic-degrading bacteria
• Dye-degrading bacteria
• Heavy Metal-degrading bacteria
• Radionuclide-degrading bacteria
OVERVIEW... cont’d
• Other Microbial
Degradation
• PGPR
• PGPB
• Microfungi
• yeasts
• filamentous fungi
• Mycorrhiza
• Algae
• Protozoa
• Genetically Engineered
Microorganisms (GEMS)
• Bioremediation &
Biodegradation
• In-situ & Ex-situ Bioremediation
• Role of Enzymes & Biosurfactants
• Aerobic & Anaerobic Degradation
• Pathways for Degradation of
Aliphatic & Aromatic Compounds,
PCBs
• Mechanisms in Plastic, Heavy
Metal & Radionuclide
Degradation
• Factors affecting microbial
degradation
BIODEGRADABLE POLLUTANTS
Hydrocarbons, Polycyclic Aromatic Hydrocarbons (PAHs)
Polychlorinated Biphenyls (PCBs), Pesticides, Plastics, Dyes
Heavy Metals, Radionuclides
HCs, PAHs Dyes, PCBs Pesticides Plastics, Metals
SATURATES:
(a) Aliphatic/Paraffins:
(b) Cyclic/Naphthenes:
(Mono-) AROMATICS: RESINS:
CH3
Methylcyclohexane
Cyclopentane Methylcyclopentane
Methylcyclohexane
ASPHALTENES:
Benzoate
Benzaldehyde
CH3
Polycyclic Aromatic Hydrocarbons (PAHs)
PAHs are the class of hydrocarbons containing two or more fused
benzene rings and/or pentacyclic molecules. PAHs originate from fossil
fuels and industrial processes during coke production. PAHs are toxic
(carcinogenic, mutagenic and teratogenic) to human and animals.
ORGANOCHLORINES:
ORGANOPHOSPHOROUS:
CARBAMATES:
PYRETHRINS/PYRETHROIDS:
Fate of Pesticide in the Environment
Polychlorinated Biphenyls (PCBs)
• PCBs are organic chemicals synthesized by catalytic chlorination of biphenyls.
• First manufactured in 1929 by Monsanto. Manufacture, use, importation and
distribution of PCBs was banned in Sweden (1970), Japan (1972) and US (1976).
• Trademark: Aroclor (US), Kaneclor (Japan), Fenclor (Italy), Pyralene (France),
Clophen (Germany).
• Applications:
 fluid in electrical (transformers, capacitors), heat transfer and hydraulic equipment
 plasticizers in paints, plastics and rubber products
 pigments, adhesives, pesticides, inks, dyes, waxes and carbonless copy paper
 lubricants for turbines and pumps
• Toxicity:
 Reproductive disabilities in animals and human
 Nervous system and liver damage
 Hepatitis, skin diseases and endocrine disrupters
 Carcinogenic and allow bioaccumulation
PLASTICS
Biodegradable:
• petroleum-based
• biomass-based
Non-biodegradable:
• petroleum-based
• biomass-based
Polycaprolactone (PCL)
Polybutylene succinate (PBS)
Polyethylene
succinate (PES)
Polylactic acid (PLA)
Polyhydroxy butyrate (PHB)
Starch
Polyethylene (PE)
Acetyl cellulose (AcC)
Polypropylene (PP)
Polyvinyl chloride (PVC) Polystyrene (PS)
Polyethylene terephtalate (PET)
Nylon 11
AZO:
XANTHENE:
TRIPHENYLMETHANE:
Brilliant Green Fast Green FCF
Methyl Orange
Congo Red
Allura
Red
Sunset
Yellow
FCF
Bismark Brown Y
Methyl
Violet
Oil Red O
Rhodamine 123
Eosin Y
Erythrosin
Rose Bengal
Crystal
Violet
OTHER CLASSES:
Phenazine, Cyanine
Phenanthridine
Acridine, Coumarin
Anthraquinone
Quinoline, Oxonol
Tetrazolium salt
Benzofuran, Indole
Benzodiazole, Styryl
Nitro, Nitroso, Indigo
Diphenylmethane
Heterocycle, etc.
PHENOTHIAZINE:
Methylene Blue
Methylene Violet
PHENOXAZINE:
Brilliant Cresyl Blue
Darrow Red
Giemsa Stain
Cresyl Violet Acetate
HEAVY METALS
RADIONUCLIDES
BACTERIAL DEGRADATION
for Hydrocarbons, PAHs, PCBs, Pesticides, Plastics, Dyes
Heavy Metals, and Radionuclides
CO2
H2O
Hydrocarbon-degrading Bacteria
Hydrocarbons Bacteria
Petroleum
hydrocarbons
Bacillus, Corynebacterium, Staphylococcus, Streptococcus, Shigella,
Alcaligenes, Klebsiella, Acinetobacter, Escherichia, Enterobacter, Vibrio,
Pseudomonas, Brevibacillus, Micrococcus, Nocardia, Achromobacter,
Arthrobacter, Flavobacterium, Oceanobacter kriegii
Crude oil P. aeruginosa, Bacillus subtilis, Acinetobacter lwoffi, Micrococcus roseus
Alkanes Pseudomonas, Bacillus, Micrococcus, Acinetobacter calcoaceticus, A.
venetianus, Nocardia erythroplis, Ochrobactrum, Alcaligenes sodorans,
Serratia marcescens, Arthrobacter, Rhodococcus, Marinobacter
hydrocarbanoclasticus, Alcanivorax borkumensis
Alkanes, alkenes,
cycloalkanes
Methylococcus, Methylosinus, Methylocystis, Methylomonas,
Methylocella, Methylobacter, Mycobacterium vaccae
Alkyl benzenes,
alkanes, fatty
acids, cycloalkanes
Arthrobacter, Burkholderia, Pseudomonas, Sphingomonas,
Rhodococcus, Mycobacterium, Acinetobacter, Caulobacter
Mono-aromatics Pseudomonas, Bacillus, B. stereothermophilus, Corynebacterium, Vibrio,
Brevibacillus, Achromobacter, Ochrobactrum, Thalassobacillus devorans
Benzoate Rhodopseudomonas palustris, Thauera aromatica, Azoarcus evansii
Ref: Joutey, 2013; Pandey, 2016; Kothari; Ghazali, 2014; Al-Wasify, 2014; Koch, 1993
PAH-degrading Bacteria
PAHs Bacteria References
PAHs Rhodococcus, Corynebacterium, Achromobacter,
Aeromonas, Alcaligenes odorans, Sphingomonas
paucimobilis, Bacillus, Pseudomonas, Nocardia,
Mycobacterium flavescens, Burkholderia cepacia,
Arthrobacter, Xanthomonas
Mrozik, 2003;
Kelley, 1990;
Bamforth &
Singleton, 2005
PAHs, naphthalene,
phenanthrene,
pyrene
Marinobacter vinifirmus, M.alkaliphilus, Stappia
aggregate, Pseudoalteromonas ganghwensis,
Thalassospira lucentensis, Kaistia adipata
Cui et al., 2008
Naphthalene Pseudomonas fluorescens, Rhodococcus Bamforth, 2005
Phenanthrene Marinobacter, Pseudoalteromonas, Cycloclasticus,
Marinomonas, Halomonas, Brevibacterium, Vibrio,
Pseudomonas migulae, Sphingomonas yanoikuyae
Melcher, 2002;
Samanta, 1999;
Haritash, 2009
Phenanthrene,
bromodeoxyuridine
Exiguobacterium, Shewanella, Methylomonas,
Pseudomonas, Bacteroides
Edlund, 2008
PAHs,
benzo[a]pyrene
Microbacterium, Porphyrobacter, Porticoccus
hydrocarbonoclasticus
Gutierrez, 2012;
Gauthier, 2003
Anthracene Sphingomonas, Nocardia, Beijerinckia, Paracoccus,
Rhodococcus
Teng, 2010
PCB-degrading Bacteria
PCBs Bacteria References
PCBs Pseudomonas, Burkholderia, Ralstonia, Alcaligenes,
Achromobacter, Sphingomonas, Comamonas,
Rhodococcus, Janibacter, Paenibacillus, Bacillus,
Microbacterium, Acinetobacter, Corynebacterium,
Arthrobacter, Moraxella, Variovorax, Chloroflexi
Seeger, Unterman,
Furukawa, Bedard,
Abramowicz, Petric,
Abraham
Aroclor 1242 Alcaligenes odorans, A. denitrificans, Janibacter,
Acinetobacter
Clark, Sierra,
Brunner
Aroclor 1260 Dehalococcoides, Thermotogales, Cytophagales Tracey, Watts
Kaneclor Rhodococcus sp., Acinetobacter sp. Seeger, Furukawa
Biphenyl,
Chlorobiphenyl
Pseudomonas pseudoalcaligenes, Micrococcus,
Achromobacter, Acinetobacter, Arthrobacter,
Nocardia, Alcaligenes, Burkholderia xenovorans,
Bacillus brevis, Ralstonia eutrophus
Furukawa, Ahmed,
Benvinakatti, Focht,
Mondello, Baxter,
Pettigrew, Springael
Dichlorobiphenyl Pseudomonas putida, Alcaligenes eutrophus McKay, Bedard
Trichlorobiphenyl Rhodococcus globerulus, Pseudomonas sp. Furukawa, Jurcova
Tetrachloro-
biphenyl
Comamonas testosteroni, Pseudomonas putida,
Corynebacterium, Alcaligenes eutrophus
Barriault, 1999;
Unterman, 1988
Pesticide-degrading Bacteria
Pesticides Bacteria
Glyphosate Pseudomonas, Alcaligenes, Bacillus megaterium, Rhizobium, Arthrobacter
atrocyaneus, Geobacillus caldoxylosilyticus, Agrobacterium, Flavobacterium
DDT Bacillus, Staphylococcus, Stenotrophomonas , P. fluorescens, P. aeruginosa
Endosulphan Mycobacterium, Arthrobacter
Parathion Pseudomonas sp, P. diminuta, P. stutzeri, Agrobacterium radiobacter,
Bacillus, Arthrobacter, Flavobacterium, Xanthomonas
Met. parathion Bacillus, Plesimonas, Pseudomonas sp, P. putida, Flavobacterium balustinum
Chlorpyrifos Providencia stuartii, Enterobacter, Micrococcus, Flavobacterium, P. diminuta
Coumaphos Nocardiodes simplex, Agrobacterium radiobacter, Pseudomonas monteilli,
P. diminuta, Nocardia, Flavobacterium
Monocrotophos Pseudomonas mendocina, P. aeruginosa, Bacillus megaterium, Arthrobacter
atrocyaneus, Clavibacter michiganens
Diazinon Flavobacterium, Arthrobacter, Pseudomonas
Fenitrothion Flavobacterium, Arthrobacter aurescenes, Burkholderia
Diuron, linuron Variovorax sp, Arthrobacter globiformis
Phosphotriester Pseudomonas diminuta, Agrobacterium radiobacter, Flavobacterium sp
Ref: Singh & Walker, 2006; Hernández et al., Joutey et al.
Plastic-degrading Bacteria
Plastics Bacteria
Polyethylene (PE) Brevibacillus borstelensis, Rhodococcus rubber, Sphingomonas,
Pseudomonas chlororaphis, P. fluorescens, Comamonas acidovorans
Polylactic Acid (PLA) Amycolatopsis, Saccharrotrix, Kibdelosporangium, Streptoalloteichus
Polycaprolactone Bacillus brevis, B. pumilus, Amycolatopsis, Clostridium, Paenibacillus
Polypropiolactone Bacillus, Acidovorax, Variovorax paradoxus, S. paucimobilis
Polyhydroxybutirate
(PHB)
Schlegelella thermodepolymerans, Pseudomonas, Ralstonia piketti,
Acidovorax faecalis, Alcaligens faecalis, Illyobacter delafieldi,
Comamonas, Bacillus, Streptomyces, Caenibacterium thermophilum
Polycarbonates
(PHC, PBC)
Amycolatopsis sp, Pseudomonas sp, Roseateles depolymerans,
Chromobacterium viscosus
Polyurethane (PU) Comamonas acidovorans
PHB, PES, PCL Actinomadura, Microbispora, Streptomyces, Thermoactinomyces,
Saccharomonospora
Polyvinyl Chloride Pseudomonas putida, P. fluorescens, Ochrobactrum
PBS M. rosea, Excellospora japonica, E. viridilutea
Nylon 4, 6, 12, 66 Pseudomonas sp, Flavobacterium sp., Geobacillus thermocatenulatus
Ref: Tokiwa, 2009; Garrison, 2016; Leja & Lewandowicz, 2009
Dye-degrading Bacteria
Bacteria Dyes
Aeromonas
hydrophila
Crystal violet, Basic fuchsine, Brilliant green, Great red, Malachite
green, Acid amaranth, Reactive red, Reactive brilliant blue
Citrobacter Crystal violet, Gentian violet, Methyl red, Congo red, Malachite green,
Brilliant green, Basic fuchsine
Enterobacter cloacae Reactive black, Reactive red, Acid yellow, Acid orange, Disperse yellow
Pseudomonas sp, P.
putida, P. aeruginosa,
P. fluorescence, P.
nitroreducens
Crystal violet, Reactive red, Reactive orange, Reactive blue, Direct red,
Direct orange, Acid yellow, Acid blue, Acid black, Acid orange, Blue RR,
Black B, Navy blue, Disperse yellow, Acid red, Malachite green, Fast
green, Orange II, Reactive black, Acid orange, Methyl red
Morganella Acid yellow, Acid orange, Reactive orange, Direct red, Acid blue
Shewanella Crystal violet, Reactive black, Direct red, Acid red, Disperse orange
Bacillus sp, B. subtilis Navy blue, Red RR, Yellow RR, Remazol black B, Acid red, Indigo blue
Clostridium Reactive red, Reactive black, Reactive yellow, Indigo blue
Actinomycetes Reactive yellow
Enterococcus Direct black
Nocardia corallina Crystal violet
Ref: Ali, 2010; Barragán et al., 2007; Shah, 2013, 2014; Bagewadi, 2011
Metal-degrading Bacteria
Heavy metals Bacteria References
As, Cd, Cu, Co, Zn Acidithiobacillus ferrooxidans White, 1998
Cu, Zn Bacillus spp, Pseudomonas aeruginosa Philip, Gunasekaran
Cd Alcaligenes, Psedomonas, Moraxella, Bacillus cereus Springael, Gazsó
Ag, Hg P. aeruginosa, Citrobacter freundii, C. youngae,
Serratia, Klebsiella pneumoniae, Enterobacter
agglomerans, Chryseobacterium
Lima e Silva, 2012
Ag P. stutzeri, Streptomyces noursei, Stenotrophomonas
maltophilia, Thiobacillus ferrooxidans, Acinetobacter
Lima e Silva, 2012;
Mattuschka, Gazsó
Hg(II) Alcaligenes faecalis, Bacillus pumilus, P. aeruginosa,
Brevibacterium iodinum, Deinococcus radiodurans
Jaysankar, 2008;
Brim, 2000
Fe, Cu, Mn, Ni Bacillus subtilis, Bacillus licheniformis Beveridge, Holan
Cr(VI), Cr(III) Enterococcus gallinarum, Achromobacter, B. subtilis,
P. aeruginosa, P. putida, P. fluorescens, Burkholderia,
Azotobacter, Alcaligenes, Stenotrophomonas
Sayel; Zhu; e Silva;
Fernandez, 2012;
Lalithakumari, 2016
Se(IV), Ag, Hg Enterobacter cloacae Yee, 2007; e Silva
Al, Cu, Fe Microbacterium liquefaciens Kanayama, 2005
Cd, U, Pb, Co, Ni Citrobacter spp. Jain, 2014; Sar 2001
Radionuclide-degrading Bacteria
Radionuclide Bacteria
Technetium,
99Tc(VII)
E. coli, Desulfovibrio desulfuricans, D. fructosovorans, D. vulgaris, Thiobacillus
ferroxidans, T. thiooxidans, Geobacter sulfurreducens, G. metallireducens
Neptunium,
237Np(V)
Shewanella putrefaciens, Citrobacter, Pseudomonas fluorescens, P. aeruginosa,
Micrococcus luteus, Streptomyces viridochromogenes
Plutonium,
239Pu, 240Pu,
Pu(V), Pu(VI)
Microbacterium flavescens, Bacillus sphaericus, B. subtilis, B. circulans, B.
polymyxa, E. coli, Shewanella oneidensis, S. alga, G. metallireducens,
Clostridium, Aeromonas hydrophila
Cesium, 137Cs Rhodococcus erythropolis, E. coli, P. fluorescens, P. aeruginosa, Deinococcus
radiodurans, Arthrobacter, Nocardia
Thorium, Th P. aeruginosa, Mycobacterium smegmatis
Uranium,
235U(VI)
Arthrobacter, Acinetobacter, Anaeromyxobacter, Bacillus, Citrobacter, Geothrix,
Cellulomonas, Clostridium, Deinococcus, Desulfovibrio, Desulfosporosinus,
Desulfitobacterium, E. coli, Geobacter, Pseudomonas, Paenibacillus, Ralstonia,
Rahnella, Salmonella, Shewanella, Thiobacillus, Thermus, Thermoanaerobacter
Radium, Ra Desulfovibrio vulgaris, Pseudomonas aeruginosa
241Americum Serratia sp.
Iodine, 129I Desulfovibrio desulfuricans, Shewanella putrefaciens
Ref: Lloyd, 2005; Newsome, 2014; Williams, 2013; www.biorad.igib.res.in
Corynebacterium Staphylococcus
Pseudomonas aeruginosa Escherichia coli
Enterobacter cloacae Serratia marcescens Mycobacterium
Streptococcus
Shigella
Klebsiella pneumoniae
Bacillus
Alcaligenes faecalis
Acinetobacter
Actinomycetes
Enterococcus Aeromonas hydrophila
Providencia Variovorax paradoxus
Rhodococcus Clostridia Deinococcus radiodurans Proteus
Ralstonia Achromobacter
Shewanella
Streptomyces
Burkholderia
OTHER MICROBIAL DEGRADATION
PGPR & PGPB, Microfungi & Mycorrhiza, Algae & Protozoa,
Genetically Engineered Microorganisms (GEMS)
Bacteria Fungi Algae Protozoa
Degradation by PGPR & PGPB
• Plant Growth Promoting Rhizobacteria (PGPR), or rhizospheric bacteria,
are naturally occurring soil bacteria that aggressively colonize plant
roots and benefit plants by providing growth promotion. The technique
to apply this in soil biodegradation is called rhizoremediation.
• Plant Growth Promoting Bacteria (PGPB), or endophytic bacteria, are
non-pathogenic bacteria that occur naturally in plants as adjuncts in
phytoremediation. They can significantly facilitate the growth of plants
in the presence of high levels of pollutants, including metals.
Pollutants Microorganisms References
Hydrocarbons Pseudomonas putida Hontzeas et al., 2004
PAHs Lysini bacillus Ma et al., 2010
PCBs Rhodococcus, Luteibacter, Williamsia Leigh et al., 2006
Malathion Azospirillum lipoferum Kanade et al., 2012
Degradation by Microfungi & Mycorrhiza
• Microfungi are described as a group of eukaryotic organisms that are
important part of degrading microbiota. Like prokaryotic bacteria,
they metabolize organic matter and responsible for the
decomposition of carbon in the biosphere. But fungi, unlike
bacteria, can grow in low moisture areas and in low pH solutions.
• Fungi species are ranging from unicellular yeasts to extensively
filamentous fungi or mycelial molds. Fungal metabolism can be non-
ligninolytic or ligninolytic (also known as white-rot fungi).
• Mycorrhiza is a symbiotic association between fungus and the roots
of vascular plant. It is important for mycorrhizoremediation.
• In a mycorrhizal association, the fungi colonizes the host plant's
roots, either intracellularly as in arbuscular mycorrhizal fungi (AMF),
or extracellularly as in ectomycorrhizal fungi.
Degradation by Yeasts
Pollutants Yeasts References
Aliphatic/petroleum
hydrocarbons
Candida lipolytica, C. tropicalis, C. apicola,
Rhodoturula rubra, R. mucilaginosa, Geotrichum,
Aureobasidium pullulans, Trichosporon mucoides
Bartha, 1986;
Scheuer, 1998;
Was, 2001
Diesel oil Rhodotorula aurantiaca, Candida ernobii de Cássia, 2007
Alkane, fatty acids Candida maltose, C. tropicalis, Yarrowia lipolytica Iida, 2000
Phenol Trichosporon cutaneum Mörtberg, 1985
PCBs T. mucoides, Candida boidinii, C. lipolytica Sasek, Sietman
Linuron, metroburon Botrytis cinerea Bordjiba, 2001
Aniline Candida methanosorbosa Mucha, 2010
Reactive black Candida krusei, Pseudozyma rugulosa Yu & Wen, 2005
PEA, PC, PLA Candida cylindracea, Tritirachium album Tokiwa, 2009
PCB, U, Th, Co, Cr Saccharomyces cerevisiae Cabras; Brady
Chromium (VI) Pichia anomala, Cyberlindnera fabianii,
Wickerhamomyces anomalus, C. tropicalis
Bahafid, 2011,
2012
S. cerevisiae, Pichia guilliermondii, Yarrowia
lipolytica, R. pilimanae, Hansenula polymorpha
Ksheminska, 2006,
2008
Copper Schizosaccharomyces pombe Saisubhashini, ‘11
Aureobasidium pullulans Saccharomyces cerevisiae Geotrichum Schizosaccharomyces pombe
Rhodoturula Candida tropicalis Botrytis cinerea Hansenula polymorpha
YEASTS
Pollutants Fungi References
Aliphatic &
aromatic HCs
Amorphoteca, Neosartorya, Talaromyces, Aspergillus,
Cunninghamella, Penicillium, Fusarium, Cephalosporium
Chaillan,
Singh, Steliga
Toluene Cladophialophora, Exophiala, Leptodontium,
Pseudeurotium zonatum
Francesc,
2001
PAHs Pleurotus ostreatus, Cunninghamella elegans,
Chrysosporium pannorum, Aspergillus niger,
Phanerochaete chrysosporium, Antrodia vaillantii
Okparanma,
2011;
Maigari, 2015
Hydrocarbons,
pesticide, gelatin
Cladosporium cladosporioides Steliga, Chen,
Abruscia
Chlorpyrifos P. chrysosporium, Hypholama, Coriolus, Trichoderma Singh &
Walker, 2006
Glyphosate Penicillium, Trichoderma, A. niger, Alternaria alternata
Malachite green Acremonium kiliense, Aspergillus flavus, A. solani Youssef, Ali
PEA, CPAE, PBC Penicillium, Rhizopus delemar, R. arrhizus Tokiwa, 2009
Polycaprolactone Penicillium funiculosum, A. flavus, R. arrhizus, R. delemar
Polyurethane Rhizopus delemar, Curvularia senegalensis
Uranium, Thorium Rhiloprzs juvanicus Sears
PCBs, Cd, Pb Aspergillus niger, Rhizopus arrhizus Pal, 2010
Degradation by Filamentous Fungi
Aspergillus niger Aspergillus ustus Aspergillus nidulans Aspergillus versicolor
Rhizopus
Pleurotus ostreatus Exophiala Cladosporium cladosporioides
Alternaria alternata Fusarium
Penicillium chrysogenum
Trichoderma
Degradation by Algae & Protozoa
• Reports of algae and protozoa in biodegradation are scanty.
• However, a number of cyanobacteria, green algae, brown algae,
red algae, and diatoms could oxidize naphthalene. Some studies
also reported degradation of dyes, pesticides and heavy metals.
• Protozoa are main grazer on the degrading bacteria. Protozoa help
on regulating growth of bacteria and algae populations, reducing
competition, improving turnover of nutrients, increasing space
and oxygen content, releasing excess nitrogen and special enzyme
required for biodegradation, and stimulating decomposition rates.
• For example, protozoa infusorians can accelerate biodegradation
of PAH. The degrading rate of bacteria has improved 8.5 times on
benzene and methylbenzene, and 4 times on naphthalene by the
influence of grazing bacteria of protozoa flagellate.
Degradation by Algae & Protozoa
Pollutants Microorganisms References
Hydrocarbons Prototheca zopfii Walker, 1975
PAHs, pyrene,
fluoranthene
Chlorella vulgaris, Scenedesmus platydiscus, S.
quadricauda, Selenastrum capricornutum
Wang, 2007;
Ueno, 2008
Monocrotophos Aulosira fertilissima, Nostoc muscorum Megharaj, 1987
Azo dyes C. vulgaris, C. pyrenoidosa Jinqi, 1992
Methyl red, orange
II, G-Red, basic
cationic, b. fuchsin
C. vulgaris, Lyngbyala gerlerimi, Nostoc lincki,
Oscillatoria rubescens, Elkatothrix viridis, Volvox
aureus
El-Sheekh,
2009
Amido Black Chroococcus minutus Parikh, 2005
Sky Blue, Acid Red Gloeocapsa pleurocapsoides, Phormidium ceylanicum
Heavy metals Chlorella, Anabaena inacqualis, Westiellopsis
prolifica, Stigeoclonium lenue, Synechococcus sp.
Dwivedi, 2012
Cr(VI), Cd(II), Cu(II) Scenedesmus incrassatulus Castro, 2004
Cr(III) Chlorella sorokiniana Akhtar, 2008
241 Am, 237Pu(III-VI) Thalassiosira pseudonana Fisher,1983
Benzene,
methylbenzene
Heteromita globosa (protozoa/grazing bacteria) Mattison, 2005
Scenedesmus quadricauda Stigeoclonium Oscillatoria
Chlorella Nostoc Synechococcus
ALGAE
Volvox aureus Prototheca Anabaena
PROTOZOA
Ciliate protozoa
surrounding bacteria
Genetically Engineered Microorganisms
(GEMs)
• Genetically Engineered Microorganisms (GEMs) or
Genetically Modified Organisms (GMOs) are microorganisms
whose genetic material have been altered using genetic
engineering techniques (known as recombinant DNA
technology) inspired by natural genetic exchange between
microorganisms and have potential capabilities of degrading
chemical contaminants useful for bioremediation.
• In 1979, Dr. Anand Mohan Chakrabarty has engineered strain
of Pseudomonas putida (called as superbug or oil eating bug)
that contains hybrid plasmids capable of degrading different
compounds i.e. CAM (camphor), OCT (octane), XYL (xylene),
and NAH (naphthalene). This superbug was used by the US
Govt. in 1990 for cleaning up oil spill in Texas.
Degradation by GEMs
Pollutants GEMs References
Aliphatic, aromatic,
terpenic, PAHs, PCBs
Pseudomonas Markandey, 2004;
Erickson, 1993
TCE, BTEX, salicylate,
naphthalene, benzoate
Pseudomonas putida TOL, RA500, pAC25,
pKF439, KT2442, TVA8
Sayler, ‘00; Panke,
‘98; Applegate, ‘98
BTEX, naphthalene,
anthracene
Pseudomonas fluorescens HK44,
10586s/pUCD607
Sayler, 2000;
Sousa, 1997
TCE, toluene, benzene P. pseudoalcaligenes KF707-D2 Suyama, 1996
Chlorobiphenyls Comamonas testosteroni VP44 Hrywna, 1999
Chromium, PCBs,
narcotics
Alcaligenes eutrophus AE104/pEBZ141,
H850Lr, 2050
Srivastava, Dyke,
Layton,
2,4-D Bacillus cepacia BRI6001L, A. paradoxus Masson, 2002
Toluene, mercury Deinococcus radiodurans Brim, 2000
Hg2+ Rhodopseudomonas palustris Xu & Pei, 2011
PCBs, heavy metal R. eutropha A5, Achromobacter sp. LBS1C1,
A. denitrificans JB1, R. eutropha CH34
Menn, 2008
Cd2+ Mesorhizobium huakuii subsp. rengei strain
B3, Astragalus sinicus, Arabidopsis thaliana
Sussman, 1988
BIOREMEDIATION & BIODEGRADATION
The principles, methods, strategies, mechanisms,
and limiting factors
Bioremediation & Biodegradation
• Biodegradation is the process by which organic substances are broken
down into smaller compounds by living organisms.
• Bioremediation is the process of utilizing microorganisms to degrade
environmental pollutants by transforming them into less toxic form.
• Methods of bioremediation strategies could be:
 in-situ (at the site) or ex-situ (away from the site)
 aerobic (in presence of oxygen) or anaerobic (in absence of oxygen)
 enhanced by enzymes or biosurfactants
• Biodegradation can be mediated by:
 Bacteria (bioremediation)
 Fungi (mycoremediation)
 Algae
 Protozoa
 Plants (phytoremediation)
• Natural attenuation or bioattenuation is the reduction of
contaminant concentrations in the environment through
biological processes (microbial biodegradation, plant and animal
uptake), physical phenomena (advection, dispersion, dilution,
diffusion, volatilization, sorption/desorption), and chemical
reactions (ion exchange, complexation, abiotic transformation).
• Biostimulation is the addition of soil nutrients, trace minerals,
electron acceptors, or electron donors to enhance the
biotransformation of soil contaminants by indigenous
microorganisms. It includes also bioventing and biosparging.
• Bioaugmentation is the technique for improving the capacity of a
contaminated biotope to remove pollution by the introduction of
specific competent strains of exogenous microorganisms or
genetically engineered microorganisms (GEMs).
Indigenous & exogenous
microorganisms
In-situ Bioremediation
Natural Attenuation, Biostimulation, Bioaugmentation
Ex-situ Bioremediation
Composting, Land farming, Biopile, Bioreactor
• Composting is a technique that involves combining contaminated
soil with non-hazardous organic amendants such as manure or
agricultural wastes.
• Land farming is a simple technique in which contaminated soil is
excavated and spread over a prepared bed and periodically tilled
until pollutants are degraded.
• Biopile is a hybrid of land farming and composting constructed as
aerated composted piles to control physical losses of the
contaminants by leaching and volatilization.
• Bioreactor or slurry reactor is a containment vessel used to
create a three-phase (solid, liquid, gas) mixing condition to
increase the bioremediation rate of soil-bound and water-soluble
pollutants as a water slurry of the contaminated soil and biomass
(microorganisms) capable of degrading target contaminants.
Role of Enzymes in Biodegradation
The degradation of pollutants can be mediated or catalyzed by specific
enzymes secreted by the microorganisms like (mono- or di-) oxygenases,
peroxidases, oxidoreductases, hydrolases, hydroxylases, dehalogenase,
dehydrogenases, esterases, phosphotriesterases, etc.
Role of Biosurfactants in Biodegradation
Biosurfactants or bioemulsifiers are biological surface-active agents
that have both hydrophilic and hydrophobic moieties.
Biosurfactants are produced by either degrading or non-degrading
microorganisms to help on metabolizing carbon and energy source.
Biosurfactants can act by:
- forming micelles or microdroplets of pollutants
- reducing surface tension in chemical compounds
- increasing surface area of hydrophobic substrates
- increasing mixing of aqueous and non-aqueous fluid phases
- increasing rate of transfer into or through aqueous media
- increasing bioavailability of the compounds.
Low molecular weight biosurfactants include:
glycolipids (rhamnolipid, trehalose lipids, and sophorolipids)
or lipopeptides (surfactin, gramicidin S, and polymyxin).
High molecular weight biosurfactants include:
polysaccharides, proteins, lipopolysaccharides, lipoproteins
or complex mixtures of these biopolymers.
R
C
H
C
H
R
OH
OH
R
OH
OH
R
OH
COOH
O
O
COOH
RCOOH
NAD+ NADH
NADH NAD+
O2 O2
+
Alkylbenzene Dihydrodiol Ring fission
product 2-Oxopenta-
4-enoate
2,3-Dihydroxy-
alkylbenzene
Smith & Ratledge 1989
E2 E3 E4
E1
E1 = Alkylbenzene dioxygenase
E2 = cis-alkylbenzene glycol dehydrogenase
E3 = 2,3-dihydroxyalkylbenzene 1,2-dioxygenase
E4 = ring fission product-hydrolysing enzyme
Aerobic Degradation:
C
H2
CH3
Ethylbenzene
C
H
CH3
O
H
1-Phenylethanol
CH3
O
Acetophenone
O O
CH2
O
Benzoylacetate
O O
CH2
O
S
CoA
Benzoylacetate-CoA
O S
CoA
Benzoyl-CoA
O
H2 CO2 CoASH CoASH Acetyl-CoA
Ethylbenzene
Dehydrogenase
1-Phenylethanol
Dehydrogenase
Acetophenone
Carboxylase
Benzoylacetyl-CoA
forming enzyme
Benzoylacetyl-CoA
CoA thiolase
2[H]
2[H]
Anaerobic Degradation:
Heider et al. 1999
The degradation of a straight chain hydrocarbon:
Pathway for Degradation of Aliphatic Compounds
Bacteria involved:
Pseudomonas putida
Fungi (yeast) involved:
Candida maltosa, Candida tropicalis, Candida apicola
The degradation of a cyclic hydrocarbon:
Enzymes involved:
E1 = alkane monooxygenase
E2 = fatty alcohol dehydrogenase
E3 = fatty aldehyde dehydrogenase,
(Harayama et al. 1999)
E1 E2
E3
Pathway for Degradation of Aromatic Compounds
The microbial degradation of catechol
Benzene Arene oxide
cis/trans-dihydrodiol Cathecol
Naphthalene cis-1,2-naphthalene 1,2-dihydroxynaphthalene Salicylic acid
dihydrodiol
Bacteria involved:
Pseudomonas, Rhodococcus, Mycobacterium
Fungi (yeast) involved:
Pleurotus ostreatus
Pathway for Degradation of PCBs
Organisms involved:
Achromobacter,
Beijerinckia,
Pseudomonas
putida
Pathway for anaerobic dechlorination of a highly chlorinated congener (Fish & Principe, 1994).
Pathway for aerobic degradation of PCBs into chlorobenzoates (Sylvestre & Sandossi, 1994).
Organisms involved:
Dehalococcoides,
Thermotogales,
Chloroflexi
Mechanism in Plastic Degradation
Mechanism in Heavy Metal Degradation
Mechanisms of heavy metal bioremediation by
microorganisms include bioleaching, biomineralization,
biosorption, bioaccumulation, and biotransformation.
- Bioleaching: heavy metal mobilization through methylation reactions or
excretion of organic acids.
e.g. Acidithiobacillus ferrooxidans, Leptospirillum ferriphilum
- Biomineralization: heavy metal immobilization through formation of
insoluble sulfides, phosphates, carbonates, hydroxides or polymeric
complexes in response to localised alkaline conditions at cell surface.
e.g. Serratia, Citrobacter
- Biosorption: passive uptake of metals to the surface of living or dead
microbial cells by physico-chemical mechanisms including absorption,
adsorption, ion exchange, surface complexation and precipitation.
e.g. Bacillus subtilis, Rhizopus arrhizus
- Bioaccumulation: active uptake of essential elements (particularly heavy
metals) within the cell of microorganisms.
e.g. Pseudomonas, Arthrobacter
- Biotransformation: metabolic activity of microorganisms on metal ions
through enzyme-catalyzed redox reactions.
e.g. Geobacter, Thermoterrabacterium ferrireducens
Mechanism in Radionuclide Degradation
Mechanisms of radionuclide bioremediation by micro-
organisms include bioreduction, biomineralisation,
bioaccumulation, and biosorption.
Factors affecting microbial degradation
• Biological factors
— competition between organisms for limited carbon sources
— antagonistic interactions between microorganisms
— predation of microbes by protozoa and bacteriophage
• Physical factors
— temperature
— pH
— moisture
• Environmental factors
— soil type and porosity
— soil organic matter
— soil oxidation-reduction potential
Temp.
pH
(Bodishbaugh, 2006)
References
• Joutey et al., Biodegradation: Involved Microorganisms & GEMs, 2013.
• Das & Chandran, Microbial Degradation of Petroleum Hydrocarbon Contaminants: An
Overview, 2011.
• Maigari & Maigari, Microbial Metabolism of PAHs: A Review, 2015.
• Hernández et al., Pesticide Biodegradation: Mechanisms, Genetics & Strategies to
Enhance the Process, 2013.
• Borja et al., Polychlorinated Biphenyls & Their Biodegradation, 2005.
• Furukawa & Fujihara, Microbial Degradation of PCBs: Biochemical & Molecular Features,
2008.
• Tokiwa et al., Biodegradability of Plastics, 2009.
• Leja & Lewandowicz, Polymer Biodegradation & Biodegradable Polymers – A Review, 2010.
• Ali, Biodegradation of Synthetic Dyes - A Review, 2010.
• Meenambigai et al., Biodegradation of Heavy Metals – A Review, 2016.
• Girma, Microbial Bioremediation of Some Heavy Metals in Soils: An Updated Review, 2015.
• Newsome et al., The Biogeochemistry & Bioremediation of Uranium & Other Priority
Radionuclides, 2014.
References
• Vidali, Bioremediation: An Overview, 2001.
• Kothari et al., Microbial Degradation of Hydrocarbons.
• Pandey et al., Microbial Ecology of Hydrocarbon Degradation in the Soil: A Review, 2016.
• Harayama et al., Petroleum Biodegradation in Marine Environments, 1999.
• Zacharia & Tano, Identity, Physical & Chemical Properties of Pesticides.
• Singh & Walker, Microbial Degradation of Organophosphorus Compounds, 2006.
• Abraham et al., PCB-degrading Microbial Communities in Soils & Sediments, 2002.
• Garrison et al., Bio-Based Polymers with Potential for Biodegradability, 2016.
• Dussud & Ghiglione, Bacterial Degradation of Synthetic Plastics, 2014.
• Barrágan, Biodegradation of Azo Dyes by Bacteria Inoculated on Solid Media, 2007.
• Jain et al., Review on Bioremediation of Heavy Metals with Microbial Isolates &
Amendments on Soil Residue, 2014.
• Gazsó, The Key Microbial Processes in the Removal of Toxic Metals & Radionuclides from
the Environment, 2001.
• Lloyd & Renshaw, Bioremediation of Radioactive Waste: Radionuclide–Microbe Interactions
in Laboratory & Field-Scale Studies, 2005.
Microorganisms in Abatement of Pollutants

More Related Content

Similar to Microorganisms in Abatement of Pollutants

Anaerobic bacteria12
Anaerobic bacteria12Anaerobic bacteria12
Anaerobic bacteria12
Malik Luqman
 
farman Ali Khan paper
farman Ali Khan paperfarman Ali Khan paper
farman Ali Khan paper
Farman Khan
 
Economically important higher fungi
Economically important higher fungiEconomically important higher fungi
Economically important higher fungi
Jannat Iftikhar
 
Enviromental, industrial micro
Enviromental, industrial microEnviromental, industrial micro
Enviromental, industrial micro
Lani Manahan
 

Similar to Microorganisms in Abatement of Pollutants (20)

Production of microbial colors or pigments
Production of microbial colors or pigmentsProduction of microbial colors or pigments
Production of microbial colors or pigments
 
Bio degradation of pesticides and herbicides
Bio degradation of pesticides and herbicides Bio degradation of pesticides and herbicides
Bio degradation of pesticides and herbicides
 
Mycoremidiation
MycoremidiationMycoremidiation
Mycoremidiation
 
Plant tissue culture
Plant tissue culturePlant tissue culture
Plant tissue culture
 
Biodegradation of Polystyrene foam by the Microorganism from Landfill
Biodegradation of Polystyrene foam by the Microorganism from LandfillBiodegradation of Polystyrene foam by the Microorganism from Landfill
Biodegradation of Polystyrene foam by the Microorganism from Landfill
 
family :Pseudomonadaceae & Legionellaceae
family :Pseudomonadaceae  & Legionellaceaefamily :Pseudomonadaceae  & Legionellaceae
family :Pseudomonadaceae & Legionellaceae
 
Anaerobic bacteria12
Anaerobic bacteria12Anaerobic bacteria12
Anaerobic bacteria12
 
Function of medium
Function of medium Function of medium
Function of medium
 
Biodegradation of xenobiotics
Biodegradation of xenobioticsBiodegradation of xenobiotics
Biodegradation of xenobiotics
 
farman Ali Khan paper
farman Ali Khan paperfarman Ali Khan paper
farman Ali Khan paper
 
Bacteria
BacteriaBacteria
Bacteria
 
Economically important higher fungi
Economically important higher fungiEconomically important higher fungi
Economically important higher fungi
 
BIODEGRADATION OF ORGANIC POLLUTANTS
BIODEGRADATION OF ORGANIC POLLUTANTSBIODEGRADATION OF ORGANIC POLLUTANTS
BIODEGRADATION OF ORGANIC POLLUTANTS
 
ROLE OF MICROBES IN DEGRADATION XENOBIOTICS
ROLE OF MICROBES IN DEGRADATION XENOBIOTICSROLE OF MICROBES IN DEGRADATION XENOBIOTICS
ROLE OF MICROBES IN DEGRADATION XENOBIOTICS
 
Metabolism of Xeno biotics
Metabolism of  Xeno bioticsMetabolism of  Xeno biotics
Metabolism of Xeno biotics
 
Enviromental, industrial micro
Enviromental, industrial microEnviromental, industrial micro
Enviromental, industrial micro
 
Comparative study on screening methods of polyhydroxybutyrate (PHB) producing...
Comparative study on screening methods of polyhydroxybutyrate (PHB) producing...Comparative study on screening methods of polyhydroxybutyrate (PHB) producing...
Comparative study on screening methods of polyhydroxybutyrate (PHB) producing...
 
Cancer treatment
Cancer treatmentCancer treatment
Cancer treatment
 
Bioremediation of pesticides
Bioremediation of pesticidesBioremediation of pesticides
Bioremediation of pesticides
 
Media formulation
Media formulationMedia formulation
Media formulation
 

More from AzisKemalFauzie (7)

Haematoxylin and Eosin Staining in Ecotoxicology
Haematoxylin and Eosin Staining in EcotoxicologyHaematoxylin and Eosin Staining in Ecotoxicology
Haematoxylin and Eosin Staining in Ecotoxicology
 
Role of Chemical Engineers in Saving the Environment
Role of Chemical Engineers in Saving the EnvironmentRole of Chemical Engineers in Saving the Environment
Role of Chemical Engineers in Saving the Environment
 
Pemantauan & Pengendalian Pencemaran Udara
Pemantauan & Pengendalian Pencemaran UdaraPemantauan & Pengendalian Pencemaran Udara
Pemantauan & Pengendalian Pencemaran Udara
 
Pengelolaan Kualitas Udara - Lokakarya Unsika
Pengelolaan Kualitas Udara - Lokakarya UnsikaPengelolaan Kualitas Udara - Lokakarya Unsika
Pengelolaan Kualitas Udara - Lokakarya Unsika
 
Pemantauan udara ambien.pdf
Pemantauan udara ambien.pdfPemantauan udara ambien.pdf
Pemantauan udara ambien.pdf
 
Sosialisasi PPPU.pptx
Sosialisasi PPPU.pptxSosialisasi PPPU.pptx
Sosialisasi PPPU.pptx
 
Microorganisms.pptx
Microorganisms.pptxMicroorganisms.pptx
Microorganisms.pptx
 

Recently uploaded

In vitro evaluation of antibacterial activity of chloroform extract Andrograp...
In vitro evaluation of antibacterial activity of chloroform extract Andrograp...In vitro evaluation of antibacterial activity of chloroform extract Andrograp...
In vitro evaluation of antibacterial activity of chloroform extract Andrograp...
Open Access Research Paper
 
LaPlace Transforms 2 with use of Matlab.pptx
LaPlace Transforms 2 with use of Matlab.pptxLaPlace Transforms 2 with use of Matlab.pptx
LaPlace Transforms 2 with use of Matlab.pptx
joshuaclack73
 
Determination of Total Iodine using ICP-MS in Israeli Bottled and Tap Water: ...
Determination of Total Iodine using ICP-MS in Israeli Bottled and Tap Water: ...Determination of Total Iodine using ICP-MS in Israeli Bottled and Tap Water: ...
Determination of Total Iodine using ICP-MS in Israeli Bottled and Tap Water: ...
The Hebrew University of Jerusalem
 

Recently uploaded (20)

Peat land Restoration Project in HLG Londerang
Peat land Restoration Project in HLG LonderangPeat land Restoration Project in HLG Londerang
Peat land Restoration Project in HLG Londerang
 
Introducing Blue Carbon Deck seeking for actionable partnerships
Introducing Blue Carbon Deck seeking for actionable partnershipsIntroducing Blue Carbon Deck seeking for actionable partnerships
Introducing Blue Carbon Deck seeking for actionable partnerships
 
Laplace Transforms.pptxhhhhhhhhhhhhhhhhh
Laplace Transforms.pptxhhhhhhhhhhhhhhhhhLaplace Transforms.pptxhhhhhhhhhhhhhhhhh
Laplace Transforms.pptxhhhhhhhhhhhhhhhhh
 
NO1 Pakistan Black magic/kala jadu,manpasand shadi in lahore,karachi rawalpin...
NO1 Pakistan Black magic/kala jadu,manpasand shadi in lahore,karachi rawalpin...NO1 Pakistan Black magic/kala jadu,manpasand shadi in lahore,karachi rawalpin...
NO1 Pakistan Black magic/kala jadu,manpasand shadi in lahore,karachi rawalpin...
 
Carbon Stock Assessment in Banten Province and Demak, Central Java, Indonesia
Carbon Stock Assessment in Banten Province and Demak, Central Java, IndonesiaCarbon Stock Assessment in Banten Province and Demak, Central Java, Indonesia
Carbon Stock Assessment in Banten Province and Demak, Central Java, Indonesia
 
Production, dispersal, sedimentation and taphonomy of spores/pollen
Production, dispersal, sedimentation and taphonomy of spores/pollenProduction, dispersal, sedimentation and taphonomy of spores/pollen
Production, dispersal, sedimentation and taphonomy of spores/pollen
 
In vitro evaluation of antibacterial activity of chloroform extract Andrograp...
In vitro evaluation of antibacterial activity of chloroform extract Andrograp...In vitro evaluation of antibacterial activity of chloroform extract Andrograp...
In vitro evaluation of antibacterial activity of chloroform extract Andrograp...
 
VIP ℂall Girls Chennai 8250077686 WhatsApp: Me All Time Serviℂe Available Day...
VIP ℂall Girls Chennai 8250077686 WhatsApp: Me All Time Serviℂe Available Day...VIP ℂall Girls Chennai 8250077686 WhatsApp: Me All Time Serviℂe Available Day...
VIP ℂall Girls Chennai 8250077686 WhatsApp: Me All Time Serviℂe Available Day...
 
BIG DEVELOPMENT SHAPING' LESOTHO FUTURE.
BIG DEVELOPMENT SHAPING' LESOTHO FUTURE.BIG DEVELOPMENT SHAPING' LESOTHO FUTURE.
BIG DEVELOPMENT SHAPING' LESOTHO FUTURE.
 
The Key to Sustainable Energy Optimization: A Data-Driven Approach for Manufa...
The Key to Sustainable Energy Optimization: A Data-Driven Approach for Manufa...The Key to Sustainable Energy Optimization: A Data-Driven Approach for Manufa...
The Key to Sustainable Energy Optimization: A Data-Driven Approach for Manufa...
 
NO1 Best Amil Baba In Pakistan Authentic Amil In pakistan Best Amil In Pakist...
NO1 Best Amil Baba In Pakistan Authentic Amil In pakistan Best Amil In Pakist...NO1 Best Amil Baba In Pakistan Authentic Amil In pakistan Best Amil In Pakist...
NO1 Best Amil Baba In Pakistan Authentic Amil In pakistan Best Amil In Pakist...
 
Coastal and mangrove vulnerability assessment In the Northern Coast of Java, ...
Coastal and mangrove vulnerability assessment In the Northern Coast of Java, ...Coastal and mangrove vulnerability assessment In the Northern Coast of Java, ...
Coastal and mangrove vulnerability assessment In the Northern Coast of Java, ...
 
slidesgo-maximizing-sustainability-the-case-for-plastic-reuse
slidesgo-maximizing-sustainability-the-case-for-plastic-reuseslidesgo-maximizing-sustainability-the-case-for-plastic-reuse
slidesgo-maximizing-sustainability-the-case-for-plastic-reuse
 
LaPlace Transforms 2 with use of Matlab.pptx
LaPlace Transforms 2 with use of Matlab.pptxLaPlace Transforms 2 with use of Matlab.pptx
LaPlace Transforms 2 with use of Matlab.pptx
 
2024-05-16 Composting at Home 101 without link to voucher
2024-05-16 Composting at Home 101 without link to voucher2024-05-16 Composting at Home 101 without link to voucher
2024-05-16 Composting at Home 101 without link to voucher
 
Elemental Analysis of Plants using ICP-OES(2023)
Elemental Analysis of Plants using ICP-OES(2023)Elemental Analysis of Plants using ICP-OES(2023)
Elemental Analysis of Plants using ICP-OES(2023)
 
Rising temperatures also mean that more plant pests are appearing earlier and...
Rising temperatures also mean that more plant pests are appearing earlier and...Rising temperatures also mean that more plant pests are appearing earlier and...
Rising temperatures also mean that more plant pests are appearing earlier and...
 
Young & Hot ℂall Girls Hyderabad 8250077686 WhatsApp Number Best Rates of Hyd...
Young & Hot ℂall Girls Hyderabad 8250077686 WhatsApp Number Best Rates of Hyd...Young & Hot ℂall Girls Hyderabad 8250077686 WhatsApp Number Best Rates of Hyd...
Young & Hot ℂall Girls Hyderabad 8250077686 WhatsApp Number Best Rates of Hyd...
 
Determination of Total Iodine using ICP-MS in Israeli Bottled and Tap Water: ...
Determination of Total Iodine using ICP-MS in Israeli Bottled and Tap Water: ...Determination of Total Iodine using ICP-MS in Israeli Bottled and Tap Water: ...
Determination of Total Iodine using ICP-MS in Israeli Bottled and Tap Water: ...
 
Lab Investigation.pptxjjjjjjjjjjjjjjjjjj
Lab Investigation.pptxjjjjjjjjjjjjjjjjjjLab Investigation.pptxjjjjjjjjjjjjjjjjjj
Lab Investigation.pptxjjjjjjjjjjjjjjjjjj
 

Microorganisms in Abatement of Pollutants

  • 1. ROLE OF MICROORGANISMS IN THE ABATEMENT OF POLLUTANTS by Azis Kemal Fauzie Department of Studies in Environmental Science University of Mysore December 2016
  • 2. OVERVIEW • Biodegradable Pollutants • Hydrocarbons • PAHs • PCBs • Pesticides • Plastics • Dyes • Heavy Metals • Radionuclides • Bacterial Degradation • Hydrocarbon-degrading bacteria • PAH-degrading bacteria • PCB-degrading bacteria • Pesticide-degrading bacteria • Plastic-degrading bacteria • Dye-degrading bacteria • Heavy Metal-degrading bacteria • Radionuclide-degrading bacteria
  • 3. OVERVIEW... cont’d • Other Microbial Degradation • PGPR • PGPB • Microfungi • yeasts • filamentous fungi • Mycorrhiza • Algae • Protozoa • Genetically Engineered Microorganisms (GEMS) • Bioremediation & Biodegradation • In-situ & Ex-situ Bioremediation • Role of Enzymes & Biosurfactants • Aerobic & Anaerobic Degradation • Pathways for Degradation of Aliphatic & Aromatic Compounds, PCBs • Mechanisms in Plastic, Heavy Metal & Radionuclide Degradation • Factors affecting microbial degradation
  • 4. BIODEGRADABLE POLLUTANTS Hydrocarbons, Polycyclic Aromatic Hydrocarbons (PAHs) Polychlorinated Biphenyls (PCBs), Pesticides, Plastics, Dyes Heavy Metals, Radionuclides HCs, PAHs Dyes, PCBs Pesticides Plastics, Metals
  • 5. SATURATES: (a) Aliphatic/Paraffins: (b) Cyclic/Naphthenes: (Mono-) AROMATICS: RESINS: CH3 Methylcyclohexane Cyclopentane Methylcyclopentane Methylcyclohexane ASPHALTENES: Benzoate Benzaldehyde CH3
  • 6. Polycyclic Aromatic Hydrocarbons (PAHs) PAHs are the class of hydrocarbons containing two or more fused benzene rings and/or pentacyclic molecules. PAHs originate from fossil fuels and industrial processes during coke production. PAHs are toxic (carcinogenic, mutagenic and teratogenic) to human and animals.
  • 8. Fate of Pesticide in the Environment
  • 9. Polychlorinated Biphenyls (PCBs) • PCBs are organic chemicals synthesized by catalytic chlorination of biphenyls. • First manufactured in 1929 by Monsanto. Manufacture, use, importation and distribution of PCBs was banned in Sweden (1970), Japan (1972) and US (1976). • Trademark: Aroclor (US), Kaneclor (Japan), Fenclor (Italy), Pyralene (France), Clophen (Germany). • Applications:  fluid in electrical (transformers, capacitors), heat transfer and hydraulic equipment  plasticizers in paints, plastics and rubber products  pigments, adhesives, pesticides, inks, dyes, waxes and carbonless copy paper  lubricants for turbines and pumps • Toxicity:  Reproductive disabilities in animals and human  Nervous system and liver damage  Hepatitis, skin diseases and endocrine disrupters  Carcinogenic and allow bioaccumulation
  • 10. PLASTICS Biodegradable: • petroleum-based • biomass-based Non-biodegradable: • petroleum-based • biomass-based Polycaprolactone (PCL) Polybutylene succinate (PBS) Polyethylene succinate (PES) Polylactic acid (PLA) Polyhydroxy butyrate (PHB) Starch Polyethylene (PE) Acetyl cellulose (AcC) Polypropylene (PP) Polyvinyl chloride (PVC) Polystyrene (PS) Polyethylene terephtalate (PET) Nylon 11
  • 11. AZO: XANTHENE: TRIPHENYLMETHANE: Brilliant Green Fast Green FCF Methyl Orange Congo Red Allura Red Sunset Yellow FCF Bismark Brown Y Methyl Violet Oil Red O Rhodamine 123 Eosin Y Erythrosin Rose Bengal Crystal Violet OTHER CLASSES: Phenazine, Cyanine Phenanthridine Acridine, Coumarin Anthraquinone Quinoline, Oxonol Tetrazolium salt Benzofuran, Indole Benzodiazole, Styryl Nitro, Nitroso, Indigo Diphenylmethane Heterocycle, etc. PHENOTHIAZINE: Methylene Blue Methylene Violet PHENOXAZINE: Brilliant Cresyl Blue Darrow Red Giemsa Stain Cresyl Violet Acetate
  • 13. BACTERIAL DEGRADATION for Hydrocarbons, PAHs, PCBs, Pesticides, Plastics, Dyes Heavy Metals, and Radionuclides CO2 H2O
  • 14. Hydrocarbon-degrading Bacteria Hydrocarbons Bacteria Petroleum hydrocarbons Bacillus, Corynebacterium, Staphylococcus, Streptococcus, Shigella, Alcaligenes, Klebsiella, Acinetobacter, Escherichia, Enterobacter, Vibrio, Pseudomonas, Brevibacillus, Micrococcus, Nocardia, Achromobacter, Arthrobacter, Flavobacterium, Oceanobacter kriegii Crude oil P. aeruginosa, Bacillus subtilis, Acinetobacter lwoffi, Micrococcus roseus Alkanes Pseudomonas, Bacillus, Micrococcus, Acinetobacter calcoaceticus, A. venetianus, Nocardia erythroplis, Ochrobactrum, Alcaligenes sodorans, Serratia marcescens, Arthrobacter, Rhodococcus, Marinobacter hydrocarbanoclasticus, Alcanivorax borkumensis Alkanes, alkenes, cycloalkanes Methylococcus, Methylosinus, Methylocystis, Methylomonas, Methylocella, Methylobacter, Mycobacterium vaccae Alkyl benzenes, alkanes, fatty acids, cycloalkanes Arthrobacter, Burkholderia, Pseudomonas, Sphingomonas, Rhodococcus, Mycobacterium, Acinetobacter, Caulobacter Mono-aromatics Pseudomonas, Bacillus, B. stereothermophilus, Corynebacterium, Vibrio, Brevibacillus, Achromobacter, Ochrobactrum, Thalassobacillus devorans Benzoate Rhodopseudomonas palustris, Thauera aromatica, Azoarcus evansii Ref: Joutey, 2013; Pandey, 2016; Kothari; Ghazali, 2014; Al-Wasify, 2014; Koch, 1993
  • 15. PAH-degrading Bacteria PAHs Bacteria References PAHs Rhodococcus, Corynebacterium, Achromobacter, Aeromonas, Alcaligenes odorans, Sphingomonas paucimobilis, Bacillus, Pseudomonas, Nocardia, Mycobacterium flavescens, Burkholderia cepacia, Arthrobacter, Xanthomonas Mrozik, 2003; Kelley, 1990; Bamforth & Singleton, 2005 PAHs, naphthalene, phenanthrene, pyrene Marinobacter vinifirmus, M.alkaliphilus, Stappia aggregate, Pseudoalteromonas ganghwensis, Thalassospira lucentensis, Kaistia adipata Cui et al., 2008 Naphthalene Pseudomonas fluorescens, Rhodococcus Bamforth, 2005 Phenanthrene Marinobacter, Pseudoalteromonas, Cycloclasticus, Marinomonas, Halomonas, Brevibacterium, Vibrio, Pseudomonas migulae, Sphingomonas yanoikuyae Melcher, 2002; Samanta, 1999; Haritash, 2009 Phenanthrene, bromodeoxyuridine Exiguobacterium, Shewanella, Methylomonas, Pseudomonas, Bacteroides Edlund, 2008 PAHs, benzo[a]pyrene Microbacterium, Porphyrobacter, Porticoccus hydrocarbonoclasticus Gutierrez, 2012; Gauthier, 2003 Anthracene Sphingomonas, Nocardia, Beijerinckia, Paracoccus, Rhodococcus Teng, 2010
  • 16. PCB-degrading Bacteria PCBs Bacteria References PCBs Pseudomonas, Burkholderia, Ralstonia, Alcaligenes, Achromobacter, Sphingomonas, Comamonas, Rhodococcus, Janibacter, Paenibacillus, Bacillus, Microbacterium, Acinetobacter, Corynebacterium, Arthrobacter, Moraxella, Variovorax, Chloroflexi Seeger, Unterman, Furukawa, Bedard, Abramowicz, Petric, Abraham Aroclor 1242 Alcaligenes odorans, A. denitrificans, Janibacter, Acinetobacter Clark, Sierra, Brunner Aroclor 1260 Dehalococcoides, Thermotogales, Cytophagales Tracey, Watts Kaneclor Rhodococcus sp., Acinetobacter sp. Seeger, Furukawa Biphenyl, Chlorobiphenyl Pseudomonas pseudoalcaligenes, Micrococcus, Achromobacter, Acinetobacter, Arthrobacter, Nocardia, Alcaligenes, Burkholderia xenovorans, Bacillus brevis, Ralstonia eutrophus Furukawa, Ahmed, Benvinakatti, Focht, Mondello, Baxter, Pettigrew, Springael Dichlorobiphenyl Pseudomonas putida, Alcaligenes eutrophus McKay, Bedard Trichlorobiphenyl Rhodococcus globerulus, Pseudomonas sp. Furukawa, Jurcova Tetrachloro- biphenyl Comamonas testosteroni, Pseudomonas putida, Corynebacterium, Alcaligenes eutrophus Barriault, 1999; Unterman, 1988
  • 17. Pesticide-degrading Bacteria Pesticides Bacteria Glyphosate Pseudomonas, Alcaligenes, Bacillus megaterium, Rhizobium, Arthrobacter atrocyaneus, Geobacillus caldoxylosilyticus, Agrobacterium, Flavobacterium DDT Bacillus, Staphylococcus, Stenotrophomonas , P. fluorescens, P. aeruginosa Endosulphan Mycobacterium, Arthrobacter Parathion Pseudomonas sp, P. diminuta, P. stutzeri, Agrobacterium radiobacter, Bacillus, Arthrobacter, Flavobacterium, Xanthomonas Met. parathion Bacillus, Plesimonas, Pseudomonas sp, P. putida, Flavobacterium balustinum Chlorpyrifos Providencia stuartii, Enterobacter, Micrococcus, Flavobacterium, P. diminuta Coumaphos Nocardiodes simplex, Agrobacterium radiobacter, Pseudomonas monteilli, P. diminuta, Nocardia, Flavobacterium Monocrotophos Pseudomonas mendocina, P. aeruginosa, Bacillus megaterium, Arthrobacter atrocyaneus, Clavibacter michiganens Diazinon Flavobacterium, Arthrobacter, Pseudomonas Fenitrothion Flavobacterium, Arthrobacter aurescenes, Burkholderia Diuron, linuron Variovorax sp, Arthrobacter globiformis Phosphotriester Pseudomonas diminuta, Agrobacterium radiobacter, Flavobacterium sp Ref: Singh & Walker, 2006; Hernández et al., Joutey et al.
  • 18. Plastic-degrading Bacteria Plastics Bacteria Polyethylene (PE) Brevibacillus borstelensis, Rhodococcus rubber, Sphingomonas, Pseudomonas chlororaphis, P. fluorescens, Comamonas acidovorans Polylactic Acid (PLA) Amycolatopsis, Saccharrotrix, Kibdelosporangium, Streptoalloteichus Polycaprolactone Bacillus brevis, B. pumilus, Amycolatopsis, Clostridium, Paenibacillus Polypropiolactone Bacillus, Acidovorax, Variovorax paradoxus, S. paucimobilis Polyhydroxybutirate (PHB) Schlegelella thermodepolymerans, Pseudomonas, Ralstonia piketti, Acidovorax faecalis, Alcaligens faecalis, Illyobacter delafieldi, Comamonas, Bacillus, Streptomyces, Caenibacterium thermophilum Polycarbonates (PHC, PBC) Amycolatopsis sp, Pseudomonas sp, Roseateles depolymerans, Chromobacterium viscosus Polyurethane (PU) Comamonas acidovorans PHB, PES, PCL Actinomadura, Microbispora, Streptomyces, Thermoactinomyces, Saccharomonospora Polyvinyl Chloride Pseudomonas putida, P. fluorescens, Ochrobactrum PBS M. rosea, Excellospora japonica, E. viridilutea Nylon 4, 6, 12, 66 Pseudomonas sp, Flavobacterium sp., Geobacillus thermocatenulatus Ref: Tokiwa, 2009; Garrison, 2016; Leja & Lewandowicz, 2009
  • 19. Dye-degrading Bacteria Bacteria Dyes Aeromonas hydrophila Crystal violet, Basic fuchsine, Brilliant green, Great red, Malachite green, Acid amaranth, Reactive red, Reactive brilliant blue Citrobacter Crystal violet, Gentian violet, Methyl red, Congo red, Malachite green, Brilliant green, Basic fuchsine Enterobacter cloacae Reactive black, Reactive red, Acid yellow, Acid orange, Disperse yellow Pseudomonas sp, P. putida, P. aeruginosa, P. fluorescence, P. nitroreducens Crystal violet, Reactive red, Reactive orange, Reactive blue, Direct red, Direct orange, Acid yellow, Acid blue, Acid black, Acid orange, Blue RR, Black B, Navy blue, Disperse yellow, Acid red, Malachite green, Fast green, Orange II, Reactive black, Acid orange, Methyl red Morganella Acid yellow, Acid orange, Reactive orange, Direct red, Acid blue Shewanella Crystal violet, Reactive black, Direct red, Acid red, Disperse orange Bacillus sp, B. subtilis Navy blue, Red RR, Yellow RR, Remazol black B, Acid red, Indigo blue Clostridium Reactive red, Reactive black, Reactive yellow, Indigo blue Actinomycetes Reactive yellow Enterococcus Direct black Nocardia corallina Crystal violet Ref: Ali, 2010; Barragán et al., 2007; Shah, 2013, 2014; Bagewadi, 2011
  • 20. Metal-degrading Bacteria Heavy metals Bacteria References As, Cd, Cu, Co, Zn Acidithiobacillus ferrooxidans White, 1998 Cu, Zn Bacillus spp, Pseudomonas aeruginosa Philip, Gunasekaran Cd Alcaligenes, Psedomonas, Moraxella, Bacillus cereus Springael, Gazsó Ag, Hg P. aeruginosa, Citrobacter freundii, C. youngae, Serratia, Klebsiella pneumoniae, Enterobacter agglomerans, Chryseobacterium Lima e Silva, 2012 Ag P. stutzeri, Streptomyces noursei, Stenotrophomonas maltophilia, Thiobacillus ferrooxidans, Acinetobacter Lima e Silva, 2012; Mattuschka, Gazsó Hg(II) Alcaligenes faecalis, Bacillus pumilus, P. aeruginosa, Brevibacterium iodinum, Deinococcus radiodurans Jaysankar, 2008; Brim, 2000 Fe, Cu, Mn, Ni Bacillus subtilis, Bacillus licheniformis Beveridge, Holan Cr(VI), Cr(III) Enterococcus gallinarum, Achromobacter, B. subtilis, P. aeruginosa, P. putida, P. fluorescens, Burkholderia, Azotobacter, Alcaligenes, Stenotrophomonas Sayel; Zhu; e Silva; Fernandez, 2012; Lalithakumari, 2016 Se(IV), Ag, Hg Enterobacter cloacae Yee, 2007; e Silva Al, Cu, Fe Microbacterium liquefaciens Kanayama, 2005 Cd, U, Pb, Co, Ni Citrobacter spp. Jain, 2014; Sar 2001
  • 21. Radionuclide-degrading Bacteria Radionuclide Bacteria Technetium, 99Tc(VII) E. coli, Desulfovibrio desulfuricans, D. fructosovorans, D. vulgaris, Thiobacillus ferroxidans, T. thiooxidans, Geobacter sulfurreducens, G. metallireducens Neptunium, 237Np(V) Shewanella putrefaciens, Citrobacter, Pseudomonas fluorescens, P. aeruginosa, Micrococcus luteus, Streptomyces viridochromogenes Plutonium, 239Pu, 240Pu, Pu(V), Pu(VI) Microbacterium flavescens, Bacillus sphaericus, B. subtilis, B. circulans, B. polymyxa, E. coli, Shewanella oneidensis, S. alga, G. metallireducens, Clostridium, Aeromonas hydrophila Cesium, 137Cs Rhodococcus erythropolis, E. coli, P. fluorescens, P. aeruginosa, Deinococcus radiodurans, Arthrobacter, Nocardia Thorium, Th P. aeruginosa, Mycobacterium smegmatis Uranium, 235U(VI) Arthrobacter, Acinetobacter, Anaeromyxobacter, Bacillus, Citrobacter, Geothrix, Cellulomonas, Clostridium, Deinococcus, Desulfovibrio, Desulfosporosinus, Desulfitobacterium, E. coli, Geobacter, Pseudomonas, Paenibacillus, Ralstonia, Rahnella, Salmonella, Shewanella, Thiobacillus, Thermus, Thermoanaerobacter Radium, Ra Desulfovibrio vulgaris, Pseudomonas aeruginosa 241Americum Serratia sp. Iodine, 129I Desulfovibrio desulfuricans, Shewanella putrefaciens Ref: Lloyd, 2005; Newsome, 2014; Williams, 2013; www.biorad.igib.res.in
  • 22. Corynebacterium Staphylococcus Pseudomonas aeruginosa Escherichia coli Enterobacter cloacae Serratia marcescens Mycobacterium Streptococcus Shigella Klebsiella pneumoniae Bacillus Alcaligenes faecalis Acinetobacter Actinomycetes
  • 23. Enterococcus Aeromonas hydrophila Providencia Variovorax paradoxus Rhodococcus Clostridia Deinococcus radiodurans Proteus Ralstonia Achromobacter Shewanella Streptomyces Burkholderia
  • 24. OTHER MICROBIAL DEGRADATION PGPR & PGPB, Microfungi & Mycorrhiza, Algae & Protozoa, Genetically Engineered Microorganisms (GEMS) Bacteria Fungi Algae Protozoa
  • 25. Degradation by PGPR & PGPB • Plant Growth Promoting Rhizobacteria (PGPR), or rhizospheric bacteria, are naturally occurring soil bacteria that aggressively colonize plant roots and benefit plants by providing growth promotion. The technique to apply this in soil biodegradation is called rhizoremediation. • Plant Growth Promoting Bacteria (PGPB), or endophytic bacteria, are non-pathogenic bacteria that occur naturally in plants as adjuncts in phytoremediation. They can significantly facilitate the growth of plants in the presence of high levels of pollutants, including metals. Pollutants Microorganisms References Hydrocarbons Pseudomonas putida Hontzeas et al., 2004 PAHs Lysini bacillus Ma et al., 2010 PCBs Rhodococcus, Luteibacter, Williamsia Leigh et al., 2006 Malathion Azospirillum lipoferum Kanade et al., 2012
  • 26. Degradation by Microfungi & Mycorrhiza • Microfungi are described as a group of eukaryotic organisms that are important part of degrading microbiota. Like prokaryotic bacteria, they metabolize organic matter and responsible for the decomposition of carbon in the biosphere. But fungi, unlike bacteria, can grow in low moisture areas and in low pH solutions. • Fungi species are ranging from unicellular yeasts to extensively filamentous fungi or mycelial molds. Fungal metabolism can be non- ligninolytic or ligninolytic (also known as white-rot fungi). • Mycorrhiza is a symbiotic association between fungus and the roots of vascular plant. It is important for mycorrhizoremediation. • In a mycorrhizal association, the fungi colonizes the host plant's roots, either intracellularly as in arbuscular mycorrhizal fungi (AMF), or extracellularly as in ectomycorrhizal fungi.
  • 27. Degradation by Yeasts Pollutants Yeasts References Aliphatic/petroleum hydrocarbons Candida lipolytica, C. tropicalis, C. apicola, Rhodoturula rubra, R. mucilaginosa, Geotrichum, Aureobasidium pullulans, Trichosporon mucoides Bartha, 1986; Scheuer, 1998; Was, 2001 Diesel oil Rhodotorula aurantiaca, Candida ernobii de Cássia, 2007 Alkane, fatty acids Candida maltose, C. tropicalis, Yarrowia lipolytica Iida, 2000 Phenol Trichosporon cutaneum Mörtberg, 1985 PCBs T. mucoides, Candida boidinii, C. lipolytica Sasek, Sietman Linuron, metroburon Botrytis cinerea Bordjiba, 2001 Aniline Candida methanosorbosa Mucha, 2010 Reactive black Candida krusei, Pseudozyma rugulosa Yu & Wen, 2005 PEA, PC, PLA Candida cylindracea, Tritirachium album Tokiwa, 2009 PCB, U, Th, Co, Cr Saccharomyces cerevisiae Cabras; Brady Chromium (VI) Pichia anomala, Cyberlindnera fabianii, Wickerhamomyces anomalus, C. tropicalis Bahafid, 2011, 2012 S. cerevisiae, Pichia guilliermondii, Yarrowia lipolytica, R. pilimanae, Hansenula polymorpha Ksheminska, 2006, 2008 Copper Schizosaccharomyces pombe Saisubhashini, ‘11
  • 28. Aureobasidium pullulans Saccharomyces cerevisiae Geotrichum Schizosaccharomyces pombe Rhodoturula Candida tropicalis Botrytis cinerea Hansenula polymorpha YEASTS
  • 29. Pollutants Fungi References Aliphatic & aromatic HCs Amorphoteca, Neosartorya, Talaromyces, Aspergillus, Cunninghamella, Penicillium, Fusarium, Cephalosporium Chaillan, Singh, Steliga Toluene Cladophialophora, Exophiala, Leptodontium, Pseudeurotium zonatum Francesc, 2001 PAHs Pleurotus ostreatus, Cunninghamella elegans, Chrysosporium pannorum, Aspergillus niger, Phanerochaete chrysosporium, Antrodia vaillantii Okparanma, 2011; Maigari, 2015 Hydrocarbons, pesticide, gelatin Cladosporium cladosporioides Steliga, Chen, Abruscia Chlorpyrifos P. chrysosporium, Hypholama, Coriolus, Trichoderma Singh & Walker, 2006 Glyphosate Penicillium, Trichoderma, A. niger, Alternaria alternata Malachite green Acremonium kiliense, Aspergillus flavus, A. solani Youssef, Ali PEA, CPAE, PBC Penicillium, Rhizopus delemar, R. arrhizus Tokiwa, 2009 Polycaprolactone Penicillium funiculosum, A. flavus, R. arrhizus, R. delemar Polyurethane Rhizopus delemar, Curvularia senegalensis Uranium, Thorium Rhiloprzs juvanicus Sears PCBs, Cd, Pb Aspergillus niger, Rhizopus arrhizus Pal, 2010 Degradation by Filamentous Fungi
  • 30. Aspergillus niger Aspergillus ustus Aspergillus nidulans Aspergillus versicolor Rhizopus Pleurotus ostreatus Exophiala Cladosporium cladosporioides Alternaria alternata Fusarium Penicillium chrysogenum Trichoderma
  • 31. Degradation by Algae & Protozoa • Reports of algae and protozoa in biodegradation are scanty. • However, a number of cyanobacteria, green algae, brown algae, red algae, and diatoms could oxidize naphthalene. Some studies also reported degradation of dyes, pesticides and heavy metals. • Protozoa are main grazer on the degrading bacteria. Protozoa help on regulating growth of bacteria and algae populations, reducing competition, improving turnover of nutrients, increasing space and oxygen content, releasing excess nitrogen and special enzyme required for biodegradation, and stimulating decomposition rates. • For example, protozoa infusorians can accelerate biodegradation of PAH. The degrading rate of bacteria has improved 8.5 times on benzene and methylbenzene, and 4 times on naphthalene by the influence of grazing bacteria of protozoa flagellate.
  • 32. Degradation by Algae & Protozoa Pollutants Microorganisms References Hydrocarbons Prototheca zopfii Walker, 1975 PAHs, pyrene, fluoranthene Chlorella vulgaris, Scenedesmus platydiscus, S. quadricauda, Selenastrum capricornutum Wang, 2007; Ueno, 2008 Monocrotophos Aulosira fertilissima, Nostoc muscorum Megharaj, 1987 Azo dyes C. vulgaris, C. pyrenoidosa Jinqi, 1992 Methyl red, orange II, G-Red, basic cationic, b. fuchsin C. vulgaris, Lyngbyala gerlerimi, Nostoc lincki, Oscillatoria rubescens, Elkatothrix viridis, Volvox aureus El-Sheekh, 2009 Amido Black Chroococcus minutus Parikh, 2005 Sky Blue, Acid Red Gloeocapsa pleurocapsoides, Phormidium ceylanicum Heavy metals Chlorella, Anabaena inacqualis, Westiellopsis prolifica, Stigeoclonium lenue, Synechococcus sp. Dwivedi, 2012 Cr(VI), Cd(II), Cu(II) Scenedesmus incrassatulus Castro, 2004 Cr(III) Chlorella sorokiniana Akhtar, 2008 241 Am, 237Pu(III-VI) Thalassiosira pseudonana Fisher,1983 Benzene, methylbenzene Heteromita globosa (protozoa/grazing bacteria) Mattison, 2005
  • 33. Scenedesmus quadricauda Stigeoclonium Oscillatoria Chlorella Nostoc Synechococcus ALGAE Volvox aureus Prototheca Anabaena PROTOZOA Ciliate protozoa surrounding bacteria
  • 34. Genetically Engineered Microorganisms (GEMs) • Genetically Engineered Microorganisms (GEMs) or Genetically Modified Organisms (GMOs) are microorganisms whose genetic material have been altered using genetic engineering techniques (known as recombinant DNA technology) inspired by natural genetic exchange between microorganisms and have potential capabilities of degrading chemical contaminants useful for bioremediation. • In 1979, Dr. Anand Mohan Chakrabarty has engineered strain of Pseudomonas putida (called as superbug or oil eating bug) that contains hybrid plasmids capable of degrading different compounds i.e. CAM (camphor), OCT (octane), XYL (xylene), and NAH (naphthalene). This superbug was used by the US Govt. in 1990 for cleaning up oil spill in Texas.
  • 35. Degradation by GEMs Pollutants GEMs References Aliphatic, aromatic, terpenic, PAHs, PCBs Pseudomonas Markandey, 2004; Erickson, 1993 TCE, BTEX, salicylate, naphthalene, benzoate Pseudomonas putida TOL, RA500, pAC25, pKF439, KT2442, TVA8 Sayler, ‘00; Panke, ‘98; Applegate, ‘98 BTEX, naphthalene, anthracene Pseudomonas fluorescens HK44, 10586s/pUCD607 Sayler, 2000; Sousa, 1997 TCE, toluene, benzene P. pseudoalcaligenes KF707-D2 Suyama, 1996 Chlorobiphenyls Comamonas testosteroni VP44 Hrywna, 1999 Chromium, PCBs, narcotics Alcaligenes eutrophus AE104/pEBZ141, H850Lr, 2050 Srivastava, Dyke, Layton, 2,4-D Bacillus cepacia BRI6001L, A. paradoxus Masson, 2002 Toluene, mercury Deinococcus radiodurans Brim, 2000 Hg2+ Rhodopseudomonas palustris Xu & Pei, 2011 PCBs, heavy metal R. eutropha A5, Achromobacter sp. LBS1C1, A. denitrificans JB1, R. eutropha CH34 Menn, 2008 Cd2+ Mesorhizobium huakuii subsp. rengei strain B3, Astragalus sinicus, Arabidopsis thaliana Sussman, 1988
  • 36. BIOREMEDIATION & BIODEGRADATION The principles, methods, strategies, mechanisms, and limiting factors
  • 37. Bioremediation & Biodegradation • Biodegradation is the process by which organic substances are broken down into smaller compounds by living organisms. • Bioremediation is the process of utilizing microorganisms to degrade environmental pollutants by transforming them into less toxic form. • Methods of bioremediation strategies could be:  in-situ (at the site) or ex-situ (away from the site)  aerobic (in presence of oxygen) or anaerobic (in absence of oxygen)  enhanced by enzymes or biosurfactants • Biodegradation can be mediated by:  Bacteria (bioremediation)  Fungi (mycoremediation)  Algae  Protozoa  Plants (phytoremediation)
  • 38. • Natural attenuation or bioattenuation is the reduction of contaminant concentrations in the environment through biological processes (microbial biodegradation, plant and animal uptake), physical phenomena (advection, dispersion, dilution, diffusion, volatilization, sorption/desorption), and chemical reactions (ion exchange, complexation, abiotic transformation). • Biostimulation is the addition of soil nutrients, trace minerals, electron acceptors, or electron donors to enhance the biotransformation of soil contaminants by indigenous microorganisms. It includes also bioventing and biosparging. • Bioaugmentation is the technique for improving the capacity of a contaminated biotope to remove pollution by the introduction of specific competent strains of exogenous microorganisms or genetically engineered microorganisms (GEMs). Indigenous & exogenous microorganisms In-situ Bioremediation Natural Attenuation, Biostimulation, Bioaugmentation
  • 39. Ex-situ Bioremediation Composting, Land farming, Biopile, Bioreactor • Composting is a technique that involves combining contaminated soil with non-hazardous organic amendants such as manure or agricultural wastes. • Land farming is a simple technique in which contaminated soil is excavated and spread over a prepared bed and periodically tilled until pollutants are degraded. • Biopile is a hybrid of land farming and composting constructed as aerated composted piles to control physical losses of the contaminants by leaching and volatilization. • Bioreactor or slurry reactor is a containment vessel used to create a three-phase (solid, liquid, gas) mixing condition to increase the bioremediation rate of soil-bound and water-soluble pollutants as a water slurry of the contaminated soil and biomass (microorganisms) capable of degrading target contaminants.
  • 40. Role of Enzymes in Biodegradation The degradation of pollutants can be mediated or catalyzed by specific enzymes secreted by the microorganisms like (mono- or di-) oxygenases, peroxidases, oxidoreductases, hydrolases, hydroxylases, dehalogenase, dehydrogenases, esterases, phosphotriesterases, etc.
  • 41. Role of Biosurfactants in Biodegradation Biosurfactants or bioemulsifiers are biological surface-active agents that have both hydrophilic and hydrophobic moieties. Biosurfactants are produced by either degrading or non-degrading microorganisms to help on metabolizing carbon and energy source. Biosurfactants can act by: - forming micelles or microdroplets of pollutants - reducing surface tension in chemical compounds - increasing surface area of hydrophobic substrates - increasing mixing of aqueous and non-aqueous fluid phases - increasing rate of transfer into or through aqueous media - increasing bioavailability of the compounds. Low molecular weight biosurfactants include: glycolipids (rhamnolipid, trehalose lipids, and sophorolipids) or lipopeptides (surfactin, gramicidin S, and polymyxin). High molecular weight biosurfactants include: polysaccharides, proteins, lipopolysaccharides, lipoproteins or complex mixtures of these biopolymers.
  • 42. R C H C H R OH OH R OH OH R OH COOH O O COOH RCOOH NAD+ NADH NADH NAD+ O2 O2 + Alkylbenzene Dihydrodiol Ring fission product 2-Oxopenta- 4-enoate 2,3-Dihydroxy- alkylbenzene Smith & Ratledge 1989 E2 E3 E4 E1 E1 = Alkylbenzene dioxygenase E2 = cis-alkylbenzene glycol dehydrogenase E3 = 2,3-dihydroxyalkylbenzene 1,2-dioxygenase E4 = ring fission product-hydrolysing enzyme Aerobic Degradation: C H2 CH3 Ethylbenzene C H CH3 O H 1-Phenylethanol CH3 O Acetophenone O O CH2 O Benzoylacetate O O CH2 O S CoA Benzoylacetate-CoA O S CoA Benzoyl-CoA O H2 CO2 CoASH CoASH Acetyl-CoA Ethylbenzene Dehydrogenase 1-Phenylethanol Dehydrogenase Acetophenone Carboxylase Benzoylacetyl-CoA forming enzyme Benzoylacetyl-CoA CoA thiolase 2[H] 2[H] Anaerobic Degradation: Heider et al. 1999
  • 43. The degradation of a straight chain hydrocarbon: Pathway for Degradation of Aliphatic Compounds Bacteria involved: Pseudomonas putida Fungi (yeast) involved: Candida maltosa, Candida tropicalis, Candida apicola The degradation of a cyclic hydrocarbon: Enzymes involved: E1 = alkane monooxygenase E2 = fatty alcohol dehydrogenase E3 = fatty aldehyde dehydrogenase, (Harayama et al. 1999) E1 E2 E3
  • 44. Pathway for Degradation of Aromatic Compounds The microbial degradation of catechol Benzene Arene oxide cis/trans-dihydrodiol Cathecol Naphthalene cis-1,2-naphthalene 1,2-dihydroxynaphthalene Salicylic acid dihydrodiol Bacteria involved: Pseudomonas, Rhodococcus, Mycobacterium Fungi (yeast) involved: Pleurotus ostreatus
  • 45. Pathway for Degradation of PCBs Organisms involved: Achromobacter, Beijerinckia, Pseudomonas putida Pathway for anaerobic dechlorination of a highly chlorinated congener (Fish & Principe, 1994). Pathway for aerobic degradation of PCBs into chlorobenzoates (Sylvestre & Sandossi, 1994). Organisms involved: Dehalococcoides, Thermotogales, Chloroflexi
  • 46. Mechanism in Plastic Degradation
  • 47. Mechanism in Heavy Metal Degradation Mechanisms of heavy metal bioremediation by microorganisms include bioleaching, biomineralization, biosorption, bioaccumulation, and biotransformation. - Bioleaching: heavy metal mobilization through methylation reactions or excretion of organic acids. e.g. Acidithiobacillus ferrooxidans, Leptospirillum ferriphilum - Biomineralization: heavy metal immobilization through formation of insoluble sulfides, phosphates, carbonates, hydroxides or polymeric complexes in response to localised alkaline conditions at cell surface. e.g. Serratia, Citrobacter - Biosorption: passive uptake of metals to the surface of living or dead microbial cells by physico-chemical mechanisms including absorption, adsorption, ion exchange, surface complexation and precipitation. e.g. Bacillus subtilis, Rhizopus arrhizus - Bioaccumulation: active uptake of essential elements (particularly heavy metals) within the cell of microorganisms. e.g. Pseudomonas, Arthrobacter - Biotransformation: metabolic activity of microorganisms on metal ions through enzyme-catalyzed redox reactions. e.g. Geobacter, Thermoterrabacterium ferrireducens
  • 48. Mechanism in Radionuclide Degradation Mechanisms of radionuclide bioremediation by micro- organisms include bioreduction, biomineralisation, bioaccumulation, and biosorption.
  • 49. Factors affecting microbial degradation • Biological factors — competition between organisms for limited carbon sources — antagonistic interactions between microorganisms — predation of microbes by protozoa and bacteriophage • Physical factors — temperature — pH — moisture • Environmental factors — soil type and porosity — soil organic matter — soil oxidation-reduction potential
  • 51. References • Joutey et al., Biodegradation: Involved Microorganisms & GEMs, 2013. • Das & Chandran, Microbial Degradation of Petroleum Hydrocarbon Contaminants: An Overview, 2011. • Maigari & Maigari, Microbial Metabolism of PAHs: A Review, 2015. • Hernández et al., Pesticide Biodegradation: Mechanisms, Genetics & Strategies to Enhance the Process, 2013. • Borja et al., Polychlorinated Biphenyls & Their Biodegradation, 2005. • Furukawa & Fujihara, Microbial Degradation of PCBs: Biochemical & Molecular Features, 2008. • Tokiwa et al., Biodegradability of Plastics, 2009. • Leja & Lewandowicz, Polymer Biodegradation & Biodegradable Polymers – A Review, 2010. • Ali, Biodegradation of Synthetic Dyes - A Review, 2010. • Meenambigai et al., Biodegradation of Heavy Metals – A Review, 2016. • Girma, Microbial Bioremediation of Some Heavy Metals in Soils: An Updated Review, 2015. • Newsome et al., The Biogeochemistry & Bioremediation of Uranium & Other Priority Radionuclides, 2014.
  • 52. References • Vidali, Bioremediation: An Overview, 2001. • Kothari et al., Microbial Degradation of Hydrocarbons. • Pandey et al., Microbial Ecology of Hydrocarbon Degradation in the Soil: A Review, 2016. • Harayama et al., Petroleum Biodegradation in Marine Environments, 1999. • Zacharia & Tano, Identity, Physical & Chemical Properties of Pesticides. • Singh & Walker, Microbial Degradation of Organophosphorus Compounds, 2006. • Abraham et al., PCB-degrading Microbial Communities in Soils & Sediments, 2002. • Garrison et al., Bio-Based Polymers with Potential for Biodegradability, 2016. • Dussud & Ghiglione, Bacterial Degradation of Synthetic Plastics, 2014. • Barrágan, Biodegradation of Azo Dyes by Bacteria Inoculated on Solid Media, 2007. • Jain et al., Review on Bioremediation of Heavy Metals with Microbial Isolates & Amendments on Soil Residue, 2014. • Gazsó, The Key Microbial Processes in the Removal of Toxic Metals & Radionuclides from the Environment, 2001. • Lloyd & Renshaw, Bioremediation of Radioactive Waste: Radionuclide–Microbe Interactions in Laboratory & Field-Scale Studies, 2005.