SlideShare a Scribd company logo
Triaxial Shear Test

CEP 701 - Soil Engineering Laboratory
Strength of different
materials
Steel

Tensile
strength

Concrete

Compressive
strength

Complex
behavior

Soil

Shear
strength

Presence of pore water
Shear failure of soils
Soils generally fail in shear
Embankment
Strip footing

Failure surface
Mobilized shear
resistance

At failure, shear stress along the failure surface
(mobilized shear resistance) reaches the shear strength.
Shear failure of soils
Soils generally fail in shear

Retaining
wall
Shear failure of soils
Soils generally fail in shear

Retaining
wall

Mobilized
shear
resistance
Failure
surface

At failure, shear stress along the failure surface
(mobilized shear resistance) reaches the shear strength.
Shear failure
mechanism

failure surface

The soil grains slide
over each other along
the failure surface.
No crushing of
individual grains.
Shear failure mechanism
σ

τ
τ

At failure, shear stress along the failure surface (τ)
reaches the shear strength (τf).
Mohr-Coulomb Failure Criterion
(in terms of total stresses)
τ

τ f = c + σ tan φ
failu

Cohesio
n

re

τf

c
σ

φ

e
elop
env

Friction
angle

σ

τf is the maximum shear stress the soil can take without
failure, under normal stress of σ.
Mohr-Coulomb Failure Criterion
(in terms of effective stresses)
τ

τ f = c'+σ ' tan φ '
re
ailu
f

Effective
cohesion

τf

c’
σ’

e
elop
env

σ ' =σ −u

φ’

u = pore water
pressure

Effective
friction angle

σ’

τf is the maximum shear stress the soil can take without
failure, under normal effective stress of σ’.
Mohr-Coulomb Failure Criterion
Shear strength consists of two
components: cohesive and frictional.
τ

τ f = c'+σ ' f tan φ '

τf
φ’
c’

σ’f tan φ’
c’
σ’f

iv
hes
co

t
nen
po
com
e

frictional
component

σ'

c and φ are measures of shear strength.
Higher the values, higher the shear strength.
Mohr Circle of stress
σ’
1

σ’
σ’
Soil element

3

τ

σ’
3

θ

σ’
1

Resolving forces in σ and τ directions,

σ 1' − σ 3'
τ=
Sin 2θ
2
σ 1' + σ 3' σ 1' − σ 3'
σ' =
+
Cos 2θ
2
2

 ' σ +σ
τ + σ −

2

2

'
1

' 2
3

 σ −σ
 =
  2
 
'
1

' 2
3





Mohr Circle of stress
σ’1

σ’
σ’3

τ
θ

Soil element

σ’3

σ’1

τ

 ' σ +σ
τ + σ −

2

2

'
1

' 2
3

 σ −σ
 =
  2
 
'
1

' 2
3






'
σ 1' − σ 3
2

'
σ3

'
σ 1' + σ 3
2

σ 1'

σ’
Mohr Circle of stress
σ’1

σ’
σ’3

σ’3

τ
θ

Soil element

σ’1

τ

 ' σ +σ
τ + σ −

2

2

'
1

' 2
3

 σ −σ
 =
  2
 
'
1

(σ’, τ)

' 2
3






θ
'
σ3

'
σ 1' − σ 3
2

'
σ 1' + σ 3
2

PD = Pole w.r.t. plane

σ 1'

σ’
Mohr Circles & Failure Envelope
τ

Failure surface

X

Y

τ f = c'+σ ' tan φ '

X

Y
σ’

Soil elements at different locations

Y ~ stable
X ~ failure
Mohr Circles & Failure Envelope
The soil element does not fail if
the Mohr circle is contained
within the envelope
GL

∆σ
σc
Y

σc

σc
Initially, Mohr circle is a point

∆σ

σc+∆σ
Mohr Circles & Failure Envelope
As loading progresses, Mohr
circle becomes larger…

GL

σc
Y

∆σ
σc
σc
.. and finally failure occurs
when Mohr circle touches the
envelope
Orientation of Failure Plane
σ’1

Failure envelope
σ’

σ’3

τ

σ’3

θ

σ’1

(σ’, τ f)

(90 –
θ)

θ

φ’
'
σ3

'
σ 1' + σ 3
2

PD = Pole w.r.t. plane
Therefore,
90 – θ + φ’ = θ

θ = 45 + φ’/2

σ 1'

σ’
Mohr circles in terms of total & effective stresses
σv
X

σ v’
σh

=

X

u
σ h’

+

X

u

τ
effective stresses

σh ’

σv’ σh

total stresses

u

σv

σ or σ’
Failure envelopes in terms of total & effective
stresses
σv
X

If X is on
failure

σ v’
σh

τ

=

X

u
σ h’

Failure envelope in terms
of effective stresses

φ’

effective stresses

c’ c

σh ’

σv’ σh

+

X

u

Failure envelope in
terms of total stresses

φ
total stresses

u

σv

σ or σ’
Mohr Coulomb failure criterion with Mohr circle
of stress
σ’v = σ’1
X

τ

Failure envelope in terms
of effective stresses

σ’h = σ’3
effective stresses

X is on failure
Therefore,

φ’

c’
σ’3

c’ Cotφ ’ (σ ’1 + σ ’3 )/
2

'
'

 σ 1' + σ 3 
 σ 1' − σ 3 
 Sinφ ' = 

c' Cotφ '+
 2 
 2 






(σ ’1 − σ ’3 )/
2

σ’1

σ
’
Mohr Coulomb failure criterion with Mohr circle
of stress
'
'

 σ 1' + σ 3 
 σ 1' − σ 3 
c' Cotφ '+
 2  Sinφ ' =  2 









(σ

'
1

) (

)

'
'
− σ 3 = σ 1' + σ 3 Sinφ '+2c' Cosφ '

σ (1 − Sinφ ') = σ (1 + Sinφ ') + 2c' Cosφ '
'
1

'
3

σ =σ
'
1

'
3

(1 + Sinφ ') + 2c' Cosφ '
(1 − Sinφ ')
(1 − Sinφ ')

φ' 
φ' 


σ = σ Tan  45 +  + 2c' Tan 45 + 
2
2


'
1

'
3

2
Determination of shear strength parameters of
soils (c, φ or c’, φ’)
Laboratory
tests
on
specimens
taken
from
representative undisturbed
samples
Most common laboratory tests
to determine the shear strength
parameters are,
1.Direct shear test
2.Triaxial shear test
Other laboratory tests include,
Direct simple shear test, torsional
ring shear test, plane strain triaxial
test, laboratory vane shear test,
laboratory fall cone test

Field tests

1.
2.
3.
4.
5.
6.
7.

Vane shear test
Torvane
Pocket penetrometer
Fall cone
Pressuremeter
Static cone penetrometer
Standard penetration test
Laboratory tests
Field conditions

A representative
soil sample

z

σvc
σhc

σhc
σvc

Before construction

σvc + ∆σ
σhc

σhc
σvc + ∆σ

After and during
construction

z
σvc + ∆σ

Laboratory tests
Simulating field conditions
in the laboratory
0

σvc
0

0
0

Representative
soil
sample
taken from the
site

st
e
lt
ia
x
ra
T
Di
σhc rect
sh
ea
r

σhc
σvc

σhc

σvc + ∆σ

σvc
te

τ
st

τ
σvc

Step 1
Set the specimen in
the apparatus and
apply the initial
stress condition

σhc

Step 2
Apply
the
corresponding field
stress conditions
Triaxial Shear Test
Piston (to apply deviatoric stress)

Failure plane

O-ring
impervious
membrane

Soil
sample

Soil sample
at failure
Perspex
cell

Porous
stone
Water

Cell pressure
Back pressure

Pore pressure or
pedestal

volume change
Triaxial Shear Test
Specimen preparation (undisturbed sample)

Sampling tubes
Sample extruder
Triaxial Shear Test
Specimen preparation (undisturbed sample)

Edges of the sample
are carefully trimmed

Setting up the sample
in the triaxial cell
Triaxial Shear Test
Specimen preparation (undisturbed sample)

Sample is covered
with
a
rubber
membrane and sealed

Cell is completely
filled with water
Triaxial Shear Test
Specimen preparation (undisturbed sample)
Proving ring to
measure
the
deviator load
Dial gauge to
measure vertical
displacement
Types of Triaxial Tests
σc
Step 2
Step 1
σc

σc

deviatoric stress
(∆σ = q)

σc

σc

σ c+ q

σc
Under all-around cell pressure σ c
Is the drainage valve open?
yes

Consolidated
sample

no

Shearing (loading)
Is the drainage valve open?
yes

no

Unconsolidated

Drained

Undrained

sample

loading

loading
Types of Triaxial Tests
Step 2

Step 1
Under all-around cell pressure σ c

Shearing (loading)

Is the drainage valve open?
yes

Consolidated
sample

Is the drainage valve open?

no

yes

Unconsolidated

no

CD test

Undrained

loading

sample

Drained

loading

UU test
CU test
Consolidated- drained test (CD Test)

=

Total, σ

Neutral, u

+

Effective, σ’

Step 1: At the end of consolidation

σ VC

Drainage

σ’VC = σ VC

σ hC

0

σ’hC = σ hC

Step 2: During axial stress increase

σ VC + ∆σ

Drainage

σ hC

σ’V = σ VC +
∆σ = σ’1

0

σ’h = σ hC = σ’3

Step 3: At failure

σ VC + ∆σ f

Drainage

σ hC

σ’Vf = σ VC + ∆σ f = σ’1f

0

σ’hf = σ hC = σ’3f
Consolidated- drained test (CD Test)

σ 1 = σ VC + ∆σ

σ 3 = σ hC

Deviator stress (q or ∆σ d) = σ 1 – σ 3
Consolidated- drained test (CD Test)

Expansion

Time
Compression

Volume change of the
sample

Volume change of sample during consolidation
Consolidated- drained test (CD Test)
Stress-strain relationship during shearing

d

Dense sand
or OC clay

Expansion a
ro i
t
Compression

Volume change
of the sample

ve D
, ssert s σ ∆

(∆σ d)f
(∆σ d)f

Loose sand
or NC Clay

Axial strain

Dense sand
or OC clay
Axial strain

Loose sand
or NC clay
CD tests

How to determine strength parameters c and φ
(∆σ d)f
c

σ 3c
Confining stress = σ 3b
Confining stress = σ 3a

r o a ve D
t i
, ssert s σ ∆

d

Confining stress =

(∆σ d)f
b

σ1 = σ3 +
(∆σ d)f

σ3

(∆σ d)f
a

Axial strain

φ

r ae h S
, ssert s

τ

Mohr – Coulomb
failure envelope

σ 3a

σ 3b σ 3c σ 1a
(∆σ d)f
(∆σ d)fb

σ 1b

σ 1c

σ

or
σ ’
CD tests
Strength parameters c and φ obtained from CD tests

Since u = 0 in CD
tests, σ = σ’

Therefore, c = c’
and φ = φ’
cd and φ d are used
to denote them
CD tests Failure envelopes
For sand and NC Clay, cd = 0

φd

r ae h S
, ssert s

τ

Mohr – Coulomb
failure envelope

σ 3a

σ 1a
(∆σ d)f
a

σ

or
σ ’

Therefore, one CD test would be sufficient to determine φ d
of sand or NC clay
CD tests Failure envelopes
For OC Clay, cd ≠ 0

τ

NC

OC

φ

c

σ3

(∆σ d)f

σ1

σc

σ

or
σ ’
Some practical applications of CD analysis for
clays
1. Embankment constructed very slowly, in layers over a soft clay
deposit

Soft clay

τ

τ

= in situ drained
shear strength
Some practical applications of CD analysis for
clays
2. Earth dam with steady state seepage

τ
Core

τ

= drained shear
strength of clay core
Some practical applications of CD analysis for
clays
3. Excavation or natural slope in clay

τ

τ

= In situ drained shear strength

Note: CD test simulates the long term condition in the field.
Thus, cd and φd should be used to evaluate the long
term behavior of soils
Consolidated- Undrained test (CU Test)

=

Total, σ

Neutral, u

+

Effective, σ’

Step 1: At the end of consolidation

σ VC

Drainage

σ’VC = σ VC

σ hC

0

Step 2: During axial stress increase

σ VC + ∆σ

No
drainage

σ hC

±∆
u

Step 3: At failure

σ hC

σ’V = σ VC + ∆σ ± ∆u
= σ’1
σ’h = σ hC ± ∆u
= σ’3
σ’Vf = σ VC + ∆σ f ± ∆uf
= σ’1f

σ VC + ∆σ f

No
drainage

σ’hC = σ hC

±∆uf



σ’hf = σ hC ± ∆uf
= σ’3f
Consolidated- Undrained test (CU Test)

Expansion

Time
Compression

Volume change of the
sample

Volume change of sample during consolidation
Consolidated- Undrained test (CU Test)
Stress-strain relationship during shearing

d

Dense sand
or OC clay

r t i
+ o a ve D

, ssert s σ ∆

(∆σ d)f
(∆σ d)f

Loose sand
or NC Clay

Axial strain

∆u

Loose
sand /NC
Clay

-

Axial strain

Dense sand
or OC clay
CU tests

How to determine strength parameters c and φ
(∆σ d)f
Confining stress =

σ 3a

σ3
(∆σ d)f
a

Total stresses at failure
Axial strain

φ cu

Mohr
–
Coulomb
failure envelope in
terms of total stresses

r ae h S
, ssert s

τ

r o a ve D
t i
, ssert s σ ∆

d

σ 3b

Confining stress =

b

σ1 = σ3 +
(∆σ d)f

ccu

σ 3a

σ 3b

(∆σ d)fa

σ 1a

σ 1b

σ

or
σ ’
CU tests

How to determine strength parameters c and φ
σ’1 = σ 3 + (∆σ d)f uf

Mohr – Coulomb failure
envelope in terms of
effective stresses

σ’3 = σ 3 - uf

uf

Effective stresses at failure

φ’

φ cu

r ae h S
, ssert s

τ

Mohr
–
Coulomb
failure envelope in
terms of total stresses

C’

ccu

σ’3b
σ’3a σ 3a

ufa

σ 3b

σ’1a
(∆σ d)fa

ufb

σ’1b
σ 1a

σ 1b

σ

or
σ ’
CU tests
Strength parameters c and φ obtained from CD tests

Shear
strength
parameters in terms
of total stresses are
ccu and φ cu

Shear
strength
parameters in terms
of effective stresses
are c’ and φ’

c’ = cd and φ’ =
φd
CU tests Failure envelopes
For sand and NC Clay, ccu and c’ = 0
Mohr – Coulomb failure
envelope in terms of
effective stresses

φ’

φ cu

r ae h S
, ssert s

τ

Mohr
–
Coulomb
failure envelope in
terms of total stresses

σ 3a σ 3a

σ 1a σ 1a
(∆σ d)f

σ

or
σ ’

a
Therefore, one CU test would be sufficient to determine
φ cu and φ’(= φ d) of sand or NC clay
Some practical applications of CU analysis for
clays
1. Embankment constructed rapidly over a soft clay deposit

Soft clay

τ

τ

= in situ
undrained shear
strength
Some practical applications of CU analysis for
clays
2. Rapid drawdown behind an earth dam

τ
Core

τ

= Undrained shear
strength of clay core
Some practical applications of CU analysis for
clays
3. Rapid construction of an embankment on a natural slope

τ
τ

= In situ undrained shear strength

Note: Total stress parameters from CU test (ccu and φcu) can be used for
stability problems where,
Soil have become fully consolidated and are at equilibrium with
the existing stress state; Then for some reason additional
stresses are applied quickly with no drainage occurring
Unconsolidated- Undrained test (UU Test)
Data analysis
Initial specimen condition
No
drainage

Specimen condition
during shearing

σC = σ3
σC = σ3

No
drainage

σ 3 + ∆σ d

Initial volume of the sample = A0 × H0
Volume of the sample during shearing = A × H
Since the test is conducted under undrained condition,
A × H = A0 × H 0
A ×(H0 – ∆H) = A0 × H0
A ×(1 – ∆H/H0) = A0

A0
A=
1− ε z

σ3
Unconsolidated- Undrained test (UU Test)
Step 1: Immediately after sampling
0
0

Step 2: After application of hydrostatic cell pressure
σ’3 = σ 3 - ∆uc
σC = σ3

No
drainage

σC = σ3

=

∆uc

+

σ’3 = σ 3 - ∆uc

∆uc = B ∆σ 3
Increase of pwp due to
increase of cell pressure

Increase of cell pressure
Skempton’s pore water
pressure parameter, B

Note: If soil is fully saturated, then B = 1 (hence, ∆uc = ∆σ 3)
Unconsolidated- Undrained test (UU Test)
Step 3: During application of axial load
No
drainage

σ’1 = σ 3 + ∆σ d - ∆uc

σ 3 + ∆σ d
σ3

=

σ’3 = σ 3 - ∆uc

+

∆ud



∆ud

∆uc ± ∆ud

∆ud = A∆σ d
Increase of pwp due to
increase of deviator stress

Increase
stress

Skempton’s pore water
pressure parameter, A

of

deviator
Unconsolidated- Undrained test (UU Test)
Combining steps 2 and 3,

∆uc = B ∆σ 3

∆ud = A∆σ d

Total pore water pressure increment at any stage, ∆u

∆u = ∆uc + ∆ud
∆u = B ∆σ 3 + A∆σ d
∆u = B ∆σ 3 + A(∆σ 1 – ∆σ 3)

Skempton’s pore
water pressure
equation
Unconsolidated- Undrained test (UU Test)

=

Total, σ

Neutral, u

+

σ’V0 = ur

Step 1: Immediately after sampling

0
0

σ’h0 = ur

-ur

Step 2: After application of hydrostatic cell pressure

No
drainage

σC
σC

-ur + ∆uc =
-ur + σ c
(S = 100% ; B = 1)

r
Step 3: During application of axial load

No
drainage

σ C + ∆σ
σC

-ur + σ c ±
∆u

σ C + ∆σ f
σC

σ’VC = σ C + ur - σ C = ur
σ’h = ur
σ’V = σ C + ∆σ + ur - σ c
∆u
σ’h = σ C + ur - σ c

σ’Vf = σ C + ∆σ f + ur - σ c

Step 3: At failure

No
drainage

Effective, σ’

-ur + σ c ± ∆uf

 ∆u

∆uf = σ’1f

σ’hf = σ C + ur - σ c
= σ’3f

 ∆u

f
Unconsolidated- Undrained test (UU Test)

=

Total, σ

Neutral, u

σ C + ∆σ f
σC

Effective, σ’

σ’Vf = σ C + ∆σ f + ur - σ c

Step 3: At failure

No
drainage

+

∆uf = σ’1f

σ’hf = σ C + ur - σ c
= σ’3f

-ur + σ c ± ∆uf

 ∆u

Mohr circle in terms of effective stresses do not depend on the cell
pressure.
Therefore, we get only one Mohr circle in terms of effective stress for
different cell pressures

τ

σ’3

∆σ

σ’1

σ’

f
Unconsolidated- Undrained test (UU Test)

=

Total, σ

Neutral, u

σ C + ∆σ f
σC

Effective, σ’

σ’Vf = σ C + ∆σ f + ur - σ c

Step 3: At failure

No
drainage

+

∆uf = σ’1f

σ’hf = σ C + ur - σ c
= σ’3f

-ur + σ c ± ∆uf

 ∆u

Mohr circles in terms of total stresses
Failure envelope, φ u = 0

τ
cu
ub

σ 3a
σ’3
3b

∆σ f

ua

σ 1a
σ’1
1b

σ or
σ’

f
Unconsolidated- Undrained test (UU Test)
Effect of degree of saturation on failure envelope

τ

S < 100%

σ 3c σ 3b

S > 100%

σ 1c σ 3a σ 1b

σ 1a σ or
σ’
Some practical applications of UU analysis for
clays
1. Embankment constructed rapidly over a soft clay deposit

Soft clay

τ

τ

= in situ
undrained shear
strength
Some practical applications of UU analysis for
clays
2. Large earth dam constructed rapidly with
no change in water content of soft clay

τ
Core

τ

= Undrained shear
strength of clay core
Some practical applications of UU analysis for
clays
3. Footing placed rapidly on clay deposit

τ

= In situ undrained shear strength

Note: UU test simulates the short term condition in the field.
Thus, cu can be used to analyze the short term
behavior of soils
Unconfined Compression Test (UC Test)

σ 1 = σ VC + ∆σ

σ3 = 0

Confining pressure is zero in the UC test
σ 1 = σ VC +
∆σf

Shear stress, τ

Unconfined Compression Test (UC Test)

σ3 = 0
qu

Normal stress, σ

τf = σ1/2 = qu/2 = cu
Mekanika Tanah - Triaxial shear test

More Related Content

What's hot

Geotechnical Engineering-I [Lec #19: Consolidation-III]
Geotechnical Engineering-I [Lec #19: Consolidation-III]Geotechnical Engineering-I [Lec #19: Consolidation-III]
Geotechnical Engineering-I [Lec #19: Consolidation-III]
Muhammad Irfan
 
Shear Strength of Soils ( Soil Mechanics )
Shear Strength of Soils ( Soil Mechanics )Shear Strength of Soils ( Soil Mechanics )
Shear Strength of Soils ( Soil Mechanics )
pankajdrolia
 
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]
Muhammad Irfan
 
DETERMINATION OF UNCONFINED COMPRESSIVE STRENGTH OF SOIL
DETERMINATION OF UNCONFINED COMPRESSIVE STRENGTH OF SOILDETERMINATION OF UNCONFINED COMPRESSIVE STRENGTH OF SOIL
DETERMINATION OF UNCONFINED COMPRESSIVE STRENGTH OF SOIL
Japtyesh Singh
 
Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)
Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)
Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)
Muhammad Irfan
 
Bearing capacity of rock
Bearing capacity of  rockBearing capacity of  rock
Bearing capacity of rock
akash yadav
 
Critical State Model (Advance Soil Mechanics)
Critical State Model (Advance Soil Mechanics)Critical State Model (Advance Soil Mechanics)
Critical State Model (Advance Soil Mechanics)
pankajdrolia
 
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
Muhammad Irfan
 
Shear strength of soil
Shear strength of soilShear strength of soil
Shear strength of soil
Arbaz Kazi
 
Shear strength of soils
Shear strength of soils Shear strength of soils
Shear strength of soils
Bashirul Islam
 
Unconfined compression test
Unconfined compression testUnconfined compression test
Unconfined compression test
Natalie Ulza
 
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
Muhammad Irfan
 
Soil Exploration
Soil ExplorationSoil Exploration
Soil Exploration
Dr. Sajjad Mangi
 
In situ methods vane shear test
In  situ methods  vane shear testIn  situ methods  vane shear test
In situ methods vane shear test
bealberith
 
Hydrometer Analysis for Soil (Sedimentation)
Hydrometer Analysis for Soil (Sedimentation)Hydrometer Analysis for Soil (Sedimentation)
Hydrometer Analysis for Soil (Sedimentation)
Abdul Majid
 
Site investigation 5.pdf
Site investigation 5.pdfSite investigation 5.pdf
Site investigation 5.pdf
RGamesSaudi
 
Class 6 Shear Strength - Direct Shear Test ( Geotechnical Engineering )
Class 6    Shear Strength - Direct Shear Test ( Geotechnical Engineering )Class 6    Shear Strength - Direct Shear Test ( Geotechnical Engineering )
Class 6 Shear Strength - Direct Shear Test ( Geotechnical Engineering )
Hossam Shafiq I
 
Uji sand-cone
Uji sand-coneUji sand-cone
Uji sand-cone
rendra12222
 
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
Muhammad Irfan
 
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
Muhammad Irfan
 

What's hot (20)

Geotechnical Engineering-I [Lec #19: Consolidation-III]
Geotechnical Engineering-I [Lec #19: Consolidation-III]Geotechnical Engineering-I [Lec #19: Consolidation-III]
Geotechnical Engineering-I [Lec #19: Consolidation-III]
 
Shear Strength of Soils ( Soil Mechanics )
Shear Strength of Soils ( Soil Mechanics )Shear Strength of Soils ( Soil Mechanics )
Shear Strength of Soils ( Soil Mechanics )
 
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]
Geotechnical Engineering-II [Lec #24: Coulomb EP Theory]
 
DETERMINATION OF UNCONFINED COMPRESSIVE STRENGTH OF SOIL
DETERMINATION OF UNCONFINED COMPRESSIVE STRENGTH OF SOILDETERMINATION OF UNCONFINED COMPRESSIVE STRENGTH OF SOIL
DETERMINATION OF UNCONFINED COMPRESSIVE STRENGTH OF SOIL
 
Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)
Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)
Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)
 
Bearing capacity of rock
Bearing capacity of  rockBearing capacity of  rock
Bearing capacity of rock
 
Critical State Model (Advance Soil Mechanics)
Critical State Model (Advance Soil Mechanics)Critical State Model (Advance Soil Mechanics)
Critical State Model (Advance Soil Mechanics)
 
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
 
Shear strength of soil
Shear strength of soilShear strength of soil
Shear strength of soil
 
Shear strength of soils
Shear strength of soils Shear strength of soils
Shear strength of soils
 
Unconfined compression test
Unconfined compression testUnconfined compression test
Unconfined compression test
 
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
 
Soil Exploration
Soil ExplorationSoil Exploration
Soil Exploration
 
In situ methods vane shear test
In  situ methods  vane shear testIn  situ methods  vane shear test
In situ methods vane shear test
 
Hydrometer Analysis for Soil (Sedimentation)
Hydrometer Analysis for Soil (Sedimentation)Hydrometer Analysis for Soil (Sedimentation)
Hydrometer Analysis for Soil (Sedimentation)
 
Site investigation 5.pdf
Site investigation 5.pdfSite investigation 5.pdf
Site investigation 5.pdf
 
Class 6 Shear Strength - Direct Shear Test ( Geotechnical Engineering )
Class 6    Shear Strength - Direct Shear Test ( Geotechnical Engineering )Class 6    Shear Strength - Direct Shear Test ( Geotechnical Engineering )
Class 6 Shear Strength - Direct Shear Test ( Geotechnical Engineering )
 
Uji sand-cone
Uji sand-coneUji sand-cone
Uji sand-cone
 
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #18: Terzaghi Bearing Capacity Equation]
 
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
 

Similar to Mekanika Tanah - Triaxial shear test

Triaxial shear test and shear strength properties of soil
Triaxial shear test and shear strength properties of soilTriaxial shear test and shear strength properties of soil
Triaxial shear test and shear strength properties of soil
satish dulla
 
Triaxial shear test of soils
Triaxial shear test of soilsTriaxial shear test of soils
Triaxial shear test of soils
Amardeep Singh
 
Shear Strength sivakugan
Shear Strength sivakuganShear Strength sivakugan
Shear Strength sivakuganZakee Kazmee
 
Strength nalin
Strength nalinStrength nalin
Strength nalin
Sairam Kavi
 
Shear Strength of soil and behaviour of soil under shear action
Shear Strength of soil and behaviour of soil under shear actionShear Strength of soil and behaviour of soil under shear action
Shear Strength of soil and behaviour of soil under shear action
satish dulla
 
9 shear strength of soil
9 shear strength of soil9 shear strength of soil
9 shear strength of soil
Saurabh Kumar
 
Lecture 5 shear strength of soils
Lecture 5  shear strength of soilsLecture 5  shear strength of soils
Lecture 5 shear strength of soils
ELIASASSEFA3
 
Strength sivakugan(Complete Soil Mech. Undestanding Pakage: ABHAY)
Strength sivakugan(Complete Soil Mech. Undestanding Pakage: ABHAY)Strength sivakugan(Complete Soil Mech. Undestanding Pakage: ABHAY)
Strength sivakugan(Complete Soil Mech. Undestanding Pakage: ABHAY)
Abhay Kumar
 
Lecture 5 shear strength of soils
Lecture 5  shear strength of soilsLecture 5  shear strength of soils
Lecture 5 shear strength of soils
ELIASASSEFA3
 
Shear Strength of Soil.ppt
Shear Strength of Soil.pptShear Strength of Soil.ppt
Shear Strength of Soil.ppt
Aishpatil11
 
Shear strength of soil
Shear strength of soilShear strength of soil
Shear strength of soil
rajini24
 
Shear test
Shear testShear test
Shear test
Salman H. Sindhoo
 
1557731627-Strength-Sivakugan__1_.ppt
1557731627-Strength-Sivakugan__1_.ppt1557731627-Strength-Sivakugan__1_.ppt
1557731627-Strength-Sivakugan__1_.ppt
logeshwari jambunathan
 
1557731627-Strength-Sivakugan__1_.pptXXX
1557731627-Strength-Sivakugan__1_.pptXXX1557731627-Strength-Sivakugan__1_.pptXXX
1557731627-Strength-Sivakugan__1_.pptXXX
soukat2
 
1557731627-Strength-Sivakugan__1_.ppt
1557731627-Strength-Sivakugan__1_.ppt1557731627-Strength-Sivakugan__1_.ppt
1557731627-Strength-Sivakugan__1_.ppt
DrAnkitaUpadhya
 
1557731627-Strength-Sivakugan__1_.ppt
1557731627-Strength-Sivakugan__1_.ppt1557731627-Strength-Sivakugan__1_.ppt
1557731627-Strength-Sivakugan__1_.ppt
DrAnkitaUpadhya
 
Tema 2 shear strengthofsoil
Tema 2 shear strengthofsoilTema 2 shear strengthofsoil
Tema 2 shear strengthofsoil
Renzo Jair Arestegui Tacuri
 
Geotechnical Engineering-II [Lec #3: Direct Shear Test)
Geotechnical Engineering-II [Lec #3: Direct Shear Test)Geotechnical Engineering-II [Lec #3: Direct Shear Test)
Geotechnical Engineering-II [Lec #3: Direct Shear Test)
Muhammad Irfan
 

Similar to Mekanika Tanah - Triaxial shear test (20)

Triaxial shear test and shear strength properties of soil
Triaxial shear test and shear strength properties of soilTriaxial shear test and shear strength properties of soil
Triaxial shear test and shear strength properties of soil
 
Triaxial shear test of soils
Triaxial shear test of soilsTriaxial shear test of soils
Triaxial shear test of soils
 
Shear Strength sivakugan
Shear Strength sivakuganShear Strength sivakugan
Shear Strength sivakugan
 
Strength nalin
Strength nalinStrength nalin
Strength nalin
 
Strength nalin
Strength nalinStrength nalin
Strength nalin
 
Shear Strength of soil and behaviour of soil under shear action
Shear Strength of soil and behaviour of soil under shear actionShear Strength of soil and behaviour of soil under shear action
Shear Strength of soil and behaviour of soil under shear action
 
9 shear strength of soil
9 shear strength of soil9 shear strength of soil
9 shear strength of soil
 
Lecture 5 shear strength of soils
Lecture 5  shear strength of soilsLecture 5  shear strength of soils
Lecture 5 shear strength of soils
 
Strength sivakugan(Complete Soil Mech. Undestanding Pakage: ABHAY)
Strength sivakugan(Complete Soil Mech. Undestanding Pakage: ABHAY)Strength sivakugan(Complete Soil Mech. Undestanding Pakage: ABHAY)
Strength sivakugan(Complete Soil Mech. Undestanding Pakage: ABHAY)
 
Lecture 5 shear strength of soils
Lecture 5  shear strength of soilsLecture 5  shear strength of soils
Lecture 5 shear strength of soils
 
Shear Strength of Soil.ppt
Shear Strength of Soil.pptShear Strength of Soil.ppt
Shear Strength of Soil.ppt
 
Shear strength of soil
Shear strength of soilShear strength of soil
Shear strength of soil
 
Shear test
Shear testShear test
Shear test
 
1557731627-Strength-Sivakugan__1_.ppt
1557731627-Strength-Sivakugan__1_.ppt1557731627-Strength-Sivakugan__1_.ppt
1557731627-Strength-Sivakugan__1_.ppt
 
1557731627-Strength-Sivakugan__1_.pptXXX
1557731627-Strength-Sivakugan__1_.pptXXX1557731627-Strength-Sivakugan__1_.pptXXX
1557731627-Strength-Sivakugan__1_.pptXXX
 
1557731627-Strength-Sivakugan__1_.ppt
1557731627-Strength-Sivakugan__1_.ppt1557731627-Strength-Sivakugan__1_.ppt
1557731627-Strength-Sivakugan__1_.ppt
 
1557731627-Strength-Sivakugan__1_.ppt
1557731627-Strength-Sivakugan__1_.ppt1557731627-Strength-Sivakugan__1_.ppt
1557731627-Strength-Sivakugan__1_.ppt
 
Tema 2 shear strengthofsoil
Tema 2 shear strengthofsoilTema 2 shear strengthofsoil
Tema 2 shear strengthofsoil
 
Shearstrength
ShearstrengthShearstrength
Shearstrength
 
Geotechnical Engineering-II [Lec #3: Direct Shear Test)
Geotechnical Engineering-II [Lec #3: Direct Shear Test)Geotechnical Engineering-II [Lec #3: Direct Shear Test)
Geotechnical Engineering-II [Lec #3: Direct Shear Test)
 

More from Reski Aprilia

Power point tgl 16 12-2014 (2)
Power point tgl 16 12-2014 (2)Power point tgl 16 12-2014 (2)
Power point tgl 16 12-2014 (2)
Reski Aprilia
 
Laporan On the Job Training (OJT)
Laporan On the Job Training (OJT)Laporan On the Job Training (OJT)
Laporan On the Job Training (OJT)
Reski Aprilia
 
TEKNIK PEMASANGAN TIANG PANCANG ULIN MENARA PENGAWAS MANGROVE DI MANGROVE CEN...
TEKNIK PEMASANGAN TIANG PANCANG ULIN MENARA PENGAWAS MANGROVE DI MANGROVE CEN...TEKNIK PEMASANGAN TIANG PANCANG ULIN MENARA PENGAWAS MANGROVE DI MANGROVE CEN...
TEKNIK PEMASANGAN TIANG PANCANG ULIN MENARA PENGAWAS MANGROVE DI MANGROVE CEN...
Reski Aprilia
 
TEKNIK PEMASANGAN TIANG PANCANG ULIN MENARA PENGAWAS MANGROVE DI MANGROVE CEN...
TEKNIK PEMASANGAN TIANG PANCANG ULIN MENARA PENGAWAS MANGROVE DI MANGROVE CEN...TEKNIK PEMASANGAN TIANG PANCANG ULIN MENARA PENGAWAS MANGROVE DI MANGROVE CEN...
TEKNIK PEMASANGAN TIANG PANCANG ULIN MENARA PENGAWAS MANGROVE DI MANGROVE CEN...
Reski Aprilia
 
Rencana Anggaran Biaya (RAB) Rumah Tinggal Tipe 193
Rencana Anggaran Biaya (RAB) Rumah Tinggal Tipe 193Rencana Anggaran Biaya (RAB) Rumah Tinggal Tipe 193
Rencana Anggaran Biaya (RAB) Rumah Tinggal Tipe 193
Reski Aprilia
 
Perhitungan Volume Pekerjaan Rumah Tinggal Tipe 193
Perhitungan Volume Pekerjaan Rumah Tinggal Tipe 193Perhitungan Volume Pekerjaan Rumah Tinggal Tipe 193
Perhitungan Volume Pekerjaan Rumah Tinggal Tipe 193
Reski Aprilia
 
Pelat Beton Bertulang
Pelat Beton BertulangPelat Beton Bertulang
Pelat Beton Bertulang
Reski Aprilia
 
Struktur Beton - Kolom
Struktur Beton - KolomStruktur Beton - Kolom
Struktur Beton - KolomReski Aprilia
 
Struktur Kayu - Meranti Putih
Struktur Kayu - Meranti PutihStruktur Kayu - Meranti Putih
Struktur Kayu - Meranti Putih
Reski Aprilia
 
Sistem Penerapan Drainase
Sistem Penerapan DrainaseSistem Penerapan Drainase
Sistem Penerapan DrainaseReski Aprilia
 
Sistem Penerapan Drainase
Sistem Penerapan DrainaseSistem Penerapan Drainase
Sistem Penerapan Drainase
Reski Aprilia
 
SISTEM DAN MEKANISME PENGELOLAAN KESELAMATAN DAN KESEHATAN KERJA PADA PELAKSA...
SISTEM DAN MEKANISME PENGELOLAAN KESELAMATAN DAN KESEHATAN KERJA PADA PELAKSA...SISTEM DAN MEKANISME PENGELOLAAN KESELAMATAN DAN KESEHATAN KERJA PADA PELAKSA...
SISTEM DAN MEKANISME PENGELOLAAN KESELAMATAN DAN KESEHATAN KERJA PADA PELAKSA...
Reski Aprilia
 
Sistem dan Mekanisme Pengelolaan Keselamatan dan Kesehatan Kerja pada Pelaksa...
Sistem dan Mekanisme Pengelolaan Keselamatan dan Kesehatan Kerja pada Pelaksa...Sistem dan Mekanisme Pengelolaan Keselamatan dan Kesehatan Kerja pada Pelaksa...
Sistem dan Mekanisme Pengelolaan Keselamatan dan Kesehatan Kerja pada Pelaksa...Reski Aprilia
 
Matematika Teknik - Matriks
Matematika Teknik - MatriksMatematika Teknik - Matriks
Matematika Teknik - MatriksReski Aprilia
 
Matematika Teknik - Diferensial
Matematika Teknik - DiferensialMatematika Teknik - Diferensial
Matematika Teknik - DiferensialReski Aprilia
 
Pelat beton bertulang
Pelat beton bertulangPelat beton bertulang
Pelat beton bertulangReski Aprilia
 
Laboratorium Uji Tanah - CBR Lapangan
Laboratorium Uji Tanah - CBR LapanganLaboratorium Uji Tanah - CBR Lapangan
Laboratorium Uji Tanah - CBR LapanganReski Aprilia
 
Laboratorium Uji Tanah - Percobaan Kerucut Pasir
Laboratorium Uji Tanah - Percobaan Kerucut PasirLaboratorium Uji Tanah - Percobaan Kerucut Pasir
Laboratorium Uji Tanah - Percobaan Kerucut PasirReski Aprilia
 
Laboratorium Uji Tanah - Berat Jenis Tanah
Laboratorium Uji Tanah - Berat Jenis TanahLaboratorium Uji Tanah - Berat Jenis Tanah
Laboratorium Uji Tanah - Berat Jenis TanahReski Aprilia
 

More from Reski Aprilia (20)

Power point tgl 16 12-2014 (2)
Power point tgl 16 12-2014 (2)Power point tgl 16 12-2014 (2)
Power point tgl 16 12-2014 (2)
 
Laporan On the Job Training (OJT)
Laporan On the Job Training (OJT)Laporan On the Job Training (OJT)
Laporan On the Job Training (OJT)
 
TEKNIK PEMASANGAN TIANG PANCANG ULIN MENARA PENGAWAS MANGROVE DI MANGROVE CEN...
TEKNIK PEMASANGAN TIANG PANCANG ULIN MENARA PENGAWAS MANGROVE DI MANGROVE CEN...TEKNIK PEMASANGAN TIANG PANCANG ULIN MENARA PENGAWAS MANGROVE DI MANGROVE CEN...
TEKNIK PEMASANGAN TIANG PANCANG ULIN MENARA PENGAWAS MANGROVE DI MANGROVE CEN...
 
TEKNIK PEMASANGAN TIANG PANCANG ULIN MENARA PENGAWAS MANGROVE DI MANGROVE CEN...
TEKNIK PEMASANGAN TIANG PANCANG ULIN MENARA PENGAWAS MANGROVE DI MANGROVE CEN...TEKNIK PEMASANGAN TIANG PANCANG ULIN MENARA PENGAWAS MANGROVE DI MANGROVE CEN...
TEKNIK PEMASANGAN TIANG PANCANG ULIN MENARA PENGAWAS MANGROVE DI MANGROVE CEN...
 
Rencana Anggaran Biaya (RAB) Rumah Tinggal Tipe 193
Rencana Anggaran Biaya (RAB) Rumah Tinggal Tipe 193Rencana Anggaran Biaya (RAB) Rumah Tinggal Tipe 193
Rencana Anggaran Biaya (RAB) Rumah Tinggal Tipe 193
 
Perhitungan Volume Pekerjaan Rumah Tinggal Tipe 193
Perhitungan Volume Pekerjaan Rumah Tinggal Tipe 193Perhitungan Volume Pekerjaan Rumah Tinggal Tipe 193
Perhitungan Volume Pekerjaan Rumah Tinggal Tipe 193
 
Pelat Beton Bertulang
Pelat Beton BertulangPelat Beton Bertulang
Pelat Beton Bertulang
 
Struktur Beton - Kolom
Struktur Beton - KolomStruktur Beton - Kolom
Struktur Beton - Kolom
 
Meranti putih
Meranti putihMeranti putih
Meranti putih
 
Struktur Kayu - Meranti Putih
Struktur Kayu - Meranti PutihStruktur Kayu - Meranti Putih
Struktur Kayu - Meranti Putih
 
Sistem Penerapan Drainase
Sistem Penerapan DrainaseSistem Penerapan Drainase
Sistem Penerapan Drainase
 
Sistem Penerapan Drainase
Sistem Penerapan DrainaseSistem Penerapan Drainase
Sistem Penerapan Drainase
 
SISTEM DAN MEKANISME PENGELOLAAN KESELAMATAN DAN KESEHATAN KERJA PADA PELAKSA...
SISTEM DAN MEKANISME PENGELOLAAN KESELAMATAN DAN KESEHATAN KERJA PADA PELAKSA...SISTEM DAN MEKANISME PENGELOLAAN KESELAMATAN DAN KESEHATAN KERJA PADA PELAKSA...
SISTEM DAN MEKANISME PENGELOLAAN KESELAMATAN DAN KESEHATAN KERJA PADA PELAKSA...
 
Sistem dan Mekanisme Pengelolaan Keselamatan dan Kesehatan Kerja pada Pelaksa...
Sistem dan Mekanisme Pengelolaan Keselamatan dan Kesehatan Kerja pada Pelaksa...Sistem dan Mekanisme Pengelolaan Keselamatan dan Kesehatan Kerja pada Pelaksa...
Sistem dan Mekanisme Pengelolaan Keselamatan dan Kesehatan Kerja pada Pelaksa...
 
Matematika Teknik - Matriks
Matematika Teknik - MatriksMatematika Teknik - Matriks
Matematika Teknik - Matriks
 
Matematika Teknik - Diferensial
Matematika Teknik - DiferensialMatematika Teknik - Diferensial
Matematika Teknik - Diferensial
 
Pelat beton bertulang
Pelat beton bertulangPelat beton bertulang
Pelat beton bertulang
 
Laboratorium Uji Tanah - CBR Lapangan
Laboratorium Uji Tanah - CBR LapanganLaboratorium Uji Tanah - CBR Lapangan
Laboratorium Uji Tanah - CBR Lapangan
 
Laboratorium Uji Tanah - Percobaan Kerucut Pasir
Laboratorium Uji Tanah - Percobaan Kerucut PasirLaboratorium Uji Tanah - Percobaan Kerucut Pasir
Laboratorium Uji Tanah - Percobaan Kerucut Pasir
 
Laboratorium Uji Tanah - Berat Jenis Tanah
Laboratorium Uji Tanah - Berat Jenis TanahLaboratorium Uji Tanah - Berat Jenis Tanah
Laboratorium Uji Tanah - Berat Jenis Tanah
 

Recently uploaded

Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
gerogepatton
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
TeeVichai
 
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
WENKENLI1
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
JoytuBarua2
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
AJAYKUMARPUND1
 
AP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specificAP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specific
BrazilAccount1
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
SamSarthak3
 
Recycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part IIIRecycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part III
Aditya Rajan Patra
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
Kamal Acharya
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Teleport Manpower Consultant
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
ydteq
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
Amil Baba Dawood bangali
 
14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application
SyedAbiiAzazi1
 
ML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptxML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptx
Vijay Dialani, PhD
 
Hierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power SystemHierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power System
Kerry Sado
 
CW RADAR, FMCW RADAR, FMCW ALTIMETER, AND THEIR PARAMETERS
CW RADAR, FMCW RADAR, FMCW ALTIMETER, AND THEIR PARAMETERSCW RADAR, FMCW RADAR, FMCW ALTIMETER, AND THEIR PARAMETERS
CW RADAR, FMCW RADAR, FMCW ALTIMETER, AND THEIR PARAMETERS
veerababupersonal22
 
DfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributionsDfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributions
gestioneergodomus
 
Building Electrical System Design & Installation
Building Electrical System Design & InstallationBuilding Electrical System Design & Installation
Building Electrical System Design & Installation
symbo111
 
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation & Control
 

Recently uploaded (20)

Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
 
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
 
AP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specificAP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specific
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
 
Recycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part IIIRecycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part III
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
 
14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application
 
ML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptxML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptx
 
Hierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power SystemHierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power System
 
CW RADAR, FMCW RADAR, FMCW ALTIMETER, AND THEIR PARAMETERS
CW RADAR, FMCW RADAR, FMCW ALTIMETER, AND THEIR PARAMETERSCW RADAR, FMCW RADAR, FMCW ALTIMETER, AND THEIR PARAMETERS
CW RADAR, FMCW RADAR, FMCW ALTIMETER, AND THEIR PARAMETERS
 
DfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributionsDfMAy 2024 - key insights and contributions
DfMAy 2024 - key insights and contributions
 
Building Electrical System Design & Installation
Building Electrical System Design & InstallationBuilding Electrical System Design & Installation
Building Electrical System Design & Installation
 
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
 

Mekanika Tanah - Triaxial shear test

  • 1. Triaxial Shear Test CEP 701 - Soil Engineering Laboratory
  • 3. Shear failure of soils Soils generally fail in shear Embankment Strip footing Failure surface Mobilized shear resistance At failure, shear stress along the failure surface (mobilized shear resistance) reaches the shear strength.
  • 4. Shear failure of soils Soils generally fail in shear Retaining wall
  • 5. Shear failure of soils Soils generally fail in shear Retaining wall Mobilized shear resistance Failure surface At failure, shear stress along the failure surface (mobilized shear resistance) reaches the shear strength.
  • 6. Shear failure mechanism failure surface The soil grains slide over each other along the failure surface. No crushing of individual grains.
  • 7. Shear failure mechanism σ τ τ At failure, shear stress along the failure surface (τ) reaches the shear strength (τf).
  • 8. Mohr-Coulomb Failure Criterion (in terms of total stresses) τ τ f = c + σ tan φ failu Cohesio n re τf c σ φ e elop env Friction angle σ τf is the maximum shear stress the soil can take without failure, under normal stress of σ.
  • 9. Mohr-Coulomb Failure Criterion (in terms of effective stresses) τ τ f = c'+σ ' tan φ ' re ailu f Effective cohesion τf c’ σ’ e elop env σ ' =σ −u φ’ u = pore water pressure Effective friction angle σ’ τf is the maximum shear stress the soil can take without failure, under normal effective stress of σ’.
  • 10. Mohr-Coulomb Failure Criterion Shear strength consists of two components: cohesive and frictional. τ τ f = c'+σ ' f tan φ ' τf φ’ c’ σ’f tan φ’ c’ σ’f iv hes co t nen po com e frictional component σ' c and φ are measures of shear strength. Higher the values, higher the shear strength.
  • 11. Mohr Circle of stress σ’ 1 σ’ σ’ Soil element 3 τ σ’ 3 θ σ’ 1 Resolving forces in σ and τ directions, σ 1' − σ 3' τ= Sin 2θ 2 σ 1' + σ 3' σ 1' − σ 3' σ' = + Cos 2θ 2 2  ' σ +σ τ + σ −  2  2 ' 1 ' 2 3  σ −σ  =   2   ' 1 ' 2 3    
  • 12. Mohr Circle of stress σ’1 σ’ σ’3 τ θ Soil element σ’3 σ’1 τ  ' σ +σ τ + σ −  2  2 ' 1 ' 2 3  σ −σ  =   2   ' 1 ' 2 3     ' σ 1' − σ 3 2 ' σ3 ' σ 1' + σ 3 2 σ 1' σ’
  • 13. Mohr Circle of stress σ’1 σ’ σ’3 σ’3 τ θ Soil element σ’1 τ  ' σ +σ τ + σ −  2  2 ' 1 ' 2 3  σ −σ  =   2   ' 1 (σ’, τ) ' 2 3     θ ' σ3 ' σ 1' − σ 3 2 ' σ 1' + σ 3 2 PD = Pole w.r.t. plane σ 1' σ’
  • 14. Mohr Circles & Failure Envelope τ Failure surface X Y τ f = c'+σ ' tan φ ' X Y σ’ Soil elements at different locations Y ~ stable X ~ failure
  • 15. Mohr Circles & Failure Envelope The soil element does not fail if the Mohr circle is contained within the envelope GL ∆σ σc Y σc σc Initially, Mohr circle is a point ∆σ σc+∆σ
  • 16. Mohr Circles & Failure Envelope As loading progresses, Mohr circle becomes larger… GL σc Y ∆σ σc σc .. and finally failure occurs when Mohr circle touches the envelope
  • 17. Orientation of Failure Plane σ’1 Failure envelope σ’ σ’3 τ σ’3 θ σ’1 (σ’, τ f) (90 – θ) θ φ’ ' σ3 ' σ 1' + σ 3 2 PD = Pole w.r.t. plane Therefore, 90 – θ + φ’ = θ θ = 45 + φ’/2 σ 1' σ’
  • 18. Mohr circles in terms of total & effective stresses σv X σ v’ σh = X u σ h’ + X u τ effective stresses σh ’ σv’ σh total stresses u σv σ or σ’
  • 19. Failure envelopes in terms of total & effective stresses σv X If X is on failure σ v’ σh τ = X u σ h’ Failure envelope in terms of effective stresses φ’ effective stresses c’ c σh ’ σv’ σh + X u Failure envelope in terms of total stresses φ total stresses u σv σ or σ’
  • 20. Mohr Coulomb failure criterion with Mohr circle of stress σ’v = σ’1 X τ Failure envelope in terms of effective stresses σ’h = σ’3 effective stresses X is on failure Therefore, φ’ c’ σ’3 c’ Cotφ ’ (σ ’1 + σ ’3 )/ 2 ' '   σ 1' + σ 3   σ 1' − σ 3   Sinφ ' =   c' Cotφ '+  2   2       (σ ’1 − σ ’3 )/ 2 σ’1 σ ’
  • 21. Mohr Coulomb failure criterion with Mohr circle of stress ' '   σ 1' + σ 3   σ 1' − σ 3  c' Cotφ '+  2  Sinφ ' =  2          (σ ' 1 ) ( ) ' ' − σ 3 = σ 1' + σ 3 Sinφ '+2c' Cosφ ' σ (1 − Sinφ ') = σ (1 + Sinφ ') + 2c' Cosφ ' ' 1 ' 3 σ =σ ' 1 ' 3 (1 + Sinφ ') + 2c' Cosφ ' (1 − Sinφ ') (1 − Sinφ ') φ'  φ'    σ = σ Tan  45 +  + 2c' Tan 45 +  2 2   ' 1 ' 3 2
  • 22. Determination of shear strength parameters of soils (c, φ or c’, φ’) Laboratory tests on specimens taken from representative undisturbed samples Most common laboratory tests to determine the shear strength parameters are, 1.Direct shear test 2.Triaxial shear test Other laboratory tests include, Direct simple shear test, torsional ring shear test, plane strain triaxial test, laboratory vane shear test, laboratory fall cone test Field tests 1. 2. 3. 4. 5. 6. 7. Vane shear test Torvane Pocket penetrometer Fall cone Pressuremeter Static cone penetrometer Standard penetration test
  • 23. Laboratory tests Field conditions A representative soil sample z σvc σhc σhc σvc Before construction σvc + ∆σ σhc σhc σvc + ∆σ After and during construction z
  • 24. σvc + ∆σ Laboratory tests Simulating field conditions in the laboratory 0 σvc 0 0 0 Representative soil sample taken from the site st e lt ia x ra T Di σhc rect sh ea r σhc σvc σhc σvc + ∆σ σvc te τ st τ σvc Step 1 Set the specimen in the apparatus and apply the initial stress condition σhc Step 2 Apply the corresponding field stress conditions
  • 25. Triaxial Shear Test Piston (to apply deviatoric stress) Failure plane O-ring impervious membrane Soil sample Soil sample at failure Perspex cell Porous stone Water Cell pressure Back pressure Pore pressure or pedestal volume change
  • 26.
  • 27. Triaxial Shear Test Specimen preparation (undisturbed sample) Sampling tubes Sample extruder
  • 28. Triaxial Shear Test Specimen preparation (undisturbed sample) Edges of the sample are carefully trimmed Setting up the sample in the triaxial cell
  • 29. Triaxial Shear Test Specimen preparation (undisturbed sample) Sample is covered with a rubber membrane and sealed Cell is completely filled with water
  • 30. Triaxial Shear Test Specimen preparation (undisturbed sample) Proving ring to measure the deviator load Dial gauge to measure vertical displacement
  • 31. Types of Triaxial Tests σc Step 2 Step 1 σc σc deviatoric stress (∆σ = q) σc σc σ c+ q σc Under all-around cell pressure σ c Is the drainage valve open? yes Consolidated sample no Shearing (loading) Is the drainage valve open? yes no Unconsolidated Drained Undrained sample loading loading
  • 32. Types of Triaxial Tests Step 2 Step 1 Under all-around cell pressure σ c Shearing (loading) Is the drainage valve open? yes Consolidated sample Is the drainage valve open? no yes Unconsolidated no CD test Undrained loading sample Drained loading UU test CU test
  • 33. Consolidated- drained test (CD Test) = Total, σ Neutral, u + Effective, σ’ Step 1: At the end of consolidation σ VC Drainage σ’VC = σ VC σ hC 0 σ’hC = σ hC Step 2: During axial stress increase σ VC + ∆σ Drainage σ hC σ’V = σ VC + ∆σ = σ’1 0 σ’h = σ hC = σ’3 Step 3: At failure σ VC + ∆σ f Drainage σ hC σ’Vf = σ VC + ∆σ f = σ’1f 0 σ’hf = σ hC = σ’3f
  • 34. Consolidated- drained test (CD Test) σ 1 = σ VC + ∆σ σ 3 = σ hC Deviator stress (q or ∆σ d) = σ 1 – σ 3
  • 35. Consolidated- drained test (CD Test) Expansion Time Compression Volume change of the sample Volume change of sample during consolidation
  • 36. Consolidated- drained test (CD Test) Stress-strain relationship during shearing d Dense sand or OC clay Expansion a ro i t Compression Volume change of the sample ve D , ssert s σ ∆ (∆σ d)f (∆σ d)f Loose sand or NC Clay Axial strain Dense sand or OC clay Axial strain Loose sand or NC clay
  • 37. CD tests How to determine strength parameters c and φ (∆σ d)f c σ 3c Confining stress = σ 3b Confining stress = σ 3a r o a ve D t i , ssert s σ ∆ d Confining stress = (∆σ d)f b σ1 = σ3 + (∆σ d)f σ3 (∆σ d)f a Axial strain φ r ae h S , ssert s τ Mohr – Coulomb failure envelope σ 3a σ 3b σ 3c σ 1a (∆σ d)f (∆σ d)fb σ 1b σ 1c σ or σ ’
  • 38. CD tests Strength parameters c and φ obtained from CD tests Since u = 0 in CD tests, σ = σ’ Therefore, c = c’ and φ = φ’ cd and φ d are used to denote them
  • 39. CD tests Failure envelopes For sand and NC Clay, cd = 0 φd r ae h S , ssert s τ Mohr – Coulomb failure envelope σ 3a σ 1a (∆σ d)f a σ or σ ’ Therefore, one CD test would be sufficient to determine φ d of sand or NC clay
  • 40. CD tests Failure envelopes For OC Clay, cd ≠ 0 τ NC OC φ c σ3 (∆σ d)f σ1 σc σ or σ ’
  • 41. Some practical applications of CD analysis for clays 1. Embankment constructed very slowly, in layers over a soft clay deposit Soft clay τ τ = in situ drained shear strength
  • 42. Some practical applications of CD analysis for clays 2. Earth dam with steady state seepage τ Core τ = drained shear strength of clay core
  • 43. Some practical applications of CD analysis for clays 3. Excavation or natural slope in clay τ τ = In situ drained shear strength Note: CD test simulates the long term condition in the field. Thus, cd and φd should be used to evaluate the long term behavior of soils
  • 44. Consolidated- Undrained test (CU Test) = Total, σ Neutral, u + Effective, σ’ Step 1: At the end of consolidation σ VC Drainage σ’VC = σ VC σ hC 0 Step 2: During axial stress increase σ VC + ∆σ No drainage σ hC ±∆ u Step 3: At failure σ hC σ’V = σ VC + ∆σ ± ∆u = σ’1 σ’h = σ hC ± ∆u = σ’3 σ’Vf = σ VC + ∆σ f ± ∆uf = σ’1f σ VC + ∆σ f No drainage σ’hC = σ hC ±∆uf  σ’hf = σ hC ± ∆uf = σ’3f
  • 45. Consolidated- Undrained test (CU Test) Expansion Time Compression Volume change of the sample Volume change of sample during consolidation
  • 46. Consolidated- Undrained test (CU Test) Stress-strain relationship during shearing d Dense sand or OC clay r t i + o a ve D , ssert s σ ∆ (∆σ d)f (∆σ d)f Loose sand or NC Clay Axial strain ∆u Loose sand /NC Clay - Axial strain Dense sand or OC clay
  • 47. CU tests How to determine strength parameters c and φ (∆σ d)f Confining stress = σ 3a σ3 (∆σ d)f a Total stresses at failure Axial strain φ cu Mohr – Coulomb failure envelope in terms of total stresses r ae h S , ssert s τ r o a ve D t i , ssert s σ ∆ d σ 3b Confining stress = b σ1 = σ3 + (∆σ d)f ccu σ 3a σ 3b (∆σ d)fa σ 1a σ 1b σ or σ ’
  • 48. CU tests How to determine strength parameters c and φ σ’1 = σ 3 + (∆σ d)f uf Mohr – Coulomb failure envelope in terms of effective stresses σ’3 = σ 3 - uf uf Effective stresses at failure φ’ φ cu r ae h S , ssert s τ Mohr – Coulomb failure envelope in terms of total stresses C’ ccu σ’3b σ’3a σ 3a ufa σ 3b σ’1a (∆σ d)fa ufb σ’1b σ 1a σ 1b σ or σ ’
  • 49. CU tests Strength parameters c and φ obtained from CD tests Shear strength parameters in terms of total stresses are ccu and φ cu Shear strength parameters in terms of effective stresses are c’ and φ’ c’ = cd and φ’ = φd
  • 50. CU tests Failure envelopes For sand and NC Clay, ccu and c’ = 0 Mohr – Coulomb failure envelope in terms of effective stresses φ’ φ cu r ae h S , ssert s τ Mohr – Coulomb failure envelope in terms of total stresses σ 3a σ 3a σ 1a σ 1a (∆σ d)f σ or σ ’ a Therefore, one CU test would be sufficient to determine φ cu and φ’(= φ d) of sand or NC clay
  • 51. Some practical applications of CU analysis for clays 1. Embankment constructed rapidly over a soft clay deposit Soft clay τ τ = in situ undrained shear strength
  • 52. Some practical applications of CU analysis for clays 2. Rapid drawdown behind an earth dam τ Core τ = Undrained shear strength of clay core
  • 53. Some practical applications of CU analysis for clays 3. Rapid construction of an embankment on a natural slope τ τ = In situ undrained shear strength Note: Total stress parameters from CU test (ccu and φcu) can be used for stability problems where, Soil have become fully consolidated and are at equilibrium with the existing stress state; Then for some reason additional stresses are applied quickly with no drainage occurring
  • 54. Unconsolidated- Undrained test (UU Test) Data analysis Initial specimen condition No drainage Specimen condition during shearing σC = σ3 σC = σ3 No drainage σ 3 + ∆σ d Initial volume of the sample = A0 × H0 Volume of the sample during shearing = A × H Since the test is conducted under undrained condition, A × H = A0 × H 0 A ×(H0 – ∆H) = A0 × H0 A ×(1 – ∆H/H0) = A0 A0 A= 1− ε z σ3
  • 55. Unconsolidated- Undrained test (UU Test) Step 1: Immediately after sampling 0 0 Step 2: After application of hydrostatic cell pressure σ’3 = σ 3 - ∆uc σC = σ3 No drainage σC = σ3 = ∆uc + σ’3 = σ 3 - ∆uc ∆uc = B ∆σ 3 Increase of pwp due to increase of cell pressure Increase of cell pressure Skempton’s pore water pressure parameter, B Note: If soil is fully saturated, then B = 1 (hence, ∆uc = ∆σ 3)
  • 56. Unconsolidated- Undrained test (UU Test) Step 3: During application of axial load No drainage σ’1 = σ 3 + ∆σ d - ∆uc σ 3 + ∆σ d σ3 = σ’3 = σ 3 - ∆uc + ∆ud  ∆ud ∆uc ± ∆ud ∆ud = A∆σ d Increase of pwp due to increase of deviator stress Increase stress Skempton’s pore water pressure parameter, A of deviator
  • 57. Unconsolidated- Undrained test (UU Test) Combining steps 2 and 3, ∆uc = B ∆σ 3 ∆ud = A∆σ d Total pore water pressure increment at any stage, ∆u ∆u = ∆uc + ∆ud ∆u = B ∆σ 3 + A∆σ d ∆u = B ∆σ 3 + A(∆σ 1 – ∆σ 3) Skempton’s pore water pressure equation
  • 58. Unconsolidated- Undrained test (UU Test) = Total, σ Neutral, u + σ’V0 = ur Step 1: Immediately after sampling 0 0 σ’h0 = ur -ur Step 2: After application of hydrostatic cell pressure No drainage σC σC -ur + ∆uc = -ur + σ c (S = 100% ; B = 1) r Step 3: During application of axial load No drainage σ C + ∆σ σC -ur + σ c ± ∆u σ C + ∆σ f σC σ’VC = σ C + ur - σ C = ur σ’h = ur σ’V = σ C + ∆σ + ur - σ c ∆u σ’h = σ C + ur - σ c σ’Vf = σ C + ∆σ f + ur - σ c Step 3: At failure No drainage Effective, σ’ -ur + σ c ± ∆uf  ∆u ∆uf = σ’1f σ’hf = σ C + ur - σ c = σ’3f  ∆u f
  • 59. Unconsolidated- Undrained test (UU Test) = Total, σ Neutral, u σ C + ∆σ f σC Effective, σ’ σ’Vf = σ C + ∆σ f + ur - σ c Step 3: At failure No drainage + ∆uf = σ’1f σ’hf = σ C + ur - σ c = σ’3f -ur + σ c ± ∆uf  ∆u Mohr circle in terms of effective stresses do not depend on the cell pressure. Therefore, we get only one Mohr circle in terms of effective stress for different cell pressures τ σ’3 ∆σ σ’1 σ’ f
  • 60. Unconsolidated- Undrained test (UU Test) = Total, σ Neutral, u σ C + ∆σ f σC Effective, σ’ σ’Vf = σ C + ∆σ f + ur - σ c Step 3: At failure No drainage + ∆uf = σ’1f σ’hf = σ C + ur - σ c = σ’3f -ur + σ c ± ∆uf  ∆u Mohr circles in terms of total stresses Failure envelope, φ u = 0 τ cu ub σ 3a σ’3 3b ∆σ f ua σ 1a σ’1 1b σ or σ’ f
  • 61. Unconsolidated- Undrained test (UU Test) Effect of degree of saturation on failure envelope τ S < 100% σ 3c σ 3b S > 100% σ 1c σ 3a σ 1b σ 1a σ or σ’
  • 62. Some practical applications of UU analysis for clays 1. Embankment constructed rapidly over a soft clay deposit Soft clay τ τ = in situ undrained shear strength
  • 63. Some practical applications of UU analysis for clays 2. Large earth dam constructed rapidly with no change in water content of soft clay τ Core τ = Undrained shear strength of clay core
  • 64. Some practical applications of UU analysis for clays 3. Footing placed rapidly on clay deposit τ = In situ undrained shear strength Note: UU test simulates the short term condition in the field. Thus, cu can be used to analyze the short term behavior of soils
  • 65. Unconfined Compression Test (UC Test) σ 1 = σ VC + ∆σ σ3 = 0 Confining pressure is zero in the UC test
  • 66. σ 1 = σ VC + ∆σf Shear stress, τ Unconfined Compression Test (UC Test) σ3 = 0 qu Normal stress, σ τf = σ1/2 = qu/2 = cu