This document provides an introduction to Bayesian analysis and Metropolis-Hastings Markov chain Monte Carlo (MCMC). It explains the foundations of Bayesian analysis and how MCMC sampling methods like Metropolis-Hastings can be used to draw samples from posterior distributions that are intractable. The Metropolis-Hastings algorithm works by constructing a Markov chain with the target distribution as its stationary distribution. The document provides an example of using MCMC to perform linear regression in a Bayesian framework.