SlideShare a Scribd company logo
DiscreteĀ Ā MathematicsĀ  UnitĀ 4Ā 
SikkimĀ ManipalĀ UniversityĀ  PageĀ No:Ā 99Ā 
UnitĀ 4Ā  RecurrencesĀ andĀ IntegerĀ FunctionsĀ 
StructureĀ 
4.1Ā  IntroductionĀ 
ObjectivesĀ 
4.2Ā  RecurrenceĀ RelationĀ 
4.3Ā  ApplicationsĀ ofĀ RecurrencesĀ 
4.4Ā  GeneratingĀ FunctionĀ 
4.5Ā  IntegerĀ FunctionsĀ 
SelfĀ AssessmentĀ QuestionsĀ 
4.6Ā  SummaryĀ 
4.7Ā  TerminalĀ QuestionsĀ 
4.8Ā  AnswersĀ 
4.1Ā IntroductionĀ 
AĀ sequenceĀ canĀ beĀ definedĀ byĀ givingĀ aĀ generalĀ formulaĀ forĀ itsĀ nĀ thĀ 
termĀ orĀ byĀ 
writingĀ  fewĀ  ofĀ  itsĀ  terms.Ā  AnĀ  alternativeĀ  approachĀ  isĀ  toĀ  representĀ  theĀ 
sequenceĀ  byĀ  findingĀ  aĀ  relationshipĀ  amongĀ  itsĀ  terms.Ā  Ā  SuchĀ  relationsĀ  areĀ 
referredĀ  asĀ  recurrences.Ā  RecurrenceĀ  relationsĀ  areĀ  usedĀ  toĀ  modelĀ  aĀ  wideĀ 
varietyĀ ofĀ problemsĀ bothĀ inĀ computerĀ andĀ nonĀ­computerĀ sciences.Ā Ā InĀ thisĀ 
unitĀ  weĀ  provideĀ  fewĀ  applicationsĀ  ofĀ  recurrencesĀ  andĀ  aĀ  briefĀ  tourĀ  toĀ  theĀ 
integerĀ functions.Ā 
ObjectivesĀ 
AtĀ theĀ endĀ ofĀ theĀ unitĀ theĀ studentĀ mustĀ beĀ ableĀ to:Ā 
i)Ā  LearnĀ theĀ solvingĀ ofĀ recurrences.Ā 
ii)Ā  UseĀ ofĀ generatingĀ functionsĀ toĀ solveĀ theĀ recurrenceĀ relations.Ā 
iii)Ā  KnowĀ theĀ applicationsĀ ofĀ recurrenceĀ relations.Ā 
iv)Ā  KnowĀ theĀ integerĀ functionsĀ likeĀ floorĀ andĀ ceiling.
DiscreteĀ Ā MathematicsĀ  UnitĀ 4Ā 
SikkimĀ ManipalĀ UniversityĀ  PageĀ No:Ā 100Ā 
4.2Ā RecurrenceĀ RelationĀ 
AĀ  recurrenceĀ  relationĀ forĀ  theĀ  sequenceĀ  {an}Ā  isĀ anĀ  equationĀ thatĀ expressesĀ 
anĀ  inĀ termsĀ ofĀ oneĀ orĀ moreĀ ofĀ theĀ previousĀ termsĀ ofĀ theĀ sequence,Ā namelyĀ 
a0,Ā a1,Ā ā€¦,Ā anĀ  ā€“Ā  1Ā  forĀ allĀ integersĀ nĀ withĀ n Ā³ n0,Ā whereĀ n0Ā  isĀ aĀ nonĀ negativeĀ 
integer.Ā 
AĀ sequenceĀ isĀ calledĀ aĀ solutionĀ ofĀ aĀ recurrenceĀ relationĀ ifĀ itsĀ termsĀ satisfyĀ 
theĀ recurrenceĀ relation.Ā 
4.2.1Ā ExampleĀ 
LetĀ {an}Ā beĀ aĀ sequenceĀ thatĀ satisfiesĀ theĀ recurrenceĀ relationĀ anĀ =Ā anĀ ā€“Ā 1Ā ā€“Ā anā€“Ā 2Ā 
forĀ nĀ =Ā 2,Ā 3,Ā 4,Ā andĀ supposeĀ thatĀ a0Ā =Ā 3Ā andĀ a1Ā  =Ā 5.Ā Ā WhatĀ areĀ a2Ā andĀ a3Ā  ?Ā 
Solution:Ā  FromĀ  theĀ  recurrenceĀ  relationĀ  a2Ā  =Ā  a1Ā  ā€“Ā  a0Ā  =Ā  5Ā  ā€“Ā  3Ā  =Ā  2Ā  andĀ 
a3Ā  =Ā a2Ā  ā€“Ā a1Ā  =Ā 2Ā ā€“Ā 5Ā =Ā ā€“Ā 3.Ā Ā InĀ aĀ similarĀ wayĀ weĀ canĀ findĀ a4,Ā a5Ā  andĀ alsoĀ eachĀ 
successiveĀ term.Ā 
4.2.2Ā ExampleĀ 
DetermineĀ whetherĀ theĀ sequenceĀ {an}Ā isĀ aĀ solutionĀ ofĀ theĀ recurrenceĀ relationĀ 
anĀ  =Ā 2Ā anĀ ā€“Ā 1Ā  ā€“Ā anĀ ā€“Ā 2Ā forĀ nĀ =Ā 2,Ā 3,Ā 4,Ā ā€¦Ā whereĀ 
(i)Ā  anĀ  =Ā 3nĀ forĀ everyĀ nonĀ negativeĀ integerĀ nĀ andĀ (ii).Ā  anĀ =Ā 2Ā nĀ 
.Ā 
Solution:Ā 
i)Ā  SupposeĀ thatĀ anĀ  =Ā 3nĀ forĀ everyĀ nonĀ negativeĀ integerĀ n.Ā ForĀ n Ā³ 2,Ā weĀ 
haveĀ thatĀ 2anĀ ā€“Ā 1Ā  ā€“Ā anĀ ā€“Ā 2Ā  =Ā 2[3(nĀ Ā­Ā 1)]Ā ā€“Ā 3(nĀ Ā­Ā 2)Ā =Ā 3nĀ =Ā an.Ā 
ThereforeĀ {an},Ā whereĀ anĀ  =Ā 3n,Ā isĀ aĀ solutionĀ ofĀ theĀ recurrenceĀ relation.Ā 
ii)Ā  SupposeĀ anĀ  =Ā 2Ā nĀ 
forĀ everyĀ nonĀ negativeĀ integerĀ n.Ā Ā NowĀ a0Ā  =Ā 1,Ā a1Ā  =Ā 2,Ā 
a2Ā  =Ā 4.Ā Ā ConsiderĀ 2a1Ā  ā€“Ā a0Ā  =Ā 2.2Ā ā€“Ā 1Ā =Ā 3Ā ā‰ Ā a2.Ā Ā ThereforeĀ {an},Ā whereĀ 
anĀ  =Ā 2Ā nĀ 
isĀ notĀ aĀ solutionĀ ofĀ theĀ recurrenceĀ relation.Ā 
4.2.3Ā DefinitionĀ 
AĀ recurrenceĀ relationĀ ofĀ theĀ formĀ C0arĀ  +Ā C1arĀ ā€“Ā 1Ā  +Ā C2arĀ ā€“Ā 2Ā  +Ā ā€¦Ā +Ā CkarĀ ā€“Ā kĀ  =Ā f(r),Ā 
whereĀ Ciā€™sĀ areĀ constants,Ā isĀ calledĀ aĀ linearĀ recurrenceĀ relationĀ withĀ constant
DiscreteĀ Ā MathematicsĀ  UnitĀ 4Ā 
SikkimĀ ManipalĀ UniversityĀ  PageĀ No:Ā 101Ā 
coefficients.Ā  Here,Ā  ifĀ  bothĀ  C0Ā  andĀ  CkĀ  areĀ  nonĀ­zero,Ā  thenĀ  itĀ  isĀ  knownĀ  asĀ 
kĀ thĀ 
orderĀ recurrenceĀ relation.Ā 
4.2.4Ā ExampleĀ 
2arĀ +Ā 3arĀ ā€“Ā 1Ā  =Ā 2Ā rĀ 
isĀ theĀ firstĀ orderĀ linearĀ recurrence,Ā withĀ constantĀ coefficients.Ā 
4.2.5Ā FibonacciĀ sequenceĀ ofĀ numbersĀ 
TheĀ sequenceĀ ofĀ theĀ formĀ {1,Ā 1,Ā 2,Ā 3,Ā 5,Ā 8,Ā 13,Ā ā€¦}Ā isĀ calledĀ theĀ FibonacciĀ 
sequence.Ā  Ā  ThisĀ  sequenceĀ  startsĀ  withĀ  theĀ  twoĀ  numbersĀ  1,Ā  1Ā  andĀ  containsĀ 
numbersĀ  thatĀ  areĀ  equalĀ  toĀ  theĀ  sumĀ  ofĀ  theirĀ  twoĀ  immediateĀ  predecessors.Ā 
TheĀ recurrenceĀ relationĀ canĀ beĀ writtenĀ asĀ arĀ  =Ā arĀ ā€“Ā 1Ā  +Ā arĀ ā€“Ā 2,Ā r Ā³ 2,Ā withĀ a0Ā  =Ā 1Ā 
andĀ a1Ā =Ā 1.Ā 
4.2.6Ā NoteĀ 
anĀ  =Ā rĀ nĀ 
,Ā whereĀ rĀ isĀ constant,Ā isĀ aĀ solutionĀ ofĀ theĀ recurrenceĀ relationĀ 
anĀ  =Ā C1anĀ ā€“Ā 1Ā  +Ā C2anĀ ā€“Ā 2Ā  +Ā ā€¦.Ā +Ā CkanĀ ā€“Ā kĀ  ifĀ andĀ onlyĀ ifĀ rĀ nĀ 
=Ā C1rĀ nĀ ā€“Ā 1Ā 
+Ā C2rĀ nĀ ā€“Ā 2Ā 
+Ā ā€¦Ā +Ā 
CkrĀ nĀ  ā€“Ā  kĀ 
.Ā Ā DividingĀ bothĀ sidesĀ byĀ rĀ nĀ  ā€“Ā  kĀ 
andĀ theĀ rightĀ handĀ sideĀ isĀ subtractedĀ 
fromĀ theĀ left,Ā weĀ obtainĀ theĀ equationĀ 
rĀ kĀ 
ā€“Ā C1rĀ kĀ ā€“Ā 1Ā 
ā€“Ā C2rĀ kĀ ā€“Ā 2Ā 
Ā­Ā ā€¦.Ā ā€“Ā CkĀ ā€“Ā 1rĀ ā€“Ā CkĀ =Ā 0Ā ā€¦ā€¦ā€¦ā€¦.(i).Ā 
ThereforeĀ theĀ  sequenceĀ  {an}Ā  withĀ anĀ  =Ā  rĀ nĀ 
isĀ aĀ  solutionĀ  ifĀ  andĀ onlyĀ  ifĀ  rĀ  isĀ  aĀ 
solutionĀ ofĀ theĀ equationĀ (i).Ā Ā EquationĀ (i)Ā isĀ calledĀ theĀ characteristicĀ equationĀ 
ofĀ theĀ recurrenceĀ relation.Ā 
4.2.7Ā TheoremĀ 
LetĀ  C1Ā  andĀ  C2Ā  beĀ  realĀ  numbers.Ā SupposeĀ  thatĀ  rĀ 2Ā 
ā€“Ā  C1rĀ  ā€“Ā  C2Ā  =Ā  0Ā  hasĀ  twoĀ 
distinctĀ  rootsĀ  r1Ā  andĀ  r2.Ā  ThenĀ  theĀ  sequenceĀ  {an}Ā  isĀ  aĀ  solutionĀ  ofĀ  theĀ 
recurrenceĀ relationĀ 
anĀ  =Ā C1anĀ ā€“Ā 1Ā  +Ā C2anĀ ā€“Ā 2Ā  ifĀ andĀ onlyĀ ifĀ anĀ  =Ā Ī±1Ā 
nĀ 
rĀ 1Ā  +Ā Ī±2Ā 
nĀ 
rĀ 2Ā  forĀ nĀ =Ā 0,Ā 1,Ā 2,Ā ...Ā whereĀ 
Ī±1Ā  andĀ Ī±2Ā  areĀ constants.
DiscreteĀ Ā MathematicsĀ  UnitĀ 4Ā 
SikkimĀ ManipalĀ UniversityĀ  PageĀ No:Ā 102Ā 
4.2.8Ā ExampleĀ 
FindĀ theĀ solutionĀ ofĀ theĀ recurrenceĀ relationĀ anĀ  =Ā anĀ ā€“Ā 1Ā  +Ā 2anĀ ā€“Ā 2Ā  withĀ a0Ā  =Ā 2Ā andĀ 
a1Ā  =Ā 7.Ā 
Solution: TheĀ characteristicĀ equationĀ ofĀ theĀ recurrenceĀ relationĀ isĀ rĀ 2Ā 
ā€“Ā rĀ ā€“Ā 2Ā =Ā 0.Ā 
ItsĀ rootsĀ areĀ rĀ =Ā 2Ā andĀ rĀ =Ā Ā­1.Ā Ā ThereforeĀ theĀ sequenceĀ {an}Ā isĀ aĀ solutionĀ toĀ 
theĀ recurrenceĀ ifĀ andĀ onlyĀ ifĀ anĀ  =Ā Ī±12Ā nĀ 
+Ā Ī±2(Ā­1)Ā nĀ 
,Ā forĀ someĀ constantsĀ Ī±1Ā  andĀ 
Ī±2.Ā Ā NowĀ a0Ā  =Ā 2Ā =Ā Ī±1Ā  +Ā Ī±2Ā  ,Ā a1Ā  =Ā 7Ā =Ā Ī±1Ā  =Ā 3Ā andĀ Ī±2Ā  =Ā Ā­1.Ā Ā ThereforeĀ theĀ solutionĀ 
toĀ theĀ recurrenceĀ relationĀ isĀ  anĀ  =Ā 3.2Ā nĀ 
ā€“Ā (Ā­1)Ā nĀ 
.Ā 
4.2.9Ā ExampleĀ 
FindĀ anĀ expressionĀ forĀ theĀ FibonacciĀ numbersĀ usingĀ characteristicĀ equation.Ā 
Solution:Ā  ConsiderĀ  theĀ  recurrenceĀ  relationĀ  ofĀ  theĀ  FibonacciĀ  sequence:Ā 
anĀ  =Ā anĀ ā€“Ā 1Ā  +Ā anĀ ā€“Ā 2,Ā n Ā³ 2,Ā a0Ā  =Ā 0Ā andĀ a1Ā  =Ā 1.Ā Ā TheĀ correspondingĀ characteristicĀ 
equationĀ isĀ rĀ 2Ā 
ā€“Ā rĀ ā€“Ā 1Ā =Ā 0.Ā Ā TheĀ rootsĀ areĀ r1Ā  =
Ć·
Ć·
Ćø
ƶ
Ƨ
Ƨ
ĆØ
Ʀ +
2Ā 
5Ā 1Ā 
andĀ r2Ā  =
Ć·
Ć·
Ćø
ƶ
Ƨ
Ƨ
ĆØ
Ʀ -
2Ā 
5Ā 1Ā 
.Ā 
ThereforeĀ  theĀ  fibonacciĀ  numbersĀ  areĀ  givenĀ  byĀ  anĀ  =Ā  Ī±1Ā 
nĀ 
2Ā 
5Ā 1
Ć·
Ć·
Ćø
ƶ
Ƨ
Ƨ
ĆØ
Ʀ +
+Ā 
Ī±2Ā 
nĀ 
2Ā 
5Ā 1
Ć·
Ć·
Ćø
ƶ
Ƨ
Ƨ
ĆØ
Ʀ -
,Ā forĀ someĀ constantsĀ Ī±1Ā andĀ Ī±2.Ā 
NowĀ fromĀ theĀ givenĀ relationĀ a0Ā =Ā Ī±1Ā +Ā Ī±2Ā =Ā 0Ķ¾Ā a1=Ī±1
Ć·
Ć·
Ćø
ƶ
Ƨ
Ƨ
ĆØ
Ʀ +
2Ā 
5Ā 1Ā 
+Ā Ī±2
Ć·
Ć·
Ćø
ƶ
Ƨ
Ƨ
ĆØ
Ʀ -Ā 
2Ā 
5Ā 1Ā 
=Ā 1Ā 
SolvingĀ theseĀ simultaneousĀ equations,Ā weĀ getĀ Ī±1Ā =Ā 
5Ā 
1Ā 
andĀ Ī±2Ā  =Ā Ā­Ā 
5Ā 
1Ā 
.Ā 
ThereforeĀ theĀ FibonacciĀ numbersĀ are anĀ  =Ā 
5Ā 
1Ā 
nĀ 
2Ā 
5Ā 1
Ć·
Ć·
Ćø
ƶ
Ƨ
Ƨ
ĆØ
Ʀ +
ā€“Ā 
5Ā 
1Ā 
nĀ 
2Ā 
5Ā 1
Ć·
Ć·
Ćø
ƶ
Ƨ
Ƨ
ĆØ
Ʀ -
.
DiscreteĀ Ā MathematicsĀ  UnitĀ 4Ā 
SikkimĀ ManipalĀ UniversityĀ  PageĀ No:Ā 103Ā 
4.2.10Ā TheoremĀ 
LetĀ C1Ā  andĀ C2Ā  beĀ realĀ numbersĀ withĀ C2Ā  ā‰ Ā 0.Ā Ā SupposeĀ thatĀ rĀ 2Ā 
ā€“Ā C1rĀ ā€“Ā C2Ā  =Ā 0Ā 
hasĀ onlyĀ oneĀ rootĀ r0.Ā Ā AĀ sequenceĀ {an}Ā isĀ aĀ solutionĀ ofĀ theĀ recurrenceĀ relationĀ 
anĀ  =Ā C1anĀ  ā€“Ā  1Ā  +Ā C2anĀ  ā€“Ā  2Ā  ifĀ andĀ onlyĀ ifĀ anĀ  =Ā Ī±1Ā 
nĀ 
rĀ 0Ā  +Ā Ī±2nĀ  nĀ 
rĀ 0Ā  ,Ā forĀ nĀ =Ā 0,Ā 1,Ā 2,Ā ā€¦,Ā 
whereĀ Ī±1Ā andĀ Ī±2Ā areĀ constants.Ā 
4.2.11Ā ExampleĀ 
FindĀ theĀ solutionĀ ofĀ theĀ recurrenceĀ relationĀ anĀ  =Ā 6anĀ ā€“Ā 1Ā  ā€“Ā 9anĀ ā€“Ā 2Ā  withĀ theĀ initialĀ 
conditionsĀ a0Ā =Ā 1Ā andĀ a1Ā  =Ā 6.Ā 
Solution:Ā Ā TheĀ characteristicĀ equationĀ rĀ 2Ā 
ā€“Ā 6rĀ +Ā 9Ā =Ā 0.Ā Ā TheĀ onlyĀ rootĀ isĀ rĀ =Ā 3.Ā 
ThereforeĀ  theĀ  solutionĀ  toĀ  theĀ  recurrenceĀ  relationĀ  isĀ  anĀ  =Ā  Ī±13Ā nĀ 
+Ā  Ī±2n3Ā nĀ 
,Ā  forĀ 
someĀ constantsĀ Ī±1Ā  andĀ Ī±2.Ā Ā UsingĀ theĀ initialĀ conditions,Ā weĀ getĀ a0Ā  =Ā 1Ā =Ā Ī±1,Ā a1Ā 
=Ā 6Ā =Ā Ī±1.3Ā +Ā Ī±2.3.Ā Ā SolvingĀ theseĀ simultaneousĀ equations,Ā weĀ getĀ Ī±1Ā  =Ā 1Ā andĀ 
Ī±2Ā  =Ā 1.Ā Ā ThereforeĀ theĀ solutionĀ toĀ theĀ recurrenceĀ relationĀ isĀ anĀ =Ā 3Ā nĀ 
+Ā n3Ā nĀ 
.Ā 
4.2.12Ā TheoremĀ 
LetĀ C1,Ā C2,Ā ā€¦,Ā CkĀ  beĀ realĀ numbers.Ā Ā SupposeĀ thatĀ theĀ characteristicĀ equationĀ 
rĀ kĀ 
ā€“Ā C1rĀ kĀ ā€“Ā 1Ā 
Ā­Ā ā€¦Ā ā€“Ā CkĀ  =Ā 0Ā hasĀ kĀ distinctĀ rootsĀ r1,Ā r2,Ā ā€¦,Ā rk.Ā Ā ThenĀ aĀ sequenceĀ 
{an}Ā isĀ aĀ solutionĀ ofĀ theĀ recurrenceĀ relationĀ 
anĀ  =Ā C1anĀ ā€“Ā 1Ā  +Ā C2anĀ ā€“Ā 2Ā  +Ā ā€¦.Ā +Ā CkanĀ ā€“Ā kĀ  ifĀ andĀ onlyĀ ifĀ anĀ  =Ā Ī±1Ā 
nĀ 
rĀ 1Ā  +Ā Ī±2Ā 
nĀ 
rĀ 2Ā  +Ā ā€¦Ā +Ā 
Ī±kĀ 
nĀ 
kĀ rĀ  ,Ā forĀ nĀ =Ā 0,Ā 1,Ā 2,Ā ...,Ā whereĀ Ī±1,Ā Ī±2,Ā ā€¦,Ā Ī±kĀ areĀ constants.Ā 
4.2.13Ā ExampleĀ 
FindĀ theĀ solutionĀ toĀ theĀ recurrenceĀ relationĀ anĀ  =Ā 6anĀ ā€“Ā 1Ā  ā€“Ā 11anĀ ā€“Ā 2Ā  +Ā 6anĀ ā€“Ā 3Ā  withĀ 
initialĀ conditions:Ā a0Ā  =Ā 2,Ā Ā a1Ā  =Ā 5Ā Ā andĀ a2Ā  =Ā 15.Ā 
Solution:Ā  TheĀ  characteristicĀ  equationĀ  ofĀ  theĀ  givenĀ  recurrenceĀ  relationĀ  isĀ 
rĀ 3Ā 
ā€“Ā 6rĀ 2Ā 
+Ā 11rĀ ā€“Ā 6Ā =Ā 0 ƞ (rĀ Ā­1)(rĀ Ā­Ā 2)(rĀ Ā­Ā 3)Ā =Ā 0.Ā 
TheĀ rootsĀ ofĀ thisĀ equationĀ rĀ =1,Ā rĀ =Ā 2,Ā rĀ =Ā 3.Ā 
ThereforeĀ theĀ solutionsĀ toĀ thisĀ recurrenceĀ relationĀ are anĀ  =Ā Ī±1.1Ā nĀ 
+Ā Ī±2.2Ā nĀ 
+Ā Ī±3.3Ā nĀ 
.
DiscreteĀ Ā MathematicsĀ  UnitĀ 4Ā 
SikkimĀ ManipalĀ UniversityĀ  PageĀ No:Ā 104Ā 
FromĀ theĀ givenĀ initialĀ condition,Ā a0Ā  =Ā 2,Ā weĀ getĀ a0Ā =Ā 2Ā =Ā Ī±1Ā  +Ā Ī±2Ā  +Ā Ī±3.Ā 
Similarly,Ā forĀ a1Ā  =Ā 5Ā =Ā Ī±1Ā  +Ā Ī±2.2Ā +Ā Ī±3.3Ķ¾Ā Ā a2Ā  =Ā 15Ā =Ā Ī±1Ā +Ā Ī±2.4Ā +Ā Ī±3.9.Ā 
SolvingĀ theĀ aboveĀ threeĀ simultaneousĀ equationsĀ weĀ getĀ Ī±1Ā  =Ā 1,Ā Ī±2Ā  =Ā Ā­1Ā andĀ 
Ī±3Ā  =Ā 2.Ā Ā ThereforeĀ theĀ uniqueĀ solutionĀ toĀ thisĀ recurrenceĀ relationĀ isĀ anĀ  =Ā 1Ā ā€“Ā 
2Ā nĀ 
+Ā 2.3Ā nĀ 
.Ā 
4.2.14Ā TheoremĀ 
LetĀ C1,Ā C2,Ā ā€¦,Ā CkĀ  beĀ realĀ numbers.Ā Ā SupposeĀ thatĀ theĀ characteristicĀ equationĀ 
rĀ kĀ 
ā€“Ā C1rĀ kĀ  ā€“Ā  1Ā 
Ā­Ā ā€¦Ā ā€“Ā CkĀ  =Ā 0Ā hasĀ tĀ­distinctĀ rootsĀ r1,Ā r2,Ā ā€¦,Ā rtĀ  withĀ multiplicitiesĀ 
m1,Ā m2,Ā ā€¦,Ā mt,Ā respectively,Ā soĀ thatĀ mi Ā³ 1,Ā forĀ iĀ =Ā 1,Ā 2,Ā ā€¦,Ā tĀ andĀ m1Ā  +Ā m2Ā  +Ā ā€¦Ā 
+Ā  mtĀ  =Ā  k.Ā  Ā  ThenĀ  aĀ  sequenceĀ  {an}Ā  isĀ  aĀ  solutionĀ  ofĀ  theĀ  recurrenceĀ  relationĀ 
anĀ  =Ā C1anĀ ā€“Ā 1Ā  +Ā C2anĀ ā€“Ā 2Ā  +Ā ā€¦Ā +Ā CkanĀ ā€“Ā kĀ  ifĀ andĀ onlyĀ ifĀ 
anĀ  =Ā  (Ī±1,0Ā  +Ā  Ī±1,1.nĀ  +Ā  ā€¦.Ā  +Ā  1Ā 
1Ā ,Ā 1Ā 
1Ā 
1
-
-Ā 
mĀ 
mĀ  na )Ā  nĀ 
rĀ 1Ā  +Ā  ā€¦Ā  +Ā  (Ī±t,0Ā  +Ā  Ī±t,1nĀ  +Ā  ā€¦Ā  +Ā 
1Ā 
1Ā ,
-
-Ā 
tĀ 
tĀ 
mĀ 
mĀ tĀ  na )Ā  nĀ 
tĀ rĀ  ,Ā forĀ Ā Ā nĀ =Ā 0,Ā 1,Ā 2,Ā ā€¦,Ā whereĀ Ī±i,Ā jĀ  areĀ constantsĀ forĀ 1 Ā£ i Ā£ tĀ andĀ 
0 Ā£ j Ā£ miĀ  ā€“1.Ā 
4.2.15Ā ExampleĀ 
FindĀ theĀ solutionĀ toĀ theĀ recurrenceĀ relationĀ anĀ  =Ā Ā­3anĀ ā€“Ā 1Ā  ā€“Ā 3anĀ ā€“Ā 2Ā  ā€“Ā anĀ ā€“Ā  3Ā  withĀ 
initialĀ conditionsĀ a0Ā =Ā 1,Ā a1Ā =Ā Ā­2Ā andĀ a2Ā  =Ā Ā­1.Ā 
Solution:Ā Ā TheĀ characteristicĀ equationĀ toĀ theĀ givenĀ recurrenceĀ isĀ rĀ 3Ā 
+Ā 3rĀ 2Ā 
+Ā 3rĀ 
+Ā 1Ā =Ā 0 ƞ (rĀ +Ā 1)Ā 3Ā 
=Ā 0.Ā Ā ThereforeĀ rĀ =Ā Ā­1Ā isĀ aĀ rootĀ ofĀ multiplicityĀ 3.Ā Ā ByĀ TheoremĀ 
4.2.14,Ā theĀ solutionsĀ areĀ ofĀ theĀ formĀ anĀ  =Ā Ī±1,0(Ā­1)Ā nĀ 
+Ā Ī±1,1.n(Ā­1)Ā nĀ 
+Ā Ī±1,2.nĀ 2Ā 
(Ā­1)Ā nĀ 
.Ā 
UseĀ theĀ givenĀ initialĀ conditions,Ā findĀ theĀ constantsĀ Ī±1,0,Ā Ī±1,1,Ā Ī±1,2.Ā 
NowĀ a0Ā =Ā 1Ā =Ā Ī±1,0Ķ¾Ā Ā a1Ā =Ā Ā­2Ā =Ā Ā­Ī±1,0Ā ā€“Ā Ī±1,1Ā ā€“Ā Ī±1,2Ķ¾Ā Ā a2Ā =Ā Ā­1Ā =Ā Ī±1,0Ā +Ā 2Ī±1,1Ā +Ā 4Ī±1,2.Ā 
SolvingĀ theseĀ simultaneousĀ equations,Ā weĀ getĀ Ī±1,0Ā =Ā 1,Ā Ā Ī±1,1Ā  =Ā 3,Ā  andĀ Ī±1,2Ā =Ā Ā­2.Ā 
HenceĀ theĀ uniqueĀ solutionĀ toĀ theĀ givenĀ recurrenceĀ isĀ anĀ =Ā (1Ā +Ā 3n ā€“ 2nĀ 2Ā 
)(Ā­1)Ā nĀ 
.
DiscreteĀ Ā MathematicsĀ  UnitĀ 4Ā 
SikkimĀ ManipalĀ UniversityĀ  PageĀ No:Ā 105Ā 
4.3Ā ApplicationsĀ ofĀ RecurrencesĀ 
4.3.1Ā TheĀ ProblemĀ ofĀ towerĀ ofĀ Ā HanoiĀ 
GivenĀ aĀ towerĀ ofĀ eightĀ disks,Ā initiallyĀ stackedĀ inĀ decreasingĀ sizeĀ onĀ oneĀ ofĀ 
theĀ threeĀ pegs.Ā Ā TheĀ objectiveĀ isĀ toĀ transferĀ Ā theĀ entireĀ towerĀ toĀ oneĀ ofĀ theĀ 
otherĀ pegs,Ā movingĀ onlyĀ oneĀ diskĀ atĀ aĀ timeĀ andĀ neverĀ movingĀ aĀ largerĀ onĀ toĀ 
smallerĀ  (theseĀ  rulesĀ  areĀ  calledĀ  LucasĀ  Rules)Ā  (ThisĀ  wasĀ  inventedĀ  byĀ  theĀ 
FrenchĀ mathematicianĀ EdouardĀ LucasĀ inĀ 1883).Ā 
LetĀ TnĀ  beĀ theĀ minimumĀ numberĀ ofĀ movesĀ thatĀ willĀ transferĀ nĀ disksĀ fromĀ oneĀ 
pegĀ toĀ anotherĀ underĀ LucasĀ rules.Ā Ā ThenĀ clearlyĀ T0Ā  =Ā 0,Ā sinceĀ noĀ movesĀ areĀ 
neededĀ toĀ transferĀ aĀ towerĀ ofĀ nĀ =Ā 0Ā disks.Ā 
ByĀ observation,Ā T1Ā =Ā 1,Ā Ā T2Ā =Ā 3Ā 
NowĀ transferĀ theĀ topĀ disksĀ toĀ theĀ 
middleĀ peg,Ā thenĀ moveĀ theĀ third,Ā thenĀ 
bringĀ theĀ otherĀ twoĀ ontoĀ it.Ā Ā SoĀ weĀ 
getĀ  T3Ā  =Ā 7Ā =Ā 2.3Ā +Ā 1Ā =Ā 2Ā T2Ā  +Ā 1.Ā 
InductionĀ hypo:Ā Ā AssumeĀ forĀ nĀ­1Ā disks.Ā Ā ThatĀ is.,Ā TnĀ­1Ā =Ā 2.TnĀ­2Ā +Ā 1.Ā 
SupposeĀ thatĀ thereĀ areĀ nĀ­disks.Ā Ā WeĀ firstĀ transferĀ theĀ (nĀ­1)Ā smallestĀ disksĀ toĀ 
aĀ differentĀ peg.Ā Ā ItĀ requiresĀ TnĀ­1Ā  moves.Ā 
ThenĀ moveĀ theĀ largestĀ (itĀ requiresĀ oneĀ move),Ā andĀ finallyĀ transferĀ theĀ (nĀ­1)Ā 
smallestĀ disksĀ backĀ ontoĀ theĀ largestĀ (itĀ requiresĀ anotherĀ TnĀ­1Ā  moves).Ā 
ThusĀ weĀ canĀ transferĀ nĀ disksĀ (nĀ >Ā 0)Ā inĀ atĀ mostĀ 2Ā TnĀ­1Ā  +Ā 1Ā moves.Ā 
ThusĀ Tn Ā£ 2Ā TnĀ +Ā 1Ā forĀ nĀ >Ā 0.Ā 
ThisĀ showsĀ thatĀ 2TnĀ­1Ā +Ā 1Ā movesĀ areĀ sufficesĀ forĀ ourĀ construction.Ā 
NextĀ weĀ proveĀ thatĀ 2TnĀ­1Ā  +Ā 1Ā movesĀ areĀ necessary.Ā 
AĀ 
CĀ 
B
DiscreteĀ Ā MathematicsĀ  UnitĀ 4Ā 
SikkimĀ ManipalĀ UniversityĀ  PageĀ No:Ā 106Ā 
WeĀ mustĀ moveĀ theĀ largestĀ disk.Ā Ā WhenĀ weĀ do,Ā theĀ nĀ­1Ā smallestĀ disksĀ mustĀ 
beĀ onĀ aĀ singleĀ peg,Ā andĀ itĀ hasĀ takenĀ atleastĀ TnĀ­1Ā  movesĀ toĀ putĀ themĀ thereĀ (weĀ 
mightĀ moveĀ theĀ largestĀ diskĀ moreĀ thanĀ once).Ā 
AfterĀ  movingĀ  theĀ  largestĀ  diskĀ  forĀ  theĀ  lastĀ  time,Ā  weĀ  mustĀ  transferĀ  theĀ  nĀ­1Ā 
smallestĀ disksĀ (whichĀ mustĀ beĀ againĀ onĀ aĀ singleĀ peg)Ā backĀ ontoĀ theĀ largestĶ¾Ā 
ThisĀ requiresĀ TnĀ­1Ā  moves.Ā 
HenceĀ Tn Ā³ 2TnĀ­1Ā  +Ā 1Ā forĀ nĀ >Ā 0.Ā 
Therefore
ĆÆĆ¾
ĆÆ
Ć½
Ć¼
>+=
=
- 0Ā nĀ forĀ 1Ā 2TĀ TĀ 
0Ā TĀ 
1Ā nĀ nĀ 
0Ā 
TheseĀ setĀ ofĀ equalitiesĀ aboveĀ isĀ theĀ recurrenceĀ forĀ theĀ TowerĀ ofĀ HonaiĀ problem.Ā 
FromĀ thisĀ itĀ isĀ clearĀ thatĀ T3Ā  =Ā 2.3Ā +1Ā =Ā 7,Ā T4Ā =Ā 2.7Ā +1Ā =Ā 15,Ā andĀ soĀ on.Ā 
4.3.2Ā RemarkĀ 
TnĀ  canĀ alsoĀ beĀ identifiedĀ asĀ TnĀ  =Ā 2Ā nĀ 
ā€“Ā 1Ā forĀ n Ā³ 0.Ā 
TheĀ proofĀ ofĀ thisĀ remarkĀ makesĀ useĀ ofĀ theĀ principleĀ ofĀ mathematicalĀ induction.Ā 
4.3.3Ā Ā ProblemĀ ofĀ theĀ LinesĀ inĀ theĀ planeĀ 
HowĀ manyĀ slicesĀ ofĀ pizzaĀ canĀ aĀ personĀ obtainĀ byĀ makingĀ nĀ straightĀ cutsĀ withĀ 
aĀ pizzaĀ knife?Ā 
Mathematically:Ā WhatĀ isĀ theĀ maximumĀ numberĀ LnĀ  ofĀ regionsĀ definedĀ byĀ nĀ linesĀ 
inĀ theĀ plane?Ā Ā (thisĀ problemĀ solvedĀ byĀ SwissĀ mathematicianĀ ā€˜Jacobā€™Ā inĀ 1826)Ā 
Solution:Ā Ln:Ā maximumĀ numberĀ ofĀ regionsĀ definedĀ byĀ nĀ linesĀ inĀ theĀ plane.Ā 
StepĀ 1:Ā nĀ =0:Ā theĀ planeĀ withĀ noĀ linesĀ impliesĀ thatĀ oneĀ regionĀ L0Ā  =Ā 1.Ā 
nĀ =1Ā :Ā theĀ planeĀ withĀ oneĀ lineĀ impliesĀ thatĀ itĀ hasĀ twoĀ regionsĀ L1Ā  =Ā 2.Ā 
RegionĀ 2Ā 
RegionĀ 1
DiscreteĀ Ā MathematicsĀ  UnitĀ 4Ā 
SikkimĀ ManipalĀ UniversityĀ  PageĀ No:Ā 107Ā 
nĀ =2Ā :Ā theĀ planeĀ withĀ twoĀ linesĀ impliesĀ thatĀ Ā fourĀ regionsĀ L2Ā =Ā 4.Ā 
nĀ  =Ā  3:Ā  TheĀ  placeĀ  withĀ  threeĀ  linesĀ  impliesĀ  thatĀ  itĀ  hasĀ  sevenĀ  regionsĀ 
L3Ā  =Ā 7Ā =Ā 4Ā +Ā 3Ā =Ā L2Ā +Ā 3Ā 
nĀ  =Ā  4:Ā  TheĀ  planeĀ  withĀ  fourĀ  linesĀ  impliesĀ  thatĀ  itĀ  hasĀ  11Ā  regionsĀ 
L4Ā  =Ā 11Ā =Ā 7Ā +Ā 4Ā =Ā L3Ā  +Ā 4Ā 
NoteĀ thatĀ theĀ maximumĀ numberĀ ofĀ regionsĀ willĀ occurĀ onlyĀ theĀ newĀ lineĀ cutsĀ 
(intersects)Ā allĀ theĀ previousĀ lines.Ā 
R1Ā  R2Ā 
R3Ā 
R4Ā 
4Ā 
2Ā 1Ā 
3Ā 
5Ā 
6Ā 
7Ā 
8Ā 
7Ā 
4Ā 
2Ā 1Ā 
3Ā 
5Ā 
6Ā 
10Ā 
9Ā 
11Ā 
LineĀ 4Ā 
LineĀ 1Ā 
LineĀ 2Ā 
LineĀ 3
DiscreteĀ Ā MathematicsĀ  UnitĀ 4Ā 
SikkimĀ ManipalĀ UniversityĀ  PageĀ No:Ā 108Ā 
ThusĀ weĀ haveĀ  )Ā (iĀ 
0Ā nĀ forĀ nĀ LĀ LĀ 
1Ā LĀ 
1Ā nĀ nĀ 
0
---
ĆÆĆ¾
ĆÆ
Ć½
Ć¼
>+=
=
-
NowĀ fromĀ (i)Ā 
LnĀ  =Ā LnĀ ā€“Ā 1Ā  +Ā nĀ 
=Ā LnĀ ā€“Ā 2Ā  +Ā (nĀ Ā­Ā 1)Ā +Ā nĀ 
=Ā LnĀ ā€“Ā 3Ā  +Ā (nĀ Ā­Ā 2)Ā +Ā (nĀ Ā­Ā 1)Ā +Ā nĀ 
ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦Ā 
ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦Ā 
ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦Ā 
=Ā L0Ā  +Ā 1Ā +Ā 2Ā +Ā ā€¦.Ā +Ā (nĀ Ā­Ā 2)Ā +Ā (nĀ Ā­Ā 1)Ā +Ā n.Ā 
=Ā 1Ā +Ā Sn,Ā whereĀ SnĀ  =Ā 1Ā +Ā 2Ā +Ā 3Ā +Ā ā€¦Ā +Ā (nĀ Ā­Ā 1)Ā +Ā n.Ā 
ThereforeĀ LnĀ  isĀ  equalĀ  toĀ  oneĀ  moreĀ thanĀ  theĀ  sumĀ  SnĀ  ofĀ  theĀ firstĀ  nĀ  positiveĀ 
integers.Ā 
NĀ  1Ā  2Ā  3Ā  4Ā  5Ā  6Ā  7Ā  8Ā  9Ā  10Ā  11Ā  12Ā 
SnĀ  1Ā  3Ā  6Ā  10Ā  15Ā  21Ā  28Ā  36Ā  45Ā  55Ā  66Ā  78Ā 
S1Ā  =Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā =Ā 1Ā 
S2Ā  =Ā  =Ā 3Ā 
S3Ā  =Ā  =Ā 6Ā 
S4Ā  =Ā  =Ā 10Ā 
ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦.Ā 
ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦.Ā 
ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦.Ā 
oĀ 
oĀ  oĀ 
oĀ 
oĀ 
oĀ 
oĀ  oĀ 
oĀ 
oĀ 
oĀ 
oĀ 
oĀ  oĀ 
oĀ 
oĀ 
oĀ  oĀ  oĀ  o
DiscreteĀ Ā MathematicsĀ  UnitĀ 4Ā 
SikkimĀ ManipalĀ UniversityĀ  PageĀ No:Ā 109Ā 
TheseĀ valuesĀ areĀ calledĀ triangularĀ numbers.Ā 
ToĀ computeĀ SnĀ  :Ā 
SnĀ  =Ā Ā 1Ā +Ā Ā Ā Ā Ā 2Ā Ā Ā Ā Ā +Ā Ā Ā Ā Ā 3Ā Ā Ā Ā Ā +Ā ā€¦.Ā +Ā (nĀ Ā­Ā 1)Ā +Ā nĀ 
+Ā Ā SnĀ  =Ā Ā nĀ +Ā (nĀ Ā­Ā 1)Ā +Ā (nĀ Ā­Ā 2)Ā +Ā ā€¦.Ā +Ā Ā Ā Ā Ā 2Ā Ā Ā Ā Ā +Ā 1Ā 
2SnĀ  =Ā (nĀ +Ā 1)Ā +Ā (nĀ +Ā 1)Ā +Ā (nĀ +Ā 1)Ā +Ā ā€¦.Ā +Ā (nĀ +Ā 1)Ā +Ā (nĀ +Ā 1)Ā 
=Ā n.(nĀ +Ā 1).Ā 
SoĀ SnĀ  =Ā 
2Ā 
1)Ā n(n +
,Ā n Ā³ 0.Ā 
ThereforeĀ preciselyĀ theĀ LnĀ  =Ā 
2Ā 
1)Ā n(n +
+Ā 1,Ā n Ā³ 0.Ā 
4.3.4Ā ProblemĀ 
FindĀ theĀ shortestĀ sequenceĀ ofĀ movesĀ thatĀ transfersĀ aĀ towerĀ ofĀ nĀ disksĀ fromĀ 
theĀ  leftĀ  pegĀ  AĀ  toĀ  theĀ  rightĀ  pegĀ  B,Ā  ifĀ  directĀ  movesĀ  betweenĀ  AĀ  andĀ  BĀ  areĀ 
disallowed.Ā Ā (EachĀ moveĀ mustĀ beĀ toĀ orĀ fromĀ theĀ middleĀ peg.Ā AsĀ usualĀ aĀ largeĀ 
diskĀ mustĀ neverĀ appearĀ aboveĀ aĀ smallerĀ one).Ā 
Solution:Ā Ā LetĀ XnĀ  denoteĀ theĀ numberĀ ofĀ moves.Ā 
ForĀ nĀ =Ā 0,Ā X0Ā =Ā 0Ā 
ForĀ nĀ =1,Ā X1Ā  =Ā 2.Ā 
ForĀ nĀ =Ā 2,Ā considerĀ theĀ sequenceĀ ofĀ steps:Ā 
1Ā 
AĀ 
MiddleĀ 
pegĀ 
BĀ 
1Ā 
MoveĀ 1Ā  MoveĀ 1
DiscreteĀ Ā MathematicsĀ  UnitĀ 4Ā 
SikkimĀ ManipalĀ UniversityĀ  PageĀ No:Ā 110Ā 
movesĀ 2Ā 
BĀ toĀ MĀ fromĀ 1Ā diskĀ TransferĀ (ii)Ā 
MĀ toĀ AĀ fromĀ 1Ā diskĀ TransferĀ (i)
ĆÆĆ¾
ĆÆ
Ć½
Ć¼
} movesĀ 1Ā MĀ toĀ AĀ fromĀ 2Ā diskĀ TransferĀ (iii)Ā 
movesĀ 2Ā 
AĀ toĀ MĀ fromĀ 1Ā diskĀ TransferĀ (v)Ā 
MĀ toĀ BĀ fromĀ 1Ā diskĀ TransferĀ (iv)
ĆÆĆ¾
ĆÆ
Ć½
Ć¼
} movesĀ 1Ā BĀ toĀ MĀ fromĀ 2Ā diskĀ TransferĀ (vi)Ā 
movesĀ 2Ā 
BĀ toĀ MĀ fromĀ 1Ā diskĀ TransferĀ (viii)Ā 
MĀ toĀ AĀ fromĀ 1Ā diskĀ TransferĀ (vii)
ĆÆĆ¾
ĆÆ
Ć½
Ć¼
TotalĀ numberĀ ofĀ movesĀ isĀ 8.Ā 
ThatĀ is.,Ā X2Ā  =Ā X1Ā  +Ā 1Ā +Ā X1Ā  +Ā 1Ā +Ā X1Ā  =Ā 2Ā +Ā 1Ā +Ā 2Ā +Ā 1Ā +Ā 2Ā =Ā 8Ā 
Similarly,Ā X3Ā  =Ā X2Ā  +Ā 1Ā +Ā X2Ā  +Ā 1Ā +Ā X2Ā =Ā 8Ā +Ā 1Ā +Ā 8Ā +Ā 1Ā +Ā 8Ā =Ā 26Ā 
InĀ  general,Ā  XnĀ  =Ā  XnĀ  ā€“Ā  1Ā  +Ā  1Ā  +Ā  XnĀ  ā€“Ā  1Ā  +Ā  1Ā  +Ā  XnĀ  ā€“Ā  1Ķ¾Ā  nĀ  >Ā  0,Ā  isĀ  theĀ  recurrenceĀ 
required.Ā 
ByĀ induction,Ā oneĀ canĀ proveĀ thatĀ XnĀ  =Ā 3Ā nĀ 
ā€“1,Ā n Ā³ 0.Ā 
4.3.5Ā ProblemĀ 
SomeĀ ofĀ theĀ regionsĀ definedĀ byĀ nĀ linesĀ inĀ theĀ planeĀ areĀ infinite,Ā whileĀ othersĀ 
areĀ bounded.Ā Ā WhatĀ isĀ theĀ maximumĀ possibleĀ numberĀ ofĀ boundedĀ regionsĀ ?Ā 
Solution:Ā nĀ =Ā 1,Ā thenĀ thereĀ areĀ noĀ boundedĀ regionsĀ (2Ā infinite)Ā 
nĀ =Ā 2,Ā thenĀ thereĀ areĀ noĀ boundedĀ regionsĀ (4Ā infinite)Ā 
nĀ =Ā 3,Ā 
2Ā 
AĀ  BĀ 
1Ā 
M
DiscreteĀ Ā MathematicsĀ  UnitĀ 4Ā 
SikkimĀ ManipalĀ UniversityĀ  PageĀ No:Ā 111Ā 
3Ā rdĀ 
lineĀ intersectingĀ atĀ kĀ =Ā 2Ā pointsĀ ofĀ previousĀ linesĀ 1Ā stĀ 
,Ā 2Ā ndĀ 
andĀ soĀ obtainedĀ 
kĀ ā€“1Ā =Ā 2ā€“1Ā =Ā 1Ā boundedĀ region.Ā IfĀ nĀ =Ā 4,Ā 4Ā thĀ 
lineĀ intersectingĀ atĀ kĀ =Ā 3Ā pointsĀ 
ofĀ previousĀ 1Ā stĀ 
,Ā 2Ā ndĀ 
andĀ 3Ā rdĀ 
linesĶ¾Ā andĀ soĀ obtainedĀ  kĀ ā€“1Ā =Ā 3Ā ā€“1Ā =Ā 2Ā boundsĀ 
regionsĀ (new).Ā 
1Ā 
IĀ 
IĀ 
IĀ 
IĀ 
IĀ 
IĀ 
3Ā 
2Ā 
bĀ 
(6Ā infiniteĀ regions)Ā 
bĀ 
1Ā 
3Ā 
2Ā 
bĀ bĀ 
4
DiscreteĀ Ā MathematicsĀ  UnitĀ 4Ā 
SikkimĀ ManipalĀ UniversityĀ  PageĀ No:Ā 112Ā 
IfĀ nĀ =Ā 5,Ā weĀ getĀ 1Ā +Ā 2+Ā 3Ā boundedĀ regionsĀ i.e.,Ā (nĀ ā€“Ā 2)Ā +Ā (nĀ ā€“Ā 3)Ā +Ā (nĀ ā€“Ā 4).Ā 
InĀ  generalĀ  ,Ā  theĀ  numberĀ  ofĀ  boundedĀ  regionsĀ  areĀ  (nĀ ā€“Ā 2)Ā  +Ā  (nĀ ā€“Ā 3)Ā  +Ā  ā€¦Ā  +Ā 
(sumĀ ofĀ firstĀ (nĀ­2)Ā naturalĀ numbers)Ā Ā =
( )( )
2Ā 
1Ā 2Ā nĀ 2Ā n +--
=
( )( )
2Ā 
2Ā nĀ 1Ā n --
[usingĀ sumĀ ofĀ firstĀ nĀ­naturalĀ numbersĀ inĀ A.P..Ā 
4.4Ā GeneratingĀ FunctionĀ 
AĀ generatingĀ functionĀ isĀ aĀ polynomialĀ ofĀ theĀ formĀ  f(x)Ā =Ā a0Ā  +Ā a1xĀ +Ā a2xĀ 2Ā 
+Ā ā€¦Ā 
+Ā  anxĀ nĀ 
+Ā  ā€¦,Ā  whichĀ  hasĀ  infinitelyĀ  manyĀ  nonĀ­zeroĀ  terms.Ā  Ā  ThereĀ  isĀ  aĀ 
correspondenceĀ betweenĀ generatingĀ functionsĀ andĀ sequences.Ā (ThatĀ is,Ā  a0Ā 
+Ā a1xĀ +Ā a2xĀ 2Ā 
+Ā ā€¦ Ā« a0,Ā a1,Ā a2,Ā ā€¦.).Ā 
4.4.1Ā Example:Ā (i).Ā TheĀ generatingĀ functionĀ ofĀ theĀ sequenceĀ 1,Ā 2,Ā 3,Ā ā€¦Ā ofĀ 
naturalĀ numbersĀ isĀ f(x)Ā =Ā 1Ā +Ā 2xĀ +Ā 3xĀ 2Ā 
+Ā ā€¦.Ā 
(ii).Ā  TheĀ  generatingĀ  functionĀ  ofĀ  theĀ  arithmeticĀ  sequenceĀ  1,Ā  4,Ā  7,Ā  10,Ā  ā€¦Ā  isĀ 
f(x)Ā =Ā 1Ā +Ā 4xĀ +Ā 7xĀ 2Ā 
+Ā 10xĀ 3Ā 
+Ā ā€¦.Ā 
4.4.2Ā NoteĀ 
LetĀ f(x)Ā =Ā a0Ā +Ā a1x +Ā a2xĀ 2Ā 
+Ā ā€¦Ā andĀ g(x)Ā =Ā b0Ā +Ā b1x +Ā b2xĀ 2Ā 
+Ā ā€¦Ā beĀ twoĀ generatingĀ 
sequences,Ā  thenĀ f(x)Ā  +Ā  g(x)Ā  =Ā  (a0Ā  +Ā b0)Ā  +Ā  (a1Ā  +Ā  b1)xĀ +Ā  (a2Ā  +Ā  b2)xĀ 2Ā 
+Ā  ā€¦Ā  andĀ 
f(x)g(x)Ā =Ā (a0b0)Ā +Ā (a1b0Ā  +Ā a0b1)xĀ +Ā (a0b2Ā  +Ā a1b1Ā  +Ā a2b0)xĀ 2Ā 
+Ā ā€¦,Ā theĀ coefficientĀ ofĀ 
xĀ nĀ 
inĀ theĀ product f(x)g(x)Ā isĀ theĀ finiteĀ sum: a0bnĀ + a1bn ā€“ 1Ā + a2bn ā€“ 2Ā + ā€¦Ā + anb0.Ā 
4.4.3Ā ExampleĀ 
IfĀ  f(x)Ā  =Ā  1Ā  +Ā  xĀ  +Ā  xĀ 2Ā 
+Ā  ā€¦Ā  +Ā  xĀ nĀ 
+Ā  ā€¦Ā  andĀ  g(x)Ā  =Ā  1Ā  ā€“Ā  xĀ  +Ā  xĀ 2Ā 
ā€“Ā  xĀ 3Ā 
+ā€¦Ā 
+Ā  (Ā­1)Ā nĀ 
xĀ nĀ 
+Ā  ā€¦,Ā  thenĀ  f(x)Ā  +Ā  g(x)Ā  =Ā  (1Ā  +Ā  1)Ā  +Ā  (1Ā  ā€“Ā  1)xĀ  +Ā  (1Ā  +Ā  1)xĀ 2Ā 
+Ā  ā€¦Ā  +Ā 
(1Ā +Ā (Ā­1)Ā nĀ 
)xĀ nĀ 
+Ā ā€¦Ā 
=Ā Ā 2Ā +Ā 2xĀ 2Ā 
+Ā 2xĀ 4Ā 
+Ā ā€¦Ā 
f(x)g(x)Ā =Ā 1Ā +Ā [1(Ā­1)Ā +Ā 1(1)]xĀ +Ā [1(1)Ā +Ā 1(Ā­1)Ā +Ā 1(1)]xĀ 2Ā 
+Ā ā€¦Ā 
=Ā 1Ā +Ā xĀ 2Ā 
+Ā xĀ 4Ā 
+Ā xĀ 6Ā 
+Ā ā€¦
DiscreteĀ Ā MathematicsĀ  UnitĀ 4Ā 
SikkimĀ ManipalĀ UniversityĀ  PageĀ No:Ā 113Ā 
4.4.4Ā ProblemĀ 
SolveĀ theĀ recurrenceĀ relation anĀ =Ā 3an ā€“ 1,Ā n Ā³ 1,Ā a0Ā =Ā 1 usingĀ generatingĀ function.Ā 
Solution:Ā Ā ConsiderĀ theĀ generatingĀ functionĀ f(x)Ā =Ā a0Ā  +Ā a1xĀ +Ā a2xĀ 2Ā 
+Ā ā€¦Ā +Ā anxĀ nĀ 
+Ā ā€¦Ā ofĀ theĀ sequenceĀ a0,Ā a1,Ā a2Ā  ā€¦Ā 
3x.f(x)Ā =Ā 3a0xĀ +Ā 3a1xĀ 2Ā 
+Ā ā€¦Ā +Ā 3anĀ ā€“Ā 1xĀ nĀ 
+Ā ā€¦Ā 
f(x)Ā ā€“Ā 3x.f(x)Ā =Ā a0Ā  +Ā (a1Ā  ā€“Ā 3a0)xĀ +Ā (a2Ā  ā€“Ā 3a1)xĀ 2Ā 
+Ā ā€¦.Ā +Ā (anĀ  ā€“Ā 3anĀ Ā­Ā 1)xĀ nĀ 
+Ā ā€¦Ā 
SinceĀ a0Ā  =Ā 1,Ā a1Ā =Ā 3a0Ā  andĀ inĀ general,Ā anĀ =Ā 3anĀ ā€“Ā 1,Ā weĀ getĀ (1Ā ā€“Ā 3x)Ā f(x)Ā =Ā 1
ƞ f(x)Ā =Ā  xĀ 3Ā 1Ā 
1
- =Ā (1Ā ā€“Ā 3x)Ā Ā­1Ā 
=Ā 1Ā +Ā 3xĀ +Ā (3x)Ā 2Ā 
+Ā ā€¦Ā +Ā (3x)Ā nĀ 
+Ā ā€¦Ā 
ThereforeĀ an,Ā whichĀ isĀ theĀ coefficientĀ ofĀ xĀ nĀ 
inĀ f(x),Ā isĀ equalĀ toĀ 3Ā nĀ 
.Ā 
4.4.5Ā ProblemĀ 
SolveĀ theĀ recurrenceĀ relationĀ anĀ  =Ā 2anĀ­1Ā  ā€“Ā anĀ­2,Ā Ā n Ā³ 2,Ā givenĀ a0Ā  =Ā 3,Ā a1Ā  =Ā Ā­2Ā 
usingĀ theĀ generatingĀ function.Ā 
Solution:Ā LetĀ f(x)Ā =Ā a0Ā  +Ā a1xĀ +Ā a2xĀ 2Ā 
+Ā ā€¦Ā +Ā anxĀ nĀ 
+Ā ā€¦Ā 
2xf(x)Ā =Ā Ā Ā Ā Ā Ā Ā Ā 2a0xĀ +Ā 2a1xĀ 2Ā 
+Ā ā€¦Ā +Ā 2anĀ­1xĀ nĀ 
+Ā ā€¦Ā 
xĀ 2Ā 
f(x)Ā =Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā a0xĀ 2Ā 
+Ā ā€¦Ā +Ā Ā anĀ­2xĀ nĀ 
+Ā ā€¦Ā 
ThereforeĀ f(x)Ā ā€“Ā 2xf(x)Ā +Ā xĀ 2Ā 
f(x)Ā =Ā a0Ā  +Ā (a1Ā ā€“Ā 2a0)xĀ +Ā (a2Ā  ā€“2a1+Ā a0)xĀ 2Ā 
+Ā ā€¦Ā 
+Ā (anĀ  ā€“Ā 2anĀ­1Ā  +Ā anĀ­2)xĀ nĀ 
+Ā ā€¦Ā =Ā 3Ā ā€“Ā 8xĀ (sinceĀ a0Ā  =Ā 3,Ā a1Ā  =Ā Ā­2Ā andĀ anĀ  ā€“Ā 2anĀ­1Ā  +Ā anĀ­2Ā 
=Ā 0Ā forĀ Ā Ā Ā Ā Ā Ā Ā n Ā³ 2).Ā 
OnĀ simplification,Ā weĀ getĀ f(x)Ā =
( )2Ā 
xĀ 1Ā 
1
-
(3Ā ā€“Ā 8x)Ā 
=Ā Ā (Ā 1Ā +Ā 2x+Ā 3xĀ 2Ā 
+Ā ā€¦Ā +Ā (n+1)Ā xĀ nĀ 
+Ā ā€¦)(3Ā ā€“Ā 8x)Ā 
=Ā Ā 3Ā ā€“Ā 2xĀ ā€“Ā 7xĀ 2Ā 
ā€“Ā 12xĀ 3Ā 
+Ā ā€¦Ā +Ā (ā€“Ā 5nĀ +Ā 3)xĀ nĀ 
+Ā ā€¦.Ā 
ThereforeĀ theĀ coefficientĀ ofĀ xĀ nĀ 
,Ā thatĀ is.Ķ¾Ā anĀ  =Ā 3Ā ā€“5nĀ  isĀ theĀ solution.
DiscreteĀ Ā MathematicsĀ  UnitĀ 4Ā 
SikkimĀ ManipalĀ UniversityĀ  PageĀ No:Ā 114Ā 
4.5Ā IntegerĀ FunctionsĀ 
4.5.1Ā DefinitionĀ 
ForĀ anyĀ realĀ numberĀ x,Ā weĀ defineĀ theĀ floorĀ ofĀ xĀ as
Ć«xĆ» =theĀ greatestĀ integerĀ lessĀ thanĀ orĀ equalĀ to x=maxĀ {n / n Ā£ x, n isĀ anĀ integer}Ā 
4.5.2Ā ExampleĀ 
TakeĀ xĀ =Ā 2.52,Ā then
Ć« x Ć» =Ā  maxĀ {nĀ /Ā n Ā£ x,Ā nĀ isĀ anĀ integer}Ā =Ā maxĀ {1,Ā 2}Ā Ā =Ā 2.Ā 
4.5.3Ā DefinitionĀ 
ForĀ anyĀ realĀ numberĀ x,Ā weĀ defineĀ theĀ ceilingĀ ofĀ xĀ as
Ć© x Ć¹ =Ā theĀ leastĀ integerĀ greaterĀ thanĀ orĀ equalĀ toĀ xĀ =Ā minĀ {nĀ /Ā n Ā³ x,Ā nĀ isĀ anĀ 
integer}.Ā 
4.5.4Ā Ā ExampleĀ 
TakeĀ xĀ =Ā 3.732,Ā then
Ć© x Ć¹ =Ā minĀ {nĀ /Ā n Ā³ x,Ā nĀ isĀ anĀ integer}Ā =Ā minĀ {4,Ā 5,Ā 6,Ā 7ā€¦}Ā =Ā 4.Ā 
ObserveĀ thatĀ forĀ anyĀ realĀ numberĀ x, Ć« x Ć» Ā£ xĀ and Ć© x Ć¹ Ā³ x.Ā 
4.5.5Ā GeometricĀ InterpretationĀ 
FloorĀ  andĀ  CeilingĀ  functionsĀ  mayĀ  beĀ  understoodĀ  fromĀ  theirĀ  graphicalĀ 
(orĀ geometrical)Ā representation.Ā ConsiderĀ theĀ lineĀ f(x)Ā =Ā x,Ā theĀ diagonalĀ onĀ I,Ā IIIĀ 
coordinates,Ā take x=e=2.71828ā€¦.Ā Ā weĀ describeĀ floorĀ andĀ ceilingĀ ofĀ e asĀ follows:
DiscreteĀ Ā MathematicsĀ  UnitĀ 4Ā 
SikkimĀ ManipalĀ UniversityĀ  PageĀ No:Ā 115Ā 
whereĀ weĀ denoteĀ 
FromĀ theĀ graph, Ć«eĆ» =Ā 2 Ć©x Ć¹ =Ā ā€¦ā€¦ā€¦...
Ć©eĆ¹ =Ā 3 Ć«x Ć» =Ā Ā _____
Ć«Ā­eĆ» =Ā Ā­3, Ć©Ā­eĆ¹ =Ā Ā­2Ā 
4.5.6Ā PropertiesĀ 
i)Ā  FromĀ  theĀ  aboveĀ  graph,Ā  itĀ  canĀ  beĀ  observedĀ  that,Ā  theĀ  twoĀ  functions
Ć©x Ć¹ and Ć«xĆ» areĀ equalĀ atĀ integerĀ points.Ā Ā ThatĀ is, Ć«xĆ» =Ā x ƛ xĀ isĀ anĀ 
integer ƛ Ć©xĆ¹ =Ā x.Ā 
ā€¢Ā  ā€¢Ā  ā€¢Ā  ā€¢Ā  ā€¢Ā ā€¢Ā  ā€¢Ā  ā€¢Ā  ā€¢Ā  ā€¢Ā  ā€¢Ā ā€¢Ā  ā€¢Ā  ā€¢Ā 
ā€¢Ā 
ā€¢Ā 
ā€¢Ā 
ā€¢Ā 
ā€¢Ā 
ā€¢Ā 
ā€¢Ā 
ā€¢Ā 
1Ā  3Ā 2Ā  4Ā  5Ā Ā­1Ā Ā­3Ā  Ā­2Ā Ā­4Ā Ā­5Ā 
1Ā 
3Ā 
2Ā 
4Ā 
Ā­1
Ā­3Ā 
Ā­2Ā 
Ā­4Ā 
ā€¢Ā 
ā€¢Ā 
ā€¢Ā 
ā€¢Ā 
ā€¢Ā 
ā€¢Ā 
FloorĀ 
FloorĀ 
CeilingĀ 
CeilingĀ 
f(x)Ā =Ā xĀ 
f(x)Ā 
xĀ =Ā Ā­eĀ 
xĀ =Ā eĀ 
xĀ 
Ā­2.7182Ā  2.7182Ā 
0
DiscreteĀ Ā MathematicsĀ  UnitĀ 4Ā 
SikkimĀ ManipalĀ UniversityĀ  PageĀ No:Ā 116Ā 
ii) Ć©xĆ¹ ā€“Ā xĀ Ā =Ā [Ā xĀ isĀ notĀ anĀ integer]Ā 
ThatĀ is, Ć©xĆ¹ ā€“ Ć«xĆ» =
Ć®
Ć­
ƬĀ 
otherwiseĀ 0,Ā 
integerĀ anĀ notĀ isĀ ifĀ 1,Ā  xĀ 
iii)Ā  xĀ ā€“Ā 1Ā < Ć«xĆ» andĀ xĀ +Ā 1Ā > Ć©xĆ¹ ƞ xĀ ā€“1Ā < Ć«xĆ» Ā£ x Ā£ Ć©xĆ¹ <Ā xĀ +Ā 1Ā 
iv) Ć«Ā­xĆ» =Ā Ā­ Ć©xĆ¹ and Ć©Ā­xĆ¹ =Ā Ā­Ć«xĆ» .Ā 
4.5.7Ā Ā SomeĀ RulesĀ onĀ floorĀ andĀ ceilingĀ functionsĀ 
InĀ allĀ theĀ followingĀ cases,Ā xĀ isĀ realĀ andĀ nĀ isĀ anĀ integer.Ā 
1. Ć«xĆ» =Ā n ƛ n Ā£ xĀ <Ā nĀ +Ā 1Ā 
2. Ć«xĆ» =Ā n ƛ xĀ ā€“1Ā <Ā n Ā£ xĀ 
3. Ć©xĆ¹ =Ā n ƛ nĀ ā€“1Ā <Ā x Ā£ nĀ 
4. Ć©xĆ¹ =Ā n ƛ x Ā£ nĀ <Ā xĀ +Ā 1.Ā 
4.5.8 ExampleĀ 
TheĀ aboveĀ rulesĀ canĀ beĀ illustrated,Ā byĀ takingĀ xĀ =Ā 4.5.
Ć«4.5Ć» =Ā 4 ƛ 4 Ā£ 4.5Ā <Ā 5
Ć«4.5Ć» =Ā 4 ƛ 3.5Ā <Ā 4 Ā£ 4.5
Ć©4.5Ć¹ =Ā 5 ƛ 4Ā <Ā 4.5 Ā£ 5
Ć©4.5Ć¹ =Ā 5 ƛ 4.5 Ā£ 5Ā <Ā 5.5Ā 
4.5.9 ProblemĀ 
4.5.10Ā  ProveĀ that Ć«xĀ +Ā nĆ» = Ć«xĆ» +Ā n,Ā forĀ anyĀ integerĀ nĀ andĀ realĀ x.Ā 
Solution:Ā CaseĀ (i):Ā Ā Ā TheĀ proofĀ isĀ clearĀ whenĀ xĀ isĀ anĀ integer.Ā 
CaseĀ (ii):Ā Ā SupposeĀ thatĀ xĀ isĀ anyĀ real.Ā Ā Then Ć«xĆ» Ā£ x ƞ Ć«xĆ» +Ā n Ā£ xĀ +Ā nĀ Ā­Ā­Ā­Ā­(i)Ā 
AlsoĀ forĀ anyĀ realĀ x,Ā andĀ integerĀ n,Ā xĀ +Ā nĀ < Ć«xĆ» +Ā nĀ +Ā 1Ā  Ā­Ā­Ā­Ā­Ā­Ā­Ā­Ā­Ā­Ā­(ii)Ā 
FromĀ (i)Ā &Ā (ii) Ć«xĆ» +Ā n Ā£ xĀ +Ā nĀ < Ć«xĆ» +Ā nĀ +Ā 1Ā  Ā­Ā­Ā­Ā­Ā­Ā­Ā­Ā­Ā­(iii)Ā 
TakeĀ kĀ = Ć«xĆ» +Ā nĀ Ā andĀ yĀ =Ā xĀ +Ā nĀ 
ThenĀ (iii)Ā becomesĀ k Ā£ yĀ <Ā kĀ +Ā 1,Ā yĀ isĀ realĀ andĀ kĀ isĀ anĀ integerĀ 
ByĀ ruleĀ (1)Ā ofĀ 4.5.7,Ā weĀ get Ć«yĆ» =Ā kĀ 
ThatĀ is, Ć«xĀ +Ā nĆ» = Ć«xĆ» +Ā n.
DiscreteĀ Ā MathematicsĀ  UnitĀ 4Ā 
SikkimĀ ManipalĀ UniversityĀ  PageĀ No:Ā 117Ā 
4.5.11Ā  RemarkĀ 
InĀ general,Ā takingĀ outĀ ofĀ aĀ constantĀ factorĀ isĀ notĀ true.Ā 
TakeĀ nĀ =Ā 2Ā andĀ xĀ =Ā 
2Ā 
1Ā 
.Ā  Now Ć«nxĆ» = Ć«2.Ā 
2Ā 
1
Ć» = Ć«1Ć» =Ā 1Ā whereĀ asĀ  n Ć«xĆ» =Ā 2
Ć«
2Ā 
1
Ć» =Ā 2.0Ā =Ā 0.Ā Therefore Ć«nxĆ» ā‰ Ā n Ć«xĆ».Ā 
4.5.12Ā  NoteĀ 
AnyĀ inequalityĀ betweenĀ aĀ realĀ andĀ anĀ integerĀ isĀ equivalentĀ toĀ aĀ floorĀ orĀ 
ceilingĀ inequalityĀ betweenĀ integers:Ā 
(1)Ā  xĀ <Ā n ƛ Ć«xĆ» <Ā nĀ 
(2)Ā  nĀ <Ā x ƛ nĀ < Ć©xĆ¹
(3)Ā  x Ā£ n ƛ Ć©xĆ¹ Ā£ nĀ 
(4)Ā  n Ā£ x ƛ n Ā£ Ć«xĆ»
TheĀ differenceĀ betweenĀ xĀ and Ć«xĆ» isĀ calledĀ theĀ fractionalĀ partĀ ofĀ x.Ā 
ItĀ isĀ denotedĀ byĀ {x}.Ā Ā ThatĀ is,Ā {x}Ā =Ā xĀ ā€“ Ć«xĆ» .Ā 
4.5.13Ā  Note:Ā 
i)Ā  LetĀ xĀ beĀ aĀ realĀ number.Ā Ā IfĀ xĀ =Ā nĀ + q ,Ā whereĀ nĀ isĀ anĀ integerĀ andĀ 
0 Ā£ q <Ā 1,Ā thenĀ RuleĀ (1)Ā ofĀ 2.5.7,Ā nĀ = Ć«xĆ» and q =Ā {x}.Ā 
ii)Ā  IfĀ nĀ isĀ anĀ arbitraryĀ real,Ā thenĀ theĀ condition Ć«xĀ +Ā nĆ» = Ć«xĆ» +Ā n,Ā doesĀ notĀ 
hold.Ā 
ForĀ example,Ā takeĀ xĀ =Ā 2.5Ā andĀ nĀ =Ā 3.2.Ā Ā Then
Ć«xĀ +Ā nĆ» = Ć«2.5Ā +Ā 3.2Ć» = Ć«5.7Ć» =Ā 5,Ā and Ć«xĆ» +nĀ = Ć«2.5Ć» +3.2Ā =Ā 2Ā +Ā 3.2Ā =Ā 5.2.Ā 
Therefore Ć«xĀ +Ā nĆ» ā‰  Ć«xĆ» +Ā n,Ā ifĀ nĀ isĀ arbitraryĀ real.Ā 
4.5.14Ā  ProblemĀ 
ProveĀ thatĀ Ā = Ć« Ć»Ā xĀ  ,Ā realĀ Ā numberĀ x Ā³ 0.
DiscreteĀ Ā MathematicsĀ  UnitĀ 4Ā 
SikkimĀ ManipalĀ UniversityĀ  PageĀ No:Ā 118Ā 
Solution:Ā IfĀ xĀ isĀ anĀ integer,Ā thenĀ clearlyĀ  = Ć« Ć»Ā xĀ  (sinceĀ xĀ integer ƞ Ć«xĆ» =Ā x)Ā 
SupposeĀ xĀ isĀ anyĀ realĀ number.Ā LetĀ mĀ = Ć« ƻƫ Ć»Ā x
ƛ m Ā£ Ć« Ć»Ā xĀ  <Ā mĀ +1Ā Ā Ā Ā Ā Ā (byĀ RuleĀ (1),Ā ofĀ 4.5.7)
ƛ mĀ 2
Ā£ Ć«xĆ» <Ā (mĀ +Ā 1)Ā 2Ā 
(squaring)
ƛ mĀ 2
Ā£ xĀ <Ā (mĀ +Ā 1)Ā 2
ƛ m Ā£Ā  xĀ  <Ā mĀ +Ā 1Ā Ā Ā Ā Ā Ā Ā Ā (takingĀ squareĀ root)
ƛ mĀ = Ć«Ā  x Ć» (byĀ RuleĀ (1)Ā ofĀ 4.5.7)Ā 
ThusĀ forĀ anyĀ realĀ x Ā³ 0, Ć« ƻƫ Ć»Ā xĀ  = Ć« Ć»Ā xĀ  .Ā 
SimilarlyĀ forĀ ceilingĀ functions, Ć© Ć© Ć¹Ā x Ć¹ = Ć©Ā  x Ć¹ ,Ā forĀ realĀ x Ā³ 0.Ā Ā TheĀ proofĀ isĀ 
quiteĀ similar.Ā 
4.5.15Ā  NoteĀ 
LetĀ xĀ beĀ anyĀ real.Ā Ā Ā ThenĀ theĀ nearestĀ integerĀ toĀ xĀ isĀ 
nĀ =
{ } { }
{ }[ ] { }ĆÆĆ®
ĆÆ
Ć­
Ƭ
<<+
<Ā£
1Ā xĀ 0.5Ā ifĀ xĀ Ā­Ā 1Ā xĀ 
0.5Ā xĀ 0Ā ifĀ xĀ Ā­Ā xĀ 
ForĀ instance,Ā takeĀ xĀ =Ā 2.4,Ā theĀ nearestĀ integerĀ isĀ 2.Ā Ā ThenĀ nĀ =Ā xĀ ā€“Ā {x}Ā =Ā 2.4Ā ā€“Ā 
0.4Ā (sinceĀ {x}Ā =Ā 0.4)Ā =Ā 2Ā 
ForĀ xĀ =Ā 2.6,Ā nĀ =Ā 2.6Ā +Ā {1Ā Ā­Ā 0.6}Ā =Ā 2.6Ā +Ā 0.4Ā =Ā 3.Ā 
4.5.16Ā  ProblemĀ 
FindĀ aĀ necessaryĀ andĀ sufficientĀ conditionĀ that Ć«nxĆ» =Ā n Ć«xĆ» ,Ā whenĀ nĀ isĀ aĀ 
positiveĀ integer.Ā 
Solution:Ā Consider Ć«nxĆ» = Ć«nĀ (Ć«xĆ» +Ā {x})Ć» (since Ć«xĆ» =Ā x ā€“ {x} ƞ xĀ = Ć«xĆ» +Ā {x}Ā )Ā 
= Ć« n Ć«xĆ» +Ā nĀ {x}Ć»
=Ā n Ć«xĆ» + Ć«nĀ {x}Ć»
DiscreteĀ Ā MathematicsĀ  UnitĀ 4Ā 
SikkimĀ ManipalĀ UniversityĀ  PageĀ No:Ā 119Ā 
Therefore Ć«nxĆ» =Ā nĆ«xĆ» ƛ Ć«n{x}Ć» =Ā 0 ƛ 0 Ā£ n{x}Ā <Ā 1 ƛ {x}<Ā 
nĀ 
1Ā 
,Ā nĀ isĀ aĀ 
positiveĀ integer.Ā ThereforeĀ theĀ necessaryĀ andĀ sufficientĀ conditionĀ for Ć«nxĆ» =Ā 
n Ć«xĆ» isĀ thatĀ {x}Ā <Ā 
nĀ 
1Ā 
.Ā 
SelfĀ AssessmentĀ QuestionsĀ 
1.Ā  SolveĀ  theĀ  recurrenceĀ  relationĀ  anĀ  =Ā  5anĀ­1Ā  ā€“Ā  6anĀ­2,Ā  Ā  n Ā³ 2,Ā  givenĀ  a0Ā  =Ā  1,Ā 
a1Ā  =Ā 4.Ā 
2.Ā  SolveĀ  theĀ  recurrenceĀ  anĀ  =Ā  4anĀ­1Ā  ā€“Ā  4anĀ­2,Ā  n Ā³ 2Ā  withĀ  initialĀ  conditionsĀ 
a0Ā  =1,Ā a1Ā =Ā 4.Ā 
3.Ā  SolveĀ theĀ recurrenceĀ relationĀ anĀ  =Ā Ā­3anĀ­1Ā +Ā n,Ā n Ā³ 1,Ā whereĀ a0Ā =Ā 1.Ā 
4.Ā  SolveĀ anĀ  =Ā 2anĀ­1Ā  +Ā 3anĀ­2Ā +Ā 5Ā nĀ 
,Ā n Ā³ 2,Ā givenĀ a0Ā  =Ā Ā­2,Ā a1Ā  =Ā 1.Ā 
5.Ā  IfĀ f(x)Ā =Ā 1Ā +Ā xĀ +Ā xĀ 2Ā 
+Ā ā€¦.,Ā +Ā xĀ nĀ 
+Ā ā€¦..Ā andĀ g(x)Ā =Ā 1Ā ā€“Ā xĀ +Ā xĀ 2Ā 
ā€“Ā xĀ 3Ā 
+Ā ā€¦..Ā +Ā 
(Ā­1)Ā nĀ 
xĀ nĀ 
+Ā ā€¦.Ā FindĀ f(x)Ā +Ā g(x),Ā andĀ f(x).g(x).Ā 
6.Ā  SolveĀ theĀ recurrenceĀ relationĀ anĀ  =Ā 3anĀ­1,Ā n Ā³ 1Ā givenĀ a0Ā =Ā 1.Ā 
4.6Ā SummaryĀ 
TheĀ applicationsĀ ofĀ recurrenceĀ relationsĀ wereĀ discussed.Ā Ā ThisĀ providesĀ theĀ 
baseĀ forĀ solvingĀ recurrencesĀ usingĀ floorĀ andĀ ceilingĀ functions.Ā Ā TheĀ readerĀ 
willĀ  beĀ  ableĀ  toĀ  solveĀ  theĀ  recurrencesĀ  usingĀ  theĀ  generatingĀ  functionĀ 
techniquesĶ¾Ā  alsoĀ  itĀ  givesĀ  theĀ  toolĀ  forĀ  practicalĀ  problemsĀ  involvingĀ  theĀ 
differenceĀ equations,Ā andĀ problemsĀ onĀ analyticalĀ numberĀ theory.Ā 
4.7Ā TerminalĀ QuestionsĀ 
1.Ā  SolveĀ theĀ recurrenceĀ anĀ  =Ā Ā­3anĀ­1Ā  +Ā 10anĀ­2,Ā n Ā³ 2,Ā givenĀ a0Ā  =Ā 1,Ā a1Ā  =Ā 4.Ā 
2.Ā  SolveĀ theĀ recurrenceĀ relationĀ anĀ  =Ā Ā­anĀ­1Ā  +Ā 2nĀ ā€“Ā 3,Ā n Ā³ 1,Ā givenĀ a0Ā =1.Ā 
3.Ā  FindĀ  theĀ  valuesĀ  ofĀ  (i). Ć«3.8Ć» Ķ¾Ā  (ii). Ć«99.1Ć» Ķ¾Ā  (iii) Ć«66.5Ć» Ķ¾Ā  (iv). Ć©2.1Ć¹ Ķ¾Ā 
(v). Ć©3.9Ć¹ Ķ¾Ā andĀ (vi). Ć©1.9Ć¹ where Ć« Ć» and Ć© Ć¹ areĀ twoĀ floorĀ andĀ 
ceilingĀ functions.
DiscreteĀ Ā MathematicsĀ  UnitĀ 4Ā 
SikkimĀ ManipalĀ UniversityĀ  PageĀ No:Ā 120Ā 
4.8Ā AnswersĀ 
SelfĀ AssessmentĀ QuestionsĀ 
1.Ā  anĀ  =Ā Ā­2Ā nĀ 
+Ā 2(3Ā nĀ 
).Ā 
2.Ā  anĀ  =Ā 2Ā nĀ 
+Ā n(2Ā nĀ 
)Ā =Ā (nĀ +Ā 1).2Ā nĀ 
.Ā 
3.Ā  anĀ  =Ā 
16Ā 
3Ā 
+Ā 
4Ā 
1Ā 
nĀ +Ā 
16Ā 
13Ā 
(Ā­3)Ā nĀ 
.Ā 
4.Ā  anĀ  =Ā 
12Ā 
25Ā 
(5Ā nĀ 
)Ā ā€“Ā 
24Ā 
17Ā 
(Ā­1)Ā nĀ 
ā€“Ā 
8Ā 
27Ā 
(3Ā nĀ 
).Ā 
5.Ā  f(x)Ā +Ā g(x)Ā =Ā 2Ā +Ā 2xĀ 2Ā 
+Ā 2xĀ 4Ā 
+Ā ā€¦.Ā 
f(x).g(x)Ā =Ā 1Ā +Ā xĀ 2Ā 
+Ā xĀ 4Ā 
+Ā xĀ 6Ā 
+Ā ā€¦..Ā 
6.Ā  anĀ  =Ā 3Ā nĀ 
.Ā 
TerminalĀ QuestionsĀ 
1.Ā  anĀ  =Ā Ā­Ā 
7Ā 
2Ā 
(Ā­5)Ā nĀ 
+Ā 
7Ā 
9Ā 
(2Ā nĀ 
).Ā 
2.Ā  anĀ  =
ĆÆĆ®
ĆÆ
Ć­
Ƭ
-
+
oddĀ isĀ nĀ ifĀ 3Ā nĀ 
evenĀ isĀ nĀ ifĀ 1Ā nĀ 
.Ā 
3.Ā  (i).Ā 3Ķ¾Ā Ā (ii).Ā 99Ķ¾Ā Ā (iii).Ā 66Ķ¾Ā Ā (iv).Ā 3Ķ¾Ā Ā (v).Ā 4Ķ¾Ā Ā (vi).Ā 2.

More Related Content

What's hot

Digital Text Book :POTENTIAL THEORY AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS
Digital Text Book :POTENTIAL THEORY AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS Digital Text Book :POTENTIAL THEORY AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS
Digital Text Book :POTENTIAL THEORY AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS
Baasilroy
Ā 
L4_SQL.pdf
L4_SQL.pdfL4_SQL.pdf
L4_SQL.pdf
PriyanshTan
Ā 
Jam 2006 Test Papers Mathematical Statistics
Jam 2006 Test Papers Mathematical StatisticsJam 2006 Test Papers Mathematical Statistics
Jam 2006 Test Papers Mathematical Statistics
ashu29
Ā 
Unit viii
Unit viiiUnit viii
Unit viii
mrecedu
Ā 
design and analysis of algorithm
design and analysis of algorithmdesign and analysis of algorithm
design and analysis of algorithm
Muhammad Arish
Ā 
umerical algorithm for solving second order nonlinear fuzzy initial value pro...
umerical algorithm for solving second order nonlinear fuzzy initial value pro...umerical algorithm for solving second order nonlinear fuzzy initial value pro...
umerical algorithm for solving second order nonlinear fuzzy initial value pro...
IJECEIAES
Ā 
Final relation1 m_tech(cse)
Final relation1 m_tech(cse)Final relation1 m_tech(cse)
Final relation1 m_tech(cse)
Himanshu Dua
Ā 
03 Machine Learning Linear Algebra
03 Machine Learning Linear Algebra03 Machine Learning Linear Algebra
03 Machine Learning Linear Algebra
Andres Mendez-Vazquez
Ā 
Math grade 7 learner's module
Math grade 7 learner's moduleMath grade 7 learner's module
Math grade 7 learner's module
Maria Carmela Maligaya
Ā 
Algebra 2 Section 2-1
Algebra 2 Section 2-1Algebra 2 Section 2-1
Algebra 2 Section 2-1
Jimbo Lamb
Ā 
Cs6402 design and analysis of algorithms may june 2016 answer key
Cs6402 design and analysis of algorithms may june 2016 answer keyCs6402 design and analysis of algorithms may june 2016 answer key
Cs6402 design and analysis of algorithms may june 2016 answer key
appasami
Ā 
F5 add maths year plan 2013
F5 add maths year plan 2013F5 add maths year plan 2013
F5 add maths year plan 2013
Huzaini Bin Soronto
Ā 
Notes on eigenvalues
Notes on eigenvaluesNotes on eigenvalues
Notes on eigenvalues
AmanSaeed11
Ā 
Grade 7 new module Math
Grade 7 new module Math Grade 7 new module Math
Grade 7 new module Math
Henry Legaste
Ā 
Silibus algebra.doc
Silibus algebra.docSilibus algebra.doc
Silibus algebra.doc
Rione Drevale
Ā 
Word+problems+le1
Word+problems+le1Word+problems+le1
Word+problems+le1
Edgar Mata
Ā 
Lecture 8 nul col bases dim & rank - section 4-2, 4-3, 4-5 & 4-6
Lecture 8   nul col bases dim & rank - section 4-2, 4-3, 4-5 & 4-6Lecture 8   nul col bases dim & rank - section 4-2, 4-3, 4-5 & 4-6
Lecture 8 nul col bases dim & rank - section 4-2, 4-3, 4-5 & 4-6
njit-ronbrown
Ā 
Relations and functions
Relations and functionsRelations and functions
Relations and functions
nitishguptamaps
Ā 
Fj25991998
Fj25991998Fj25991998
Fj25991998
IJERA Editor
Ā 
Database systems-Formal relational query languages
Database systems-Formal relational query languagesDatabase systems-Formal relational query languages
Database systems-Formal relational query languages
jamunaashok
Ā 

What's hot (20)

Digital Text Book :POTENTIAL THEORY AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS
Digital Text Book :POTENTIAL THEORY AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS Digital Text Book :POTENTIAL THEORY AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS
Digital Text Book :POTENTIAL THEORY AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS
Ā 
L4_SQL.pdf
L4_SQL.pdfL4_SQL.pdf
L4_SQL.pdf
Ā 
Jam 2006 Test Papers Mathematical Statistics
Jam 2006 Test Papers Mathematical StatisticsJam 2006 Test Papers Mathematical Statistics
Jam 2006 Test Papers Mathematical Statistics
Ā 
Unit viii
Unit viiiUnit viii
Unit viii
Ā 
design and analysis of algorithm
design and analysis of algorithmdesign and analysis of algorithm
design and analysis of algorithm
Ā 
umerical algorithm for solving second order nonlinear fuzzy initial value pro...
umerical algorithm for solving second order nonlinear fuzzy initial value pro...umerical algorithm for solving second order nonlinear fuzzy initial value pro...
umerical algorithm for solving second order nonlinear fuzzy initial value pro...
Ā 
Final relation1 m_tech(cse)
Final relation1 m_tech(cse)Final relation1 m_tech(cse)
Final relation1 m_tech(cse)
Ā 
03 Machine Learning Linear Algebra
03 Machine Learning Linear Algebra03 Machine Learning Linear Algebra
03 Machine Learning Linear Algebra
Ā 
Math grade 7 learner's module
Math grade 7 learner's moduleMath grade 7 learner's module
Math grade 7 learner's module
Ā 
Algebra 2 Section 2-1
Algebra 2 Section 2-1Algebra 2 Section 2-1
Algebra 2 Section 2-1
Ā 
Cs6402 design and analysis of algorithms may june 2016 answer key
Cs6402 design and analysis of algorithms may june 2016 answer keyCs6402 design and analysis of algorithms may june 2016 answer key
Cs6402 design and analysis of algorithms may june 2016 answer key
Ā 
F5 add maths year plan 2013
F5 add maths year plan 2013F5 add maths year plan 2013
F5 add maths year plan 2013
Ā 
Notes on eigenvalues
Notes on eigenvaluesNotes on eigenvalues
Notes on eigenvalues
Ā 
Grade 7 new module Math
Grade 7 new module Math Grade 7 new module Math
Grade 7 new module Math
Ā 
Silibus algebra.doc
Silibus algebra.docSilibus algebra.doc
Silibus algebra.doc
Ā 
Word+problems+le1
Word+problems+le1Word+problems+le1
Word+problems+le1
Ā 
Lecture 8 nul col bases dim & rank - section 4-2, 4-3, 4-5 & 4-6
Lecture 8   nul col bases dim & rank - section 4-2, 4-3, 4-5 & 4-6Lecture 8   nul col bases dim & rank - section 4-2, 4-3, 4-5 & 4-6
Lecture 8 nul col bases dim & rank - section 4-2, 4-3, 4-5 & 4-6
Ā 
Relations and functions
Relations and functionsRelations and functions
Relations and functions
Ā 
Fj25991998
Fj25991998Fj25991998
Fj25991998
Ā 
Database systems-Formal relational query languages
Database systems-Formal relational query languagesDatabase systems-Formal relational query languages
Database systems-Formal relational query languages
Ā 

Viewers also liked

13 2 recursive definitions
13 2 recursive definitions13 2 recursive definitions
13 2 recursive definitions
hisema01
Ā 
2.4 writing linear equations
2.4 writing linear equations2.4 writing linear equations
2.4 writing linear equations
fthrower
Ā 
Recurrence
RecurrenceRecurrence
Recurrence relations
Recurrence relationsRecurrence relations
Recurrence relations
IIUM
Ā 
Lecture 18 recursion
Lecture 18 recursionLecture 18 recursion
Lecture 18 recursion
Faisal Mehmood
Ā 
recurrence relations
 recurrence relations recurrence relations
recurrence relations
Anurag Cheela
Ā 
BCA_Semester-II-Discrete Mathematics_unit-i Group theory
BCA_Semester-II-Discrete Mathematics_unit-i Group theoryBCA_Semester-II-Discrete Mathematics_unit-i Group theory
BCA_Semester-II-Discrete Mathematics_unit-i Group theory
Rai University
Ā 
Task 4
Task 4Task 4
Task 4
blackbox90s
Ā 
Group theory
Group theoryGroup theory
Group theory
Vaishnavi Mishra
Ā 
Group theory questions and answers
Group theory questions and answersGroup theory questions and answers
Group theory questions and answers
Chris Sonntag
Ā 
Introduction to group theory
Introduction to group theoryIntroduction to group theory
Introduction to group theory
St.Marys Chemistry Department
Ā 

Viewers also liked (11)

13 2 recursive definitions
13 2 recursive definitions13 2 recursive definitions
13 2 recursive definitions
Ā 
2.4 writing linear equations
2.4 writing linear equations2.4 writing linear equations
2.4 writing linear equations
Ā 
Recurrence
RecurrenceRecurrence
Recurrence
Ā 
Recurrence relations
Recurrence relationsRecurrence relations
Recurrence relations
Ā 
Lecture 18 recursion
Lecture 18 recursionLecture 18 recursion
Lecture 18 recursion
Ā 
recurrence relations
 recurrence relations recurrence relations
recurrence relations
Ā 
BCA_Semester-II-Discrete Mathematics_unit-i Group theory
BCA_Semester-II-Discrete Mathematics_unit-i Group theoryBCA_Semester-II-Discrete Mathematics_unit-i Group theory
BCA_Semester-II-Discrete Mathematics_unit-i Group theory
Ā 
Task 4
Task 4Task 4
Task 4
Ā 
Group theory
Group theoryGroup theory
Group theory
Ā 
Group theory questions and answers
Group theory questions and answersGroup theory questions and answers
Group theory questions and answers
Ā 
Introduction to group theory
Introduction to group theoryIntroduction to group theory
Introduction to group theory
Ā 

Similar to Mc0063(a) unit4-fi

1. Quadratic Equations.pptx
1. Quadratic Equations.pptx1. Quadratic Equations.pptx
1. Quadratic Equations.pptx
neil balajadia
Ā 
2018 specialist lecture st josephs geelong
2018 specialist lecture st josephs geelong2018 specialist lecture st josephs geelong
2018 specialist lecture st josephs geelong
Andrew Smith
Ā 
LINEAR RECURRENCE RELATIONS WITH CONSTANT COEFFICIENTS
 LINEAR RECURRENCE RELATIONS WITH CONSTANT COEFFICIENTS LINEAR RECURRENCE RELATIONS WITH CONSTANT COEFFICIENTS
LINEAR RECURRENCE RELATIONS WITH CONSTANT COEFFICIENTS
AartiMajumdar1
Ā 
Quadratic equations lesson 3
Quadratic equations lesson 3Quadratic equations lesson 3
Quadratic equations lesson 3
KathManarang
Ā 
410629531-G9-WEEK-3 dll.doc
410629531-G9-WEEK-3 dll.doc410629531-G9-WEEK-3 dll.doc
410629531-G9-WEEK-3 dll.doc
JosephSPalileoJr
Ā 
Impact of Linear Homogeneous Recurrent Relation Analysis
Impact of Linear Homogeneous Recurrent Relation AnalysisImpact of Linear Homogeneous Recurrent Relation Analysis
Impact of Linear Homogeneous Recurrent Relation Analysis
ijtsrd
Ā 
Marco-Calculus-AB-Lesson-Plan (Important book for calculus).pdf
Marco-Calculus-AB-Lesson-Plan (Important book for calculus).pdfMarco-Calculus-AB-Lesson-Plan (Important book for calculus).pdf
Marco-Calculus-AB-Lesson-Plan (Important book for calculus).pdf
University of the Punjab
Ā 
Algebra 2 Standards Math Draft August 2016.pdf
Algebra 2 Standards Math Draft August 2016.pdfAlgebra 2 Standards Math Draft August 2016.pdf
Algebra 2 Standards Math Draft August 2016.pdf
ssuserbdee04
Ā 
Module 4 Grade 9 Mathematics (RADICALS)
Module 4 Grade 9 Mathematics (RADICALS)Module 4 Grade 9 Mathematics (RADICALS)
Module 4 Grade 9 Mathematics (RADICALS)
jonald castillo
Ā 
Quadraticequation
QuadraticequationQuadraticequation
Quadraticequation
suefee
Ā 
sequence and series
sequence and seriessequence and series
sequence and series
Abis20
Ā 
EMBODO LP Grade 11 Anti-derivative of Polynomial Functions .docx
EMBODO LP Grade 11 Anti-derivative of Polynomial Functions .docxEMBODO LP Grade 11 Anti-derivative of Polynomial Functions .docx
EMBODO LP Grade 11 Anti-derivative of Polynomial Functions .docx
Elton John Embodo
Ā 
Sequences, Series, and the Binomial Theorem
Sequences, Series, and the Binomial TheoremSequences, Series, and the Binomial Theorem
Sequences, Series, and the Binomial Theorem
Ver Louie Gautani
Ā 
L16
L16L16
Infinite sequence & series 1st lecture
Infinite sequence & series 1st lecture Infinite sequence & series 1st lecture
Infinite sequence & series 1st lecture
Mohsin Ramay
Ā 
Grade 11 advance mathematics book with solution
Grade 11 advance mathematics book with solutionGrade 11 advance mathematics book with solution
Grade 11 advance mathematics book with solution
kateleshadrack12
Ā 
LEARNING PLAN IN MATH 9 Q1W1
LEARNING PLAN IN MATH 9 Q1W1LEARNING PLAN IN MATH 9 Q1W1
LEARNING PLAN IN MATH 9 Q1W1
Erwin Hilario
Ā 
algo_vc_lecture8.ppt
algo_vc_lecture8.pptalgo_vc_lecture8.ppt
algo_vc_lecture8.ppt
Nehagupta259541
Ā 
Paper3a
Paper3aPaper3a
Miaolan_Xie_Master_Thesis
Miaolan_Xie_Master_ThesisMiaolan_Xie_Master_Thesis
Miaolan_Xie_Master_Thesis
Miaolan Xie
Ā 

Similar to Mc0063(a) unit4-fi (20)

1. Quadratic Equations.pptx
1. Quadratic Equations.pptx1. Quadratic Equations.pptx
1. Quadratic Equations.pptx
Ā 
2018 specialist lecture st josephs geelong
2018 specialist lecture st josephs geelong2018 specialist lecture st josephs geelong
2018 specialist lecture st josephs geelong
Ā 
LINEAR RECURRENCE RELATIONS WITH CONSTANT COEFFICIENTS
 LINEAR RECURRENCE RELATIONS WITH CONSTANT COEFFICIENTS LINEAR RECURRENCE RELATIONS WITH CONSTANT COEFFICIENTS
LINEAR RECURRENCE RELATIONS WITH CONSTANT COEFFICIENTS
Ā 
Quadratic equations lesson 3
Quadratic equations lesson 3Quadratic equations lesson 3
Quadratic equations lesson 3
Ā 
410629531-G9-WEEK-3 dll.doc
410629531-G9-WEEK-3 dll.doc410629531-G9-WEEK-3 dll.doc
410629531-G9-WEEK-3 dll.doc
Ā 
Impact of Linear Homogeneous Recurrent Relation Analysis
Impact of Linear Homogeneous Recurrent Relation AnalysisImpact of Linear Homogeneous Recurrent Relation Analysis
Impact of Linear Homogeneous Recurrent Relation Analysis
Ā 
Marco-Calculus-AB-Lesson-Plan (Important book for calculus).pdf
Marco-Calculus-AB-Lesson-Plan (Important book for calculus).pdfMarco-Calculus-AB-Lesson-Plan (Important book for calculus).pdf
Marco-Calculus-AB-Lesson-Plan (Important book for calculus).pdf
Ā 
Algebra 2 Standards Math Draft August 2016.pdf
Algebra 2 Standards Math Draft August 2016.pdfAlgebra 2 Standards Math Draft August 2016.pdf
Algebra 2 Standards Math Draft August 2016.pdf
Ā 
Module 4 Grade 9 Mathematics (RADICALS)
Module 4 Grade 9 Mathematics (RADICALS)Module 4 Grade 9 Mathematics (RADICALS)
Module 4 Grade 9 Mathematics (RADICALS)
Ā 
Quadraticequation
QuadraticequationQuadraticequation
Quadraticequation
Ā 
sequence and series
sequence and seriessequence and series
sequence and series
Ā 
EMBODO LP Grade 11 Anti-derivative of Polynomial Functions .docx
EMBODO LP Grade 11 Anti-derivative of Polynomial Functions .docxEMBODO LP Grade 11 Anti-derivative of Polynomial Functions .docx
EMBODO LP Grade 11 Anti-derivative of Polynomial Functions .docx
Ā 
Sequences, Series, and the Binomial Theorem
Sequences, Series, and the Binomial TheoremSequences, Series, and the Binomial Theorem
Sequences, Series, and the Binomial Theorem
Ā 
L16
L16L16
L16
Ā 
Infinite sequence & series 1st lecture
Infinite sequence & series 1st lecture Infinite sequence & series 1st lecture
Infinite sequence & series 1st lecture
Ā 
Grade 11 advance mathematics book with solution
Grade 11 advance mathematics book with solutionGrade 11 advance mathematics book with solution
Grade 11 advance mathematics book with solution
Ā 
LEARNING PLAN IN MATH 9 Q1W1
LEARNING PLAN IN MATH 9 Q1W1LEARNING PLAN IN MATH 9 Q1W1
LEARNING PLAN IN MATH 9 Q1W1
Ā 
algo_vc_lecture8.ppt
algo_vc_lecture8.pptalgo_vc_lecture8.ppt
algo_vc_lecture8.ppt
Ā 
Paper3a
Paper3aPaper3a
Paper3a
Ā 
Miaolan_Xie_Master_Thesis
Miaolan_Xie_Master_ThesisMiaolan_Xie_Master_Thesis
Miaolan_Xie_Master_Thesis
Ā 

More from Sanjeev Malik

Proverb
ProverbProverb
Proverb
Sanjeev Malik
Ā 
6714600 sap-production-planning-table
6714600 sap-production-planning-table 6714600 sap-production-planning-table
6714600 sap-production-planning-table
Sanjeev Malik
Ā 
Pfc lopez ruizannex3
 Pfc lopez ruizannex3 Pfc lopez ruizannex3
Pfc lopez ruizannex3
Sanjeev Malik
Ā 
Sap pm tables
 Sap pm tables Sap pm tables
Sap pm tables
Sanjeev Malik
Ā 
Sap afs-tables-and-tcodes-list
Sap afs-tables-and-tcodes-listSap afs-tables-and-tcodes-list
Sap afs-tables-and-tcodes-list
Sanjeev Malik
Ā 
6714600 sap-production-planning-table
6714600 sap-production-planning-table6714600 sap-production-planning-table
6714600 sap-production-planning-table
Sanjeev Malik
Ā 
Dda2014result
Dda2014resultDda2014result
Dda2014result
Sanjeev Malik
Ā 
Tsgrewal
TsgrewalTsgrewal
Tsgrewal
Sanjeev Malik
Ā 
Tally introduction
Tally introductionTally introduction
Tally introduction
Sanjeev Malik
Ā 
Ac0140112
Ac0140112Ac0140112
Ac0140112
Sanjeev Malik
Ā 
ACaclchr
ACaclchrACaclchr
ACaclchr
Sanjeev Malik
Ā 

More from Sanjeev Malik (11)

Proverb
ProverbProverb
Proverb
Ā 
6714600 sap-production-planning-table
6714600 sap-production-planning-table 6714600 sap-production-planning-table
6714600 sap-production-planning-table
Ā 
Pfc lopez ruizannex3
 Pfc lopez ruizannex3 Pfc lopez ruizannex3
Pfc lopez ruizannex3
Ā 
Sap pm tables
 Sap pm tables Sap pm tables
Sap pm tables
Ā 
Sap afs-tables-and-tcodes-list
Sap afs-tables-and-tcodes-listSap afs-tables-and-tcodes-list
Sap afs-tables-and-tcodes-list
Ā 
6714600 sap-production-planning-table
6714600 sap-production-planning-table6714600 sap-production-planning-table
6714600 sap-production-planning-table
Ā 
Dda2014result
Dda2014resultDda2014result
Dda2014result
Ā 
Tsgrewal
TsgrewalTsgrewal
Tsgrewal
Ā 
Tally introduction
Tally introductionTally introduction
Tally introduction
Ā 
Ac0140112
Ac0140112Ac0140112
Ac0140112
Ā 
ACaclchr
ACaclchrACaclchr
ACaclchr
Ā 

Recently uploaded

Storytelling For The Web: Integrate Storytelling in your Design Process
Storytelling For The Web: Integrate Storytelling in your Design ProcessStorytelling For The Web: Integrate Storytelling in your Design Process
Storytelling For The Web: Integrate Storytelling in your Design Process
Chiara Aliotta
Ā 
Top Interior Designers in Bangalore.pdf1
Top Interior Designers in Bangalore.pdf1Top Interior Designers in Bangalore.pdf1
Top Interior Designers in Bangalore.pdf1
Decomart Studio
Ā 
ZAPATILLAS 2 X 110 ABRIL.pdf compra economico
ZAPATILLAS 2 X 110 ABRIL.pdf compra economicoZAPATILLAS 2 X 110 ABRIL.pdf compra economico
ZAPATILLAS 2 X 110 ABRIL.pdf compra economico
jhonguerrerobarturen
Ā 
UNIT IV-VISUAL STYLE AND MOBILE INTERFACES.pptx
UNIT IV-VISUAL STYLE AND MOBILE INTERFACES.pptxUNIT IV-VISUAL STYLE AND MOBILE INTERFACES.pptx
UNIT IV-VISUAL STYLE AND MOBILE INTERFACES.pptx
GOWSIKRAJA PALANISAMY
Ā 
Connect Conference 2022: Passive House - Economic and Environmental Solution...
Connect Conference 2022: Passive House -  Economic and Environmental Solution...Connect Conference 2022: Passive House -  Economic and Environmental Solution...
Connect Conference 2022: Passive House - Economic and Environmental Solution...
TE Studio
Ā 
Heuristics Evaluation - How to Guide.pdf
Heuristics Evaluation - How to Guide.pdfHeuristics Evaluation - How to Guide.pdf
Heuristics Evaluation - How to Guide.pdf
Jaime Brown
Ā 
Branding de la empresa de Bolt- 2024.pdf
Branding de la empresa de Bolt- 2024.pdfBranding de la empresa de Bolt- 2024.pdf
Branding de la empresa de Bolt- 2024.pdf
PabloMartelLpez
Ā 
PDF SubmissionDigital Marketing Institute in Noida
PDF SubmissionDigital Marketing Institute in NoidaPDF SubmissionDigital Marketing Institute in Noida
PDF SubmissionDigital Marketing Institute in Noida
PoojaSaini954651
Ā 
原ē‰ˆå®šåš(pennęƕäøščƁ书)ē¾Žå›½å®¾å¤•ę³•å°¼äŗšå¤§å­¦ęƕäøščÆę–‡å‡­å­¦åŽ†čƁ书原ē‰ˆäø€ęØ”äø€ę ·
原ē‰ˆå®šåš(pennęƕäøščƁ书)ē¾Žå›½å®¾å¤•ę³•å°¼äŗšå¤§å­¦ęƕäøščÆę–‡å‡­å­¦åŽ†čƁ书原ē‰ˆäø€ęØ”äø€ę ·åŽŸē‰ˆå®šåš(pennęƕäøščƁ书)ē¾Žå›½å®¾å¤•ę³•å°¼äŗšå¤§å­¦ęƕäøščÆę–‡å‡­å­¦åŽ†čƁ书原ē‰ˆäø€ęØ”äø€ę ·
原ē‰ˆå®šåš(pennęƕäøščƁ书)ē¾Žå›½å®¾å¤•ę³•å°¼äŗšå¤§å­¦ęƕäøščÆę–‡å‡­å­¦åŽ†čƁ书原ē‰ˆäø€ęØ”äø€ę ·
gpffo76j
Ā 
äø€ęƔäø€åŽŸē‰ˆ(ColumbiaęƕäøščƁ)哄伦ęƔäŗšå¤§å­¦ęƕäøščƁ如何办ē†
äø€ęƔäø€åŽŸē‰ˆ(ColumbiaęƕäøščƁ)哄伦ęƔäŗšå¤§å­¦ęƕäøščƁ如何办ē†äø€ęƔäø€åŽŸē‰ˆ(ColumbiaęƕäøščƁ)哄伦ęƔäŗšå¤§å­¦ęƕäøščƁ如何办ē†
äø€ęƔäø€åŽŸē‰ˆ(ColumbiaęƕäøščƁ)哄伦ęƔäŗšå¤§å­¦ęƕäøščƁ如何办ē†
asuzyq
Ā 
NHR Engineers Portfolio 2023 2024 NISHANT RATHI
NHR Engineers Portfolio 2023 2024 NISHANT RATHINHR Engineers Portfolio 2023 2024 NISHANT RATHI
NHR Engineers Portfolio 2023 2024 NISHANT RATHI
NishantRathi18
Ā 
ARENA - Young adults in the workplace (Knight Moves).pdf
ARENA - Young adults in the workplace (Knight Moves).pdfARENA - Young adults in the workplace (Knight Moves).pdf
ARENA - Young adults in the workplace (Knight Moves).pdf
Knight Moves
Ā 
Virtual Tour Application Powerpoint for museum of edinburgh
Virtual Tour Application Powerpoint for museum of edinburghVirtual Tour Application Powerpoint for museum of edinburgh
Virtual Tour Application Powerpoint for museum of edinburgh
millarj46
Ā 
Impact of Fonts: in Web and Apps Design
Impact of Fonts:  in Web and Apps DesignImpact of Fonts:  in Web and Apps Design
Impact of Fonts: in Web and Apps Design
contactproperweb2014
Ā 
Revolutionizing the Digital Landscape: Web Development Companies in India
Revolutionizing the Digital Landscape: Web Development Companies in IndiaRevolutionizing the Digital Landscape: Web Development Companies in India
Revolutionizing the Digital Landscape: Web Development Companies in India
amrsoftec1
Ā 
定制ē¾Žå›½č„æ雅图城åø‚大学ęƕäøščƁ学历čƁ书原ē‰ˆäø€ęØ”äø€ę ·
定制ē¾Žå›½č„æ雅图城åø‚大学ęƕäøščƁ学历čƁ书原ē‰ˆäø€ęØ”äø€ę ·å®šåˆ¶ē¾Žå›½č„æ雅图城åø‚大学ęƕäøščƁ学历čƁ书原ē‰ˆäø€ęØ”äø€ę ·
定制ē¾Žå›½č„æ雅图城åø‚大学ęƕäøščƁ学历čƁ书原ē‰ˆäø€ęØ”äø€ę ·
qo1as76n
Ā 
EASY TUTORIAL OF HOW TO USE CAPCUT BY: FEBLESS HERNANE
EASY TUTORIAL OF HOW TO USE CAPCUT BY: FEBLESS HERNANEEASY TUTORIAL OF HOW TO USE CAPCUT BY: FEBLESS HERNANE
EASY TUTORIAL OF HOW TO USE CAPCUT BY: FEBLESS HERNANE
Febless Hernane
Ā 
Graphic Design Tools and Software .pptx
Graphic Design Tools and Software   .pptxGraphic Design Tools and Software   .pptx
Graphic Design Tools and Software .pptx
Virtual Real Design
Ā 
äø€ęƔäø€åŽŸē‰ˆ(UWęƕäøščƁ)č„æ雅图华ē››é”æ大学ęƕäøščƁ如何办ē†
äø€ęƔäø€åŽŸē‰ˆ(UWęƕäøščƁ)č„æ雅图华ē››é”æ大学ęƕäøščƁ如何办ē†äø€ęƔäø€åŽŸē‰ˆ(UWęƕäøščƁ)č„æ雅图华ē››é”æ大学ęƕäøščƁ如何办ē†
äø€ęƔäø€åŽŸē‰ˆ(UWęƕäøščƁ)č„æ雅图华ē››é”æ大学ęƕäøščƁ如何办ē†
kecekev
Ā 
Practical eLearning Makeovers for Everyone
Practical eLearning Makeovers for EveryonePractical eLearning Makeovers for Everyone
Practical eLearning Makeovers for Everyone
Bianca Woods
Ā 

Recently uploaded (20)

Storytelling For The Web: Integrate Storytelling in your Design Process
Storytelling For The Web: Integrate Storytelling in your Design ProcessStorytelling For The Web: Integrate Storytelling in your Design Process
Storytelling For The Web: Integrate Storytelling in your Design Process
Ā 
Top Interior Designers in Bangalore.pdf1
Top Interior Designers in Bangalore.pdf1Top Interior Designers in Bangalore.pdf1
Top Interior Designers in Bangalore.pdf1
Ā 
ZAPATILLAS 2 X 110 ABRIL.pdf compra economico
ZAPATILLAS 2 X 110 ABRIL.pdf compra economicoZAPATILLAS 2 X 110 ABRIL.pdf compra economico
ZAPATILLAS 2 X 110 ABRIL.pdf compra economico
Ā 
UNIT IV-VISUAL STYLE AND MOBILE INTERFACES.pptx
UNIT IV-VISUAL STYLE AND MOBILE INTERFACES.pptxUNIT IV-VISUAL STYLE AND MOBILE INTERFACES.pptx
UNIT IV-VISUAL STYLE AND MOBILE INTERFACES.pptx
Ā 
Connect Conference 2022: Passive House - Economic and Environmental Solution...
Connect Conference 2022: Passive House -  Economic and Environmental Solution...Connect Conference 2022: Passive House -  Economic and Environmental Solution...
Connect Conference 2022: Passive House - Economic and Environmental Solution...
Ā 
Heuristics Evaluation - How to Guide.pdf
Heuristics Evaluation - How to Guide.pdfHeuristics Evaluation - How to Guide.pdf
Heuristics Evaluation - How to Guide.pdf
Ā 
Branding de la empresa de Bolt- 2024.pdf
Branding de la empresa de Bolt- 2024.pdfBranding de la empresa de Bolt- 2024.pdf
Branding de la empresa de Bolt- 2024.pdf
Ā 
PDF SubmissionDigital Marketing Institute in Noida
PDF SubmissionDigital Marketing Institute in NoidaPDF SubmissionDigital Marketing Institute in Noida
PDF SubmissionDigital Marketing Institute in Noida
Ā 
原ē‰ˆå®šåš(pennęƕäøščƁ书)ē¾Žå›½å®¾å¤•ę³•å°¼äŗšå¤§å­¦ęƕäøščÆę–‡å‡­å­¦åŽ†čƁ书原ē‰ˆäø€ęØ”äø€ę ·
原ē‰ˆå®šåš(pennęƕäøščƁ书)ē¾Žå›½å®¾å¤•ę³•å°¼äŗšå¤§å­¦ęƕäøščÆę–‡å‡­å­¦åŽ†čƁ书原ē‰ˆäø€ęØ”äø€ę ·åŽŸē‰ˆå®šåš(pennęƕäøščƁ书)ē¾Žå›½å®¾å¤•ę³•å°¼äŗšå¤§å­¦ęƕäøščÆę–‡å‡­å­¦åŽ†čƁ书原ē‰ˆäø€ęØ”äø€ę ·
原ē‰ˆå®šåš(pennęƕäøščƁ书)ē¾Žå›½å®¾å¤•ę³•å°¼äŗšå¤§å­¦ęƕäøščÆę–‡å‡­å­¦åŽ†čƁ书原ē‰ˆäø€ęØ”äø€ę ·
Ā 
äø€ęƔäø€åŽŸē‰ˆ(ColumbiaęƕäøščƁ)哄伦ęƔäŗšå¤§å­¦ęƕäøščƁ如何办ē†
äø€ęƔäø€åŽŸē‰ˆ(ColumbiaęƕäøščƁ)哄伦ęƔäŗšå¤§å­¦ęƕäøščƁ如何办ē†äø€ęƔäø€åŽŸē‰ˆ(ColumbiaęƕäøščƁ)哄伦ęƔäŗšå¤§å­¦ęƕäøščƁ如何办ē†
äø€ęƔäø€åŽŸē‰ˆ(ColumbiaęƕäøščƁ)哄伦ęƔäŗšå¤§å­¦ęƕäøščƁ如何办ē†
Ā 
NHR Engineers Portfolio 2023 2024 NISHANT RATHI
NHR Engineers Portfolio 2023 2024 NISHANT RATHINHR Engineers Portfolio 2023 2024 NISHANT RATHI
NHR Engineers Portfolio 2023 2024 NISHANT RATHI
Ā 
ARENA - Young adults in the workplace (Knight Moves).pdf
ARENA - Young adults in the workplace (Knight Moves).pdfARENA - Young adults in the workplace (Knight Moves).pdf
ARENA - Young adults in the workplace (Knight Moves).pdf
Ā 
Virtual Tour Application Powerpoint for museum of edinburgh
Virtual Tour Application Powerpoint for museum of edinburghVirtual Tour Application Powerpoint for museum of edinburgh
Virtual Tour Application Powerpoint for museum of edinburgh
Ā 
Impact of Fonts: in Web and Apps Design
Impact of Fonts:  in Web and Apps DesignImpact of Fonts:  in Web and Apps Design
Impact of Fonts: in Web and Apps Design
Ā 
Revolutionizing the Digital Landscape: Web Development Companies in India
Revolutionizing the Digital Landscape: Web Development Companies in IndiaRevolutionizing the Digital Landscape: Web Development Companies in India
Revolutionizing the Digital Landscape: Web Development Companies in India
Ā 
定制ē¾Žå›½č„æ雅图城åø‚大学ęƕäøščƁ学历čƁ书原ē‰ˆäø€ęØ”äø€ę ·
定制ē¾Žå›½č„æ雅图城åø‚大学ęƕäøščƁ学历čƁ书原ē‰ˆäø€ęØ”äø€ę ·å®šåˆ¶ē¾Žå›½č„æ雅图城åø‚大学ęƕäøščƁ学历čƁ书原ē‰ˆäø€ęØ”äø€ę ·
定制ē¾Žå›½č„æ雅图城åø‚大学ęƕäøščƁ学历čƁ书原ē‰ˆäø€ęØ”äø€ę ·
Ā 
EASY TUTORIAL OF HOW TO USE CAPCUT BY: FEBLESS HERNANE
EASY TUTORIAL OF HOW TO USE CAPCUT BY: FEBLESS HERNANEEASY TUTORIAL OF HOW TO USE CAPCUT BY: FEBLESS HERNANE
EASY TUTORIAL OF HOW TO USE CAPCUT BY: FEBLESS HERNANE
Ā 
Graphic Design Tools and Software .pptx
Graphic Design Tools and Software   .pptxGraphic Design Tools and Software   .pptx
Graphic Design Tools and Software .pptx
Ā 
äø€ęƔäø€åŽŸē‰ˆ(UWęƕäøščƁ)č„æ雅图华ē››é”æ大学ęƕäøščƁ如何办ē†
äø€ęƔäø€åŽŸē‰ˆ(UWęƕäøščƁ)č„æ雅图华ē››é”æ大学ęƕäøščƁ如何办ē†äø€ęƔäø€åŽŸē‰ˆ(UWęƕäøščƁ)č„æ雅图华ē››é”æ大学ęƕäøščƁ如何办ē†
äø€ęƔäø€åŽŸē‰ˆ(UWęƕäøščƁ)č„æ雅图华ē››é”æ大学ęƕäøščƁ如何办ē†
Ā 
Practical eLearning Makeovers for Everyone
Practical eLearning Makeovers for EveryonePractical eLearning Makeovers for Everyone
Practical eLearning Makeovers for Everyone
Ā 

Mc0063(a) unit4-fi

  • 1. DiscreteĀ Ā MathematicsĀ  UnitĀ 4Ā  SikkimĀ ManipalĀ UniversityĀ  PageĀ No:Ā 99Ā  UnitĀ 4Ā  RecurrencesĀ andĀ IntegerĀ FunctionsĀ  StructureĀ  4.1Ā  IntroductionĀ  ObjectivesĀ  4.2Ā  RecurrenceĀ RelationĀ  4.3Ā  ApplicationsĀ ofĀ RecurrencesĀ  4.4Ā  GeneratingĀ FunctionĀ  4.5Ā  IntegerĀ FunctionsĀ  SelfĀ AssessmentĀ QuestionsĀ  4.6Ā  SummaryĀ  4.7Ā  TerminalĀ QuestionsĀ  4.8Ā  AnswersĀ  4.1Ā IntroductionĀ  AĀ sequenceĀ canĀ beĀ definedĀ byĀ givingĀ aĀ generalĀ formulaĀ forĀ itsĀ nĀ thĀ  termĀ orĀ byĀ  writingĀ  fewĀ  ofĀ  itsĀ  terms.Ā  AnĀ  alternativeĀ  approachĀ  isĀ  toĀ  representĀ  theĀ  sequenceĀ  byĀ  findingĀ  aĀ  relationshipĀ  amongĀ  itsĀ  terms.Ā  Ā  SuchĀ  relationsĀ  areĀ  referredĀ  asĀ  recurrences.Ā  RecurrenceĀ  relationsĀ  areĀ  usedĀ  toĀ  modelĀ  aĀ  wideĀ  varietyĀ ofĀ problemsĀ bothĀ inĀ computerĀ andĀ nonĀ­computerĀ sciences.Ā Ā InĀ thisĀ  unitĀ  weĀ  provideĀ  fewĀ  applicationsĀ  ofĀ  recurrencesĀ  andĀ  aĀ  briefĀ  tourĀ  toĀ  theĀ  integerĀ functions.Ā  ObjectivesĀ  AtĀ theĀ endĀ ofĀ theĀ unitĀ theĀ studentĀ mustĀ beĀ ableĀ to:Ā  i)Ā  LearnĀ theĀ solvingĀ ofĀ recurrences.Ā  ii)Ā  UseĀ ofĀ generatingĀ functionsĀ toĀ solveĀ theĀ recurrenceĀ relations.Ā  iii)Ā  KnowĀ theĀ applicationsĀ ofĀ recurrenceĀ relations.Ā  iv)Ā  KnowĀ theĀ integerĀ functionsĀ likeĀ floorĀ andĀ ceiling.
  • 2. DiscreteĀ Ā MathematicsĀ  UnitĀ 4Ā  SikkimĀ ManipalĀ UniversityĀ  PageĀ No:Ā 100Ā  4.2Ā RecurrenceĀ RelationĀ  AĀ  recurrenceĀ  relationĀ forĀ  theĀ  sequenceĀ  {an}Ā  isĀ anĀ  equationĀ thatĀ expressesĀ  anĀ  inĀ termsĀ ofĀ oneĀ orĀ moreĀ ofĀ theĀ previousĀ termsĀ ofĀ theĀ sequence,Ā namelyĀ  a0,Ā a1,Ā ā€¦,Ā anĀ  ā€“Ā  1Ā  forĀ allĀ integersĀ nĀ withĀ n Ā³ n0,Ā whereĀ n0Ā  isĀ aĀ nonĀ negativeĀ  integer.Ā  AĀ sequenceĀ isĀ calledĀ aĀ solutionĀ ofĀ aĀ recurrenceĀ relationĀ ifĀ itsĀ termsĀ satisfyĀ  theĀ recurrenceĀ relation.Ā  4.2.1Ā ExampleĀ  LetĀ {an}Ā beĀ aĀ sequenceĀ thatĀ satisfiesĀ theĀ recurrenceĀ relationĀ anĀ =Ā anĀ ā€“Ā 1Ā ā€“Ā anā€“Ā 2Ā  forĀ nĀ =Ā 2,Ā 3,Ā 4,Ā andĀ supposeĀ thatĀ a0Ā =Ā 3Ā andĀ a1Ā  =Ā 5.Ā Ā WhatĀ areĀ a2Ā andĀ a3Ā  ?Ā  Solution:Ā  FromĀ  theĀ  recurrenceĀ  relationĀ  a2Ā  =Ā  a1Ā  ā€“Ā  a0Ā  =Ā  5Ā  ā€“Ā  3Ā  =Ā  2Ā  andĀ  a3Ā  =Ā a2Ā  ā€“Ā a1Ā  =Ā 2Ā ā€“Ā 5Ā =Ā ā€“Ā 3.Ā Ā InĀ aĀ similarĀ wayĀ weĀ canĀ findĀ a4,Ā a5Ā  andĀ alsoĀ eachĀ  successiveĀ term.Ā  4.2.2Ā ExampleĀ  DetermineĀ whetherĀ theĀ sequenceĀ {an}Ā isĀ aĀ solutionĀ ofĀ theĀ recurrenceĀ relationĀ  anĀ  =Ā 2Ā anĀ ā€“Ā 1Ā  ā€“Ā anĀ ā€“Ā 2Ā forĀ nĀ =Ā 2,Ā 3,Ā 4,Ā ā€¦Ā whereĀ  (i)Ā  anĀ  =Ā 3nĀ forĀ everyĀ nonĀ negativeĀ integerĀ nĀ andĀ (ii).Ā  anĀ =Ā 2Ā nĀ  .Ā  Solution:Ā  i)Ā  SupposeĀ thatĀ anĀ  =Ā 3nĀ forĀ everyĀ nonĀ negativeĀ integerĀ n.Ā ForĀ n Ā³ 2,Ā weĀ  haveĀ thatĀ 2anĀ ā€“Ā 1Ā  ā€“Ā anĀ ā€“Ā 2Ā  =Ā 2[3(nĀ Ā­Ā 1)]Ā ā€“Ā 3(nĀ Ā­Ā 2)Ā =Ā 3nĀ =Ā an.Ā  ThereforeĀ {an},Ā whereĀ anĀ  =Ā 3n,Ā isĀ aĀ solutionĀ ofĀ theĀ recurrenceĀ relation.Ā  ii)Ā  SupposeĀ anĀ  =Ā 2Ā nĀ  forĀ everyĀ nonĀ negativeĀ integerĀ n.Ā Ā NowĀ a0Ā  =Ā 1,Ā a1Ā  =Ā 2,Ā  a2Ā  =Ā 4.Ā Ā ConsiderĀ 2a1Ā  ā€“Ā a0Ā  =Ā 2.2Ā ā€“Ā 1Ā =Ā 3Ā ā‰ Ā a2.Ā Ā ThereforeĀ {an},Ā whereĀ  anĀ  =Ā 2Ā nĀ  isĀ notĀ aĀ solutionĀ ofĀ theĀ recurrenceĀ relation.Ā  4.2.3Ā DefinitionĀ  AĀ recurrenceĀ relationĀ ofĀ theĀ formĀ C0arĀ  +Ā C1arĀ ā€“Ā 1Ā  +Ā C2arĀ ā€“Ā 2Ā  +Ā ā€¦Ā +Ā CkarĀ ā€“Ā kĀ  =Ā f(r),Ā  whereĀ Ciā€™sĀ areĀ constants,Ā isĀ calledĀ aĀ linearĀ recurrenceĀ relationĀ withĀ constant
  • 3. DiscreteĀ Ā MathematicsĀ  UnitĀ 4Ā  SikkimĀ ManipalĀ UniversityĀ  PageĀ No:Ā 101Ā  coefficients.Ā  Here,Ā  ifĀ  bothĀ  C0Ā  andĀ  CkĀ  areĀ  nonĀ­zero,Ā  thenĀ  itĀ  isĀ  knownĀ  asĀ  kĀ thĀ  orderĀ recurrenceĀ relation.Ā  4.2.4Ā ExampleĀ  2arĀ +Ā 3arĀ ā€“Ā 1Ā  =Ā 2Ā rĀ  isĀ theĀ firstĀ orderĀ linearĀ recurrence,Ā withĀ constantĀ coefficients.Ā  4.2.5Ā FibonacciĀ sequenceĀ ofĀ numbersĀ  TheĀ sequenceĀ ofĀ theĀ formĀ {1,Ā 1,Ā 2,Ā 3,Ā 5,Ā 8,Ā 13,Ā ā€¦}Ā isĀ calledĀ theĀ FibonacciĀ  sequence.Ā  Ā  ThisĀ  sequenceĀ  startsĀ  withĀ  theĀ  twoĀ  numbersĀ  1,Ā  1Ā  andĀ  containsĀ  numbersĀ  thatĀ  areĀ  equalĀ  toĀ  theĀ  sumĀ  ofĀ  theirĀ  twoĀ  immediateĀ  predecessors.Ā  TheĀ recurrenceĀ relationĀ canĀ beĀ writtenĀ asĀ arĀ  =Ā arĀ ā€“Ā 1Ā  +Ā arĀ ā€“Ā 2,Ā r Ā³ 2,Ā withĀ a0Ā  =Ā 1Ā  andĀ a1Ā =Ā 1.Ā  4.2.6Ā NoteĀ  anĀ  =Ā rĀ nĀ  ,Ā whereĀ rĀ isĀ constant,Ā isĀ aĀ solutionĀ ofĀ theĀ recurrenceĀ relationĀ  anĀ  =Ā C1anĀ ā€“Ā 1Ā  +Ā C2anĀ ā€“Ā 2Ā  +Ā ā€¦.Ā +Ā CkanĀ ā€“Ā kĀ  ifĀ andĀ onlyĀ ifĀ rĀ nĀ  =Ā C1rĀ nĀ ā€“Ā 1Ā  +Ā C2rĀ nĀ ā€“Ā 2Ā  +Ā ā€¦Ā +Ā  CkrĀ nĀ  ā€“Ā  kĀ  .Ā Ā DividingĀ bothĀ sidesĀ byĀ rĀ nĀ  ā€“Ā  kĀ  andĀ theĀ rightĀ handĀ sideĀ isĀ subtractedĀ  fromĀ theĀ left,Ā weĀ obtainĀ theĀ equationĀ  rĀ kĀ  ā€“Ā C1rĀ kĀ ā€“Ā 1Ā  ā€“Ā C2rĀ kĀ ā€“Ā 2Ā  Ā­Ā ā€¦.Ā ā€“Ā CkĀ ā€“Ā 1rĀ ā€“Ā CkĀ =Ā 0Ā ā€¦ā€¦ā€¦ā€¦.(i).Ā  ThereforeĀ theĀ  sequenceĀ  {an}Ā  withĀ anĀ  =Ā  rĀ nĀ  isĀ aĀ  solutionĀ  ifĀ  andĀ onlyĀ  ifĀ  rĀ  isĀ  aĀ  solutionĀ ofĀ theĀ equationĀ (i).Ā Ā EquationĀ (i)Ā isĀ calledĀ theĀ characteristicĀ equationĀ  ofĀ theĀ recurrenceĀ relation.Ā  4.2.7Ā TheoremĀ  LetĀ  C1Ā  andĀ  C2Ā  beĀ  realĀ  numbers.Ā SupposeĀ  thatĀ  rĀ 2Ā  ā€“Ā  C1rĀ  ā€“Ā  C2Ā  =Ā  0Ā  hasĀ  twoĀ  distinctĀ  rootsĀ  r1Ā  andĀ  r2.Ā  ThenĀ  theĀ  sequenceĀ  {an}Ā  isĀ  aĀ  solutionĀ  ofĀ  theĀ  recurrenceĀ relationĀ  anĀ  =Ā C1anĀ ā€“Ā 1Ā  +Ā C2anĀ ā€“Ā 2Ā  ifĀ andĀ onlyĀ ifĀ anĀ  =Ā Ī±1Ā  nĀ  rĀ 1Ā  +Ā Ī±2Ā  nĀ  rĀ 2Ā  forĀ nĀ =Ā 0,Ā 1,Ā 2,Ā ...Ā whereĀ  Ī±1Ā  andĀ Ī±2Ā  areĀ constants.
  • 4. DiscreteĀ Ā MathematicsĀ  UnitĀ 4Ā  SikkimĀ ManipalĀ UniversityĀ  PageĀ No:Ā 102Ā  4.2.8Ā ExampleĀ  FindĀ theĀ solutionĀ ofĀ theĀ recurrenceĀ relationĀ anĀ  =Ā anĀ ā€“Ā 1Ā  +Ā 2anĀ ā€“Ā 2Ā  withĀ a0Ā  =Ā 2Ā andĀ  a1Ā  =Ā 7.Ā  Solution: TheĀ characteristicĀ equationĀ ofĀ theĀ recurrenceĀ relationĀ isĀ rĀ 2Ā  ā€“Ā rĀ ā€“Ā 2Ā =Ā 0.Ā  ItsĀ rootsĀ areĀ rĀ =Ā 2Ā andĀ rĀ =Ā Ā­1.Ā Ā ThereforeĀ theĀ sequenceĀ {an}Ā isĀ aĀ solutionĀ toĀ  theĀ recurrenceĀ ifĀ andĀ onlyĀ ifĀ anĀ  =Ā Ī±12Ā nĀ  +Ā Ī±2(Ā­1)Ā nĀ  ,Ā forĀ someĀ constantsĀ Ī±1Ā  andĀ  Ī±2.Ā Ā NowĀ a0Ā  =Ā 2Ā =Ā Ī±1Ā  +Ā Ī±2Ā  ,Ā a1Ā  =Ā 7Ā =Ā Ī±1Ā  =Ā 3Ā andĀ Ī±2Ā  =Ā Ā­1.Ā Ā ThereforeĀ theĀ solutionĀ  toĀ theĀ recurrenceĀ relationĀ isĀ  anĀ  =Ā 3.2Ā nĀ  ā€“Ā (Ā­1)Ā nĀ  .Ā  4.2.9Ā ExampleĀ  FindĀ anĀ expressionĀ forĀ theĀ FibonacciĀ numbersĀ usingĀ characteristicĀ equation.Ā  Solution:Ā  ConsiderĀ  theĀ  recurrenceĀ  relationĀ  ofĀ  theĀ  FibonacciĀ  sequence:Ā  anĀ  =Ā anĀ ā€“Ā 1Ā  +Ā anĀ ā€“Ā 2,Ā n Ā³ 2,Ā a0Ā  =Ā 0Ā andĀ a1Ā  =Ā 1.Ā Ā TheĀ correspondingĀ characteristicĀ  equationĀ isĀ rĀ 2Ā  ā€“Ā rĀ ā€“Ā 1Ā =Ā 0.Ā Ā TheĀ rootsĀ areĀ r1Ā  = Ć· Ć· Ćø ƶ Ƨ Ƨ ĆØ Ć¦ + 2Ā  5Ā 1Ā  andĀ r2Ā  = Ć· Ć· Ćø ƶ Ƨ Ƨ ĆØ Ć¦ - 2Ā  5Ā 1Ā  .Ā  ThereforeĀ  theĀ  fibonacciĀ  numbersĀ  areĀ  givenĀ  byĀ  anĀ  =Ā  Ī±1Ā  nĀ  2Ā  5Ā 1 Ć· Ć· Ćø ƶ Ƨ Ƨ ĆØ Ć¦ + +Ā  Ī±2Ā  nĀ  2Ā  5Ā 1 Ć· Ć· Ćø ƶ Ƨ Ƨ ĆØ Ć¦ - ,Ā forĀ someĀ constantsĀ Ī±1Ā andĀ Ī±2.Ā  NowĀ fromĀ theĀ givenĀ relationĀ a0Ā =Ā Ī±1Ā +Ā Ī±2Ā =Ā 0Ķ¾Ā a1=Ī±1 Ć· Ć· Ćø ƶ Ƨ Ƨ ĆØ Ć¦ + 2Ā  5Ā 1Ā  +Ā Ī±2 Ć· Ć· Ćø ƶ Ƨ Ƨ ĆØ Ć¦ -Ā  2Ā  5Ā 1Ā  =Ā 1Ā  SolvingĀ theseĀ simultaneousĀ equations,Ā weĀ getĀ Ī±1Ā =Ā  5Ā  1Ā  andĀ Ī±2Ā  =Ā Ā­Ā  5Ā  1Ā  .Ā  ThereforeĀ theĀ FibonacciĀ numbersĀ are anĀ  =Ā  5Ā  1Ā  nĀ  2Ā  5Ā 1 Ć· Ć· Ćø ƶ Ƨ Ƨ ĆØ Ć¦ + ā€“Ā  5Ā  1Ā  nĀ  2Ā  5Ā 1 Ć· Ć· Ćø ƶ Ƨ Ƨ ĆØ Ć¦ - .
  • 5. DiscreteĀ Ā MathematicsĀ  UnitĀ 4Ā  SikkimĀ ManipalĀ UniversityĀ  PageĀ No:Ā 103Ā  4.2.10Ā TheoremĀ  LetĀ C1Ā  andĀ C2Ā  beĀ realĀ numbersĀ withĀ C2Ā  ā‰ Ā 0.Ā Ā SupposeĀ thatĀ rĀ 2Ā  ā€“Ā C1rĀ ā€“Ā C2Ā  =Ā 0Ā  hasĀ onlyĀ oneĀ rootĀ r0.Ā Ā AĀ sequenceĀ {an}Ā isĀ aĀ solutionĀ ofĀ theĀ recurrenceĀ relationĀ  anĀ  =Ā C1anĀ  ā€“Ā  1Ā  +Ā C2anĀ  ā€“Ā  2Ā  ifĀ andĀ onlyĀ ifĀ anĀ  =Ā Ī±1Ā  nĀ  rĀ 0Ā  +Ā Ī±2nĀ  nĀ  rĀ 0Ā  ,Ā forĀ nĀ =Ā 0,Ā 1,Ā 2,Ā ā€¦,Ā  whereĀ Ī±1Ā andĀ Ī±2Ā areĀ constants.Ā  4.2.11Ā ExampleĀ  FindĀ theĀ solutionĀ ofĀ theĀ recurrenceĀ relationĀ anĀ  =Ā 6anĀ ā€“Ā 1Ā  ā€“Ā 9anĀ ā€“Ā 2Ā  withĀ theĀ initialĀ  conditionsĀ a0Ā =Ā 1Ā andĀ a1Ā  =Ā 6.Ā  Solution:Ā Ā TheĀ characteristicĀ equationĀ rĀ 2Ā  ā€“Ā 6rĀ +Ā 9Ā =Ā 0.Ā Ā TheĀ onlyĀ rootĀ isĀ rĀ =Ā 3.Ā  ThereforeĀ  theĀ  solutionĀ  toĀ  theĀ  recurrenceĀ  relationĀ  isĀ  anĀ  =Ā  Ī±13Ā nĀ  +Ā  Ī±2n3Ā nĀ  ,Ā  forĀ  someĀ constantsĀ Ī±1Ā  andĀ Ī±2.Ā Ā UsingĀ theĀ initialĀ conditions,Ā weĀ getĀ a0Ā  =Ā 1Ā =Ā Ī±1,Ā a1Ā  =Ā 6Ā =Ā Ī±1.3Ā +Ā Ī±2.3.Ā Ā SolvingĀ theseĀ simultaneousĀ equations,Ā weĀ getĀ Ī±1Ā  =Ā 1Ā andĀ  Ī±2Ā  =Ā 1.Ā Ā ThereforeĀ theĀ solutionĀ toĀ theĀ recurrenceĀ relationĀ isĀ anĀ =Ā 3Ā nĀ  +Ā n3Ā nĀ  .Ā  4.2.12Ā TheoremĀ  LetĀ C1,Ā C2,Ā ā€¦,Ā CkĀ  beĀ realĀ numbers.Ā Ā SupposeĀ thatĀ theĀ characteristicĀ equationĀ  rĀ kĀ  ā€“Ā C1rĀ kĀ ā€“Ā 1Ā  Ā­Ā ā€¦Ā ā€“Ā CkĀ  =Ā 0Ā hasĀ kĀ distinctĀ rootsĀ r1,Ā r2,Ā ā€¦,Ā rk.Ā Ā ThenĀ aĀ sequenceĀ  {an}Ā isĀ aĀ solutionĀ ofĀ theĀ recurrenceĀ relationĀ  anĀ  =Ā C1anĀ ā€“Ā 1Ā  +Ā C2anĀ ā€“Ā 2Ā  +Ā ā€¦.Ā +Ā CkanĀ ā€“Ā kĀ  ifĀ andĀ onlyĀ ifĀ anĀ  =Ā Ī±1Ā  nĀ  rĀ 1Ā  +Ā Ī±2Ā  nĀ  rĀ 2Ā  +Ā ā€¦Ā +Ā  Ī±kĀ  nĀ  kĀ rĀ  ,Ā forĀ nĀ =Ā 0,Ā 1,Ā 2,Ā ...,Ā whereĀ Ī±1,Ā Ī±2,Ā ā€¦,Ā Ī±kĀ areĀ constants.Ā  4.2.13Ā ExampleĀ  FindĀ theĀ solutionĀ toĀ theĀ recurrenceĀ relationĀ anĀ  =Ā 6anĀ ā€“Ā 1Ā  ā€“Ā 11anĀ ā€“Ā 2Ā  +Ā 6anĀ ā€“Ā 3Ā  withĀ  initialĀ conditions:Ā a0Ā  =Ā 2,Ā Ā a1Ā  =Ā 5Ā Ā andĀ a2Ā  =Ā 15.Ā  Solution:Ā  TheĀ  characteristicĀ  equationĀ  ofĀ  theĀ  givenĀ  recurrenceĀ  relationĀ  isĀ  rĀ 3Ā  ā€“Ā 6rĀ 2Ā  +Ā 11rĀ ā€“Ā 6Ā =Ā 0 ƞ (rĀ Ā­1)(rĀ Ā­Ā 2)(rĀ Ā­Ā 3)Ā =Ā 0.Ā  TheĀ rootsĀ ofĀ thisĀ equationĀ rĀ =1,Ā rĀ =Ā 2,Ā rĀ =Ā 3.Ā  ThereforeĀ theĀ solutionsĀ toĀ thisĀ recurrenceĀ relationĀ are anĀ  =Ā Ī±1.1Ā nĀ  +Ā Ī±2.2Ā nĀ  +Ā Ī±3.3Ā nĀ  .
  • 6. DiscreteĀ Ā MathematicsĀ  UnitĀ 4Ā  SikkimĀ ManipalĀ UniversityĀ  PageĀ No:Ā 104Ā  FromĀ theĀ givenĀ initialĀ condition,Ā a0Ā  =Ā 2,Ā weĀ getĀ a0Ā =Ā 2Ā =Ā Ī±1Ā  +Ā Ī±2Ā  +Ā Ī±3.Ā  Similarly,Ā forĀ a1Ā  =Ā 5Ā =Ā Ī±1Ā  +Ā Ī±2.2Ā +Ā Ī±3.3Ķ¾Ā Ā a2Ā  =Ā 15Ā =Ā Ī±1Ā +Ā Ī±2.4Ā +Ā Ī±3.9.Ā  SolvingĀ theĀ aboveĀ threeĀ simultaneousĀ equationsĀ weĀ getĀ Ī±1Ā  =Ā 1,Ā Ī±2Ā  =Ā Ā­1Ā andĀ  Ī±3Ā  =Ā 2.Ā Ā ThereforeĀ theĀ uniqueĀ solutionĀ toĀ thisĀ recurrenceĀ relationĀ isĀ anĀ  =Ā 1Ā ā€“Ā  2Ā nĀ  +Ā 2.3Ā nĀ  .Ā  4.2.14Ā TheoremĀ  LetĀ C1,Ā C2,Ā ā€¦,Ā CkĀ  beĀ realĀ numbers.Ā Ā SupposeĀ thatĀ theĀ characteristicĀ equationĀ  rĀ kĀ  ā€“Ā C1rĀ kĀ  ā€“Ā  1Ā  Ā­Ā ā€¦Ā ā€“Ā CkĀ  =Ā 0Ā hasĀ tĀ­distinctĀ rootsĀ r1,Ā r2,Ā ā€¦,Ā rtĀ  withĀ multiplicitiesĀ  m1,Ā m2,Ā ā€¦,Ā mt,Ā respectively,Ā soĀ thatĀ mi Ā³ 1,Ā forĀ iĀ =Ā 1,Ā 2,Ā ā€¦,Ā tĀ andĀ m1Ā  +Ā m2Ā  +Ā ā€¦Ā  +Ā  mtĀ  =Ā  k.Ā  Ā  ThenĀ  aĀ  sequenceĀ  {an}Ā  isĀ  aĀ  solutionĀ  ofĀ  theĀ  recurrenceĀ  relationĀ  anĀ  =Ā C1anĀ ā€“Ā 1Ā  +Ā C2anĀ ā€“Ā 2Ā  +Ā ā€¦Ā +Ā CkanĀ ā€“Ā kĀ  ifĀ andĀ onlyĀ ifĀ  anĀ  =Ā  (Ī±1,0Ā  +Ā  Ī±1,1.nĀ  +Ā  ā€¦.Ā  +Ā  1Ā  1Ā ,Ā 1Ā  1Ā  1 - -Ā  mĀ  mĀ  na )Ā  nĀ  rĀ 1Ā  +Ā  ā€¦Ā  +Ā  (Ī±t,0Ā  +Ā  Ī±t,1nĀ  +Ā  ā€¦Ā  +Ā  1Ā  1Ā , - -Ā  tĀ  tĀ  mĀ  mĀ tĀ  na )Ā  nĀ  tĀ rĀ  ,Ā forĀ Ā Ā nĀ =Ā 0,Ā 1,Ā 2,Ā ā€¦,Ā whereĀ Ī±i,Ā jĀ  areĀ constantsĀ forĀ 1 Ā£ i Ā£ tĀ andĀ  0 Ā£ j Ā£ miĀ  ā€“1.Ā  4.2.15Ā ExampleĀ  FindĀ theĀ solutionĀ toĀ theĀ recurrenceĀ relationĀ anĀ  =Ā Ā­3anĀ ā€“Ā 1Ā  ā€“Ā 3anĀ ā€“Ā 2Ā  ā€“Ā anĀ ā€“Ā  3Ā  withĀ  initialĀ conditionsĀ a0Ā =Ā 1,Ā a1Ā =Ā Ā­2Ā andĀ a2Ā  =Ā Ā­1.Ā  Solution:Ā Ā TheĀ characteristicĀ equationĀ toĀ theĀ givenĀ recurrenceĀ isĀ rĀ 3Ā  +Ā 3rĀ 2Ā  +Ā 3rĀ  +Ā 1Ā =Ā 0 ƞ (rĀ +Ā 1)Ā 3Ā  =Ā 0.Ā Ā ThereforeĀ rĀ =Ā Ā­1Ā isĀ aĀ rootĀ ofĀ multiplicityĀ 3.Ā Ā ByĀ TheoremĀ  4.2.14,Ā theĀ solutionsĀ areĀ ofĀ theĀ formĀ anĀ  =Ā Ī±1,0(Ā­1)Ā nĀ  +Ā Ī±1,1.n(Ā­1)Ā nĀ  +Ā Ī±1,2.nĀ 2Ā  (Ā­1)Ā nĀ  .Ā  UseĀ theĀ givenĀ initialĀ conditions,Ā findĀ theĀ constantsĀ Ī±1,0,Ā Ī±1,1,Ā Ī±1,2.Ā  NowĀ a0Ā =Ā 1Ā =Ā Ī±1,0Ķ¾Ā Ā a1Ā =Ā Ā­2Ā =Ā Ā­Ī±1,0Ā ā€“Ā Ī±1,1Ā ā€“Ā Ī±1,2Ķ¾Ā Ā a2Ā =Ā Ā­1Ā =Ā Ī±1,0Ā +Ā 2Ī±1,1Ā +Ā 4Ī±1,2.Ā  SolvingĀ theseĀ simultaneousĀ equations,Ā weĀ getĀ Ī±1,0Ā =Ā 1,Ā Ā Ī±1,1Ā  =Ā 3,Ā  andĀ Ī±1,2Ā =Ā Ā­2.Ā  HenceĀ theĀ uniqueĀ solutionĀ toĀ theĀ givenĀ recurrenceĀ isĀ anĀ =Ā (1Ā +Ā 3n ā€“ 2nĀ 2Ā  )(Ā­1)Ā nĀ  .
  • 7. DiscreteĀ Ā MathematicsĀ  UnitĀ 4Ā  SikkimĀ ManipalĀ UniversityĀ  PageĀ No:Ā 105Ā  4.3Ā ApplicationsĀ ofĀ RecurrencesĀ  4.3.1Ā TheĀ ProblemĀ ofĀ towerĀ ofĀ Ā HanoiĀ  GivenĀ aĀ towerĀ ofĀ eightĀ disks,Ā initiallyĀ stackedĀ inĀ decreasingĀ sizeĀ onĀ oneĀ ofĀ  theĀ threeĀ pegs.Ā Ā TheĀ objectiveĀ isĀ toĀ transferĀ Ā theĀ entireĀ towerĀ toĀ oneĀ ofĀ theĀ  otherĀ pegs,Ā movingĀ onlyĀ oneĀ diskĀ atĀ aĀ timeĀ andĀ neverĀ movingĀ aĀ largerĀ onĀ toĀ  smallerĀ  (theseĀ  rulesĀ  areĀ  calledĀ  LucasĀ  Rules)Ā  (ThisĀ  wasĀ  inventedĀ  byĀ  theĀ  FrenchĀ mathematicianĀ EdouardĀ LucasĀ inĀ 1883).Ā  LetĀ TnĀ  beĀ theĀ minimumĀ numberĀ ofĀ movesĀ thatĀ willĀ transferĀ nĀ disksĀ fromĀ oneĀ  pegĀ toĀ anotherĀ underĀ LucasĀ rules.Ā Ā ThenĀ clearlyĀ T0Ā  =Ā 0,Ā sinceĀ noĀ movesĀ areĀ  neededĀ toĀ transferĀ aĀ towerĀ ofĀ nĀ =Ā 0Ā disks.Ā  ByĀ observation,Ā T1Ā =Ā 1,Ā Ā T2Ā =Ā 3Ā  NowĀ transferĀ theĀ topĀ disksĀ toĀ theĀ  middleĀ peg,Ā thenĀ moveĀ theĀ third,Ā thenĀ  bringĀ theĀ otherĀ twoĀ ontoĀ it.Ā Ā SoĀ weĀ  getĀ  T3Ā  =Ā 7Ā =Ā 2.3Ā +Ā 1Ā =Ā 2Ā T2Ā  +Ā 1.Ā  InductionĀ hypo:Ā Ā AssumeĀ forĀ nĀ­1Ā disks.Ā Ā ThatĀ is.,Ā TnĀ­1Ā =Ā 2.TnĀ­2Ā +Ā 1.Ā  SupposeĀ thatĀ thereĀ areĀ nĀ­disks.Ā Ā WeĀ firstĀ transferĀ theĀ (nĀ­1)Ā smallestĀ disksĀ toĀ  aĀ differentĀ peg.Ā Ā ItĀ requiresĀ TnĀ­1Ā  moves.Ā  ThenĀ moveĀ theĀ largestĀ (itĀ requiresĀ oneĀ move),Ā andĀ finallyĀ transferĀ theĀ (nĀ­1)Ā  smallestĀ disksĀ backĀ ontoĀ theĀ largestĀ (itĀ requiresĀ anotherĀ TnĀ­1Ā  moves).Ā  ThusĀ weĀ canĀ transferĀ nĀ disksĀ (nĀ >Ā 0)Ā inĀ atĀ mostĀ 2Ā TnĀ­1Ā  +Ā 1Ā moves.Ā  ThusĀ Tn Ā£ 2Ā TnĀ +Ā 1Ā forĀ nĀ >Ā 0.Ā  ThisĀ showsĀ thatĀ 2TnĀ­1Ā +Ā 1Ā movesĀ areĀ sufficesĀ forĀ ourĀ construction.Ā  NextĀ weĀ proveĀ thatĀ 2TnĀ­1Ā  +Ā 1Ā movesĀ areĀ necessary.Ā  AĀ  CĀ  B
  • 8. DiscreteĀ Ā MathematicsĀ  UnitĀ 4Ā  SikkimĀ ManipalĀ UniversityĀ  PageĀ No:Ā 106Ā  WeĀ mustĀ moveĀ theĀ largestĀ disk.Ā Ā WhenĀ weĀ do,Ā theĀ nĀ­1Ā smallestĀ disksĀ mustĀ  beĀ onĀ aĀ singleĀ peg,Ā andĀ itĀ hasĀ takenĀ atleastĀ TnĀ­1Ā  movesĀ toĀ putĀ themĀ thereĀ (weĀ  mightĀ moveĀ theĀ largestĀ diskĀ moreĀ thanĀ once).Ā  AfterĀ  movingĀ  theĀ  largestĀ  diskĀ  forĀ  theĀ  lastĀ  time,Ā  weĀ  mustĀ  transferĀ  theĀ  nĀ­1Ā  smallestĀ disksĀ (whichĀ mustĀ beĀ againĀ onĀ aĀ singleĀ peg)Ā backĀ ontoĀ theĀ largestĶ¾Ā  ThisĀ requiresĀ TnĀ­1Ā  moves.Ā  HenceĀ Tn Ā³ 2TnĀ­1Ā  +Ā 1Ā forĀ nĀ >Ā 0.Ā  Therefore ĆÆĆ¾ ĆÆ Ć½ Ć¼ >+= = - 0Ā nĀ forĀ 1Ā 2TĀ TĀ  0Ā TĀ  1Ā nĀ nĀ  0Ā  TheseĀ setĀ ofĀ equalitiesĀ aboveĀ isĀ theĀ recurrenceĀ forĀ theĀ TowerĀ ofĀ HonaiĀ problem.Ā  FromĀ thisĀ itĀ isĀ clearĀ thatĀ T3Ā  =Ā 2.3Ā +1Ā =Ā 7,Ā T4Ā =Ā 2.7Ā +1Ā =Ā 15,Ā andĀ soĀ on.Ā  4.3.2Ā RemarkĀ  TnĀ  canĀ alsoĀ beĀ identifiedĀ asĀ TnĀ  =Ā 2Ā nĀ  ā€“Ā 1Ā forĀ n Ā³ 0.Ā  TheĀ proofĀ ofĀ thisĀ remarkĀ makesĀ useĀ ofĀ theĀ principleĀ ofĀ mathematicalĀ induction.Ā  4.3.3Ā Ā ProblemĀ ofĀ theĀ LinesĀ inĀ theĀ planeĀ  HowĀ manyĀ slicesĀ ofĀ pizzaĀ canĀ aĀ personĀ obtainĀ byĀ makingĀ nĀ straightĀ cutsĀ withĀ  aĀ pizzaĀ knife?Ā  Mathematically:Ā WhatĀ isĀ theĀ maximumĀ numberĀ LnĀ  ofĀ regionsĀ definedĀ byĀ nĀ linesĀ  inĀ theĀ plane?Ā Ā (thisĀ problemĀ solvedĀ byĀ SwissĀ mathematicianĀ ā€˜Jacobā€™Ā inĀ 1826)Ā  Solution:Ā Ln:Ā maximumĀ numberĀ ofĀ regionsĀ definedĀ byĀ nĀ linesĀ inĀ theĀ plane.Ā  StepĀ 1:Ā nĀ =0:Ā theĀ planeĀ withĀ noĀ linesĀ impliesĀ thatĀ oneĀ regionĀ L0Ā  =Ā 1.Ā  nĀ =1Ā :Ā theĀ planeĀ withĀ oneĀ lineĀ impliesĀ thatĀ itĀ hasĀ twoĀ regionsĀ L1Ā  =Ā 2.Ā  RegionĀ 2Ā  RegionĀ 1
  • 9. DiscreteĀ Ā MathematicsĀ  UnitĀ 4Ā  SikkimĀ ManipalĀ UniversityĀ  PageĀ No:Ā 107Ā  nĀ =2Ā :Ā theĀ planeĀ withĀ twoĀ linesĀ impliesĀ thatĀ Ā fourĀ regionsĀ L2Ā =Ā 4.Ā  nĀ  =Ā  3:Ā  TheĀ  placeĀ  withĀ  threeĀ  linesĀ  impliesĀ  thatĀ  itĀ  hasĀ  sevenĀ  regionsĀ  L3Ā  =Ā 7Ā =Ā 4Ā +Ā 3Ā =Ā L2Ā +Ā 3Ā  nĀ  =Ā  4:Ā  TheĀ  planeĀ  withĀ  fourĀ  linesĀ  impliesĀ  thatĀ  itĀ  hasĀ  11Ā  regionsĀ  L4Ā  =Ā 11Ā =Ā 7Ā +Ā 4Ā =Ā L3Ā  +Ā 4Ā  NoteĀ thatĀ theĀ maximumĀ numberĀ ofĀ regionsĀ willĀ occurĀ onlyĀ theĀ newĀ lineĀ cutsĀ  (intersects)Ā allĀ theĀ previousĀ lines.Ā  R1Ā  R2Ā  R3Ā  R4Ā  4Ā  2Ā 1Ā  3Ā  5Ā  6Ā  7Ā  8Ā  7Ā  4Ā  2Ā 1Ā  3Ā  5Ā  6Ā  10Ā  9Ā  11Ā  LineĀ 4Ā  LineĀ 1Ā  LineĀ 2Ā  LineĀ 3
  • 10. DiscreteĀ Ā MathematicsĀ  UnitĀ 4Ā  SikkimĀ ManipalĀ UniversityĀ  PageĀ No:Ā 108Ā  ThusĀ weĀ haveĀ  )Ā (iĀ  0Ā nĀ forĀ nĀ LĀ LĀ  1Ā LĀ  1Ā nĀ nĀ  0 --- ĆÆĆ¾ ĆÆ Ć½ Ć¼ >+= = - NowĀ fromĀ (i)Ā  LnĀ  =Ā LnĀ ā€“Ā 1Ā  +Ā nĀ  =Ā LnĀ ā€“Ā 2Ā  +Ā (nĀ Ā­Ā 1)Ā +Ā nĀ  =Ā LnĀ ā€“Ā 3Ā  +Ā (nĀ Ā­Ā 2)Ā +Ā (nĀ Ā­Ā 1)Ā +Ā nĀ  ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦Ā  ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦Ā  ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦Ā  =Ā L0Ā  +Ā 1Ā +Ā 2Ā +Ā ā€¦.Ā +Ā (nĀ Ā­Ā 2)Ā +Ā (nĀ Ā­Ā 1)Ā +Ā n.Ā  =Ā 1Ā +Ā Sn,Ā whereĀ SnĀ  =Ā 1Ā +Ā 2Ā +Ā 3Ā +Ā ā€¦Ā +Ā (nĀ Ā­Ā 1)Ā +Ā n.Ā  ThereforeĀ LnĀ  isĀ  equalĀ  toĀ  oneĀ  moreĀ thanĀ  theĀ  sumĀ  SnĀ  ofĀ  theĀ firstĀ  nĀ  positiveĀ  integers.Ā  NĀ  1Ā  2Ā  3Ā  4Ā  5Ā  6Ā  7Ā  8Ā  9Ā  10Ā  11Ā  12Ā  SnĀ  1Ā  3Ā  6Ā  10Ā  15Ā  21Ā  28Ā  36Ā  45Ā  55Ā  66Ā  78Ā  S1Ā  =Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā =Ā 1Ā  S2Ā  =Ā  =Ā 3Ā  S3Ā  =Ā  =Ā 6Ā  S4Ā  =Ā  =Ā 10Ā  ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦.Ā  ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦.Ā  ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦ā€¦.Ā  oĀ  oĀ  oĀ  oĀ  oĀ  oĀ  oĀ  oĀ  oĀ  oĀ  oĀ  oĀ  oĀ  oĀ  oĀ  oĀ  oĀ  oĀ  oĀ  o
  • 11. DiscreteĀ Ā MathematicsĀ  UnitĀ 4Ā  SikkimĀ ManipalĀ UniversityĀ  PageĀ No:Ā 109Ā  TheseĀ valuesĀ areĀ calledĀ triangularĀ numbers.Ā  ToĀ computeĀ SnĀ  :Ā  SnĀ  =Ā Ā 1Ā +Ā Ā Ā Ā Ā 2Ā Ā Ā Ā Ā +Ā Ā Ā Ā Ā 3Ā Ā Ā Ā Ā +Ā ā€¦.Ā +Ā (nĀ Ā­Ā 1)Ā +Ā nĀ  +Ā Ā SnĀ  =Ā Ā nĀ +Ā (nĀ Ā­Ā 1)Ā +Ā (nĀ Ā­Ā 2)Ā +Ā ā€¦.Ā +Ā Ā Ā Ā Ā 2Ā Ā Ā Ā Ā +Ā 1Ā  2SnĀ  =Ā (nĀ +Ā 1)Ā +Ā (nĀ +Ā 1)Ā +Ā (nĀ +Ā 1)Ā +Ā ā€¦.Ā +Ā (nĀ +Ā 1)Ā +Ā (nĀ +Ā 1)Ā  =Ā n.(nĀ +Ā 1).Ā  SoĀ SnĀ  =Ā  2Ā  1)Ā n(n + ,Ā n Ā³ 0.Ā  ThereforeĀ preciselyĀ theĀ LnĀ  =Ā  2Ā  1)Ā n(n + +Ā 1,Ā n Ā³ 0.Ā  4.3.4Ā ProblemĀ  FindĀ theĀ shortestĀ sequenceĀ ofĀ movesĀ thatĀ transfersĀ aĀ towerĀ ofĀ nĀ disksĀ fromĀ  theĀ  leftĀ  pegĀ  AĀ  toĀ  theĀ  rightĀ  pegĀ  B,Ā  ifĀ  directĀ  movesĀ  betweenĀ  AĀ  andĀ  BĀ  areĀ  disallowed.Ā Ā (EachĀ moveĀ mustĀ beĀ toĀ orĀ fromĀ theĀ middleĀ peg.Ā AsĀ usualĀ aĀ largeĀ  diskĀ mustĀ neverĀ appearĀ aboveĀ aĀ smallerĀ one).Ā  Solution:Ā Ā LetĀ XnĀ  denoteĀ theĀ numberĀ ofĀ moves.Ā  ForĀ nĀ =Ā 0,Ā X0Ā =Ā 0Ā  ForĀ nĀ =1,Ā X1Ā  =Ā 2.Ā  ForĀ nĀ =Ā 2,Ā considerĀ theĀ sequenceĀ ofĀ steps:Ā  1Ā  AĀ  MiddleĀ  pegĀ  BĀ  1Ā  MoveĀ 1Ā  MoveĀ 1
  • 12. DiscreteĀ Ā MathematicsĀ  UnitĀ 4Ā  SikkimĀ ManipalĀ UniversityĀ  PageĀ No:Ā 110Ā  movesĀ 2Ā  BĀ toĀ MĀ fromĀ 1Ā diskĀ TransferĀ (ii)Ā  MĀ toĀ AĀ fromĀ 1Ā diskĀ TransferĀ (i) ĆÆĆ¾ ĆÆ Ć½ Ć¼ } movesĀ 1Ā MĀ toĀ AĀ fromĀ 2Ā diskĀ TransferĀ (iii)Ā  movesĀ 2Ā  AĀ toĀ MĀ fromĀ 1Ā diskĀ TransferĀ (v)Ā  MĀ toĀ BĀ fromĀ 1Ā diskĀ TransferĀ (iv) ĆÆĆ¾ ĆÆ Ć½ Ć¼ } movesĀ 1Ā BĀ toĀ MĀ fromĀ 2Ā diskĀ TransferĀ (vi)Ā  movesĀ 2Ā  BĀ toĀ MĀ fromĀ 1Ā diskĀ TransferĀ (viii)Ā  MĀ toĀ AĀ fromĀ 1Ā diskĀ TransferĀ (vii) ĆÆĆ¾ ĆÆ Ć½ Ć¼ TotalĀ numberĀ ofĀ movesĀ isĀ 8.Ā  ThatĀ is.,Ā X2Ā  =Ā X1Ā  +Ā 1Ā +Ā X1Ā  +Ā 1Ā +Ā X1Ā  =Ā 2Ā +Ā 1Ā +Ā 2Ā +Ā 1Ā +Ā 2Ā =Ā 8Ā  Similarly,Ā X3Ā  =Ā X2Ā  +Ā 1Ā +Ā X2Ā  +Ā 1Ā +Ā X2Ā =Ā 8Ā +Ā 1Ā +Ā 8Ā +Ā 1Ā +Ā 8Ā =Ā 26Ā  InĀ  general,Ā  XnĀ  =Ā  XnĀ  ā€“Ā  1Ā  +Ā  1Ā  +Ā  XnĀ  ā€“Ā  1Ā  +Ā  1Ā  +Ā  XnĀ  ā€“Ā  1Ķ¾Ā  nĀ  >Ā  0,Ā  isĀ  theĀ  recurrenceĀ  required.Ā  ByĀ induction,Ā oneĀ canĀ proveĀ thatĀ XnĀ  =Ā 3Ā nĀ  ā€“1,Ā n Ā³ 0.Ā  4.3.5Ā ProblemĀ  SomeĀ ofĀ theĀ regionsĀ definedĀ byĀ nĀ linesĀ inĀ theĀ planeĀ areĀ infinite,Ā whileĀ othersĀ  areĀ bounded.Ā Ā WhatĀ isĀ theĀ maximumĀ possibleĀ numberĀ ofĀ boundedĀ regionsĀ ?Ā  Solution:Ā nĀ =Ā 1,Ā thenĀ thereĀ areĀ noĀ boundedĀ regionsĀ (2Ā infinite)Ā  nĀ =Ā 2,Ā thenĀ thereĀ areĀ noĀ boundedĀ regionsĀ (4Ā infinite)Ā  nĀ =Ā 3,Ā  2Ā  AĀ  BĀ  1Ā  M
  • 14. DiscreteĀ Ā MathematicsĀ  UnitĀ 4Ā  SikkimĀ ManipalĀ UniversityĀ  PageĀ No:Ā 112Ā  IfĀ nĀ =Ā 5,Ā weĀ getĀ 1Ā +Ā 2+Ā 3Ā boundedĀ regionsĀ i.e.,Ā (nĀ ā€“Ā 2)Ā +Ā (nĀ ā€“Ā 3)Ā +Ā (nĀ ā€“Ā 4).Ā  InĀ  generalĀ  ,Ā  theĀ  numberĀ  ofĀ  boundedĀ  regionsĀ  areĀ  (nĀ ā€“Ā 2)Ā  +Ā  (nĀ ā€“Ā 3)Ā  +Ā  ā€¦Ā  +Ā  (sumĀ ofĀ firstĀ (nĀ­2)Ā naturalĀ numbers)Ā Ā = ( )( ) 2Ā  1Ā 2Ā nĀ 2Ā n +-- = ( )( ) 2Ā  2Ā nĀ 1Ā n -- [usingĀ sumĀ ofĀ firstĀ nĀ­naturalĀ numbersĀ inĀ A.P..Ā  4.4Ā GeneratingĀ FunctionĀ  AĀ generatingĀ functionĀ isĀ aĀ polynomialĀ ofĀ theĀ formĀ  f(x)Ā =Ā a0Ā  +Ā a1xĀ +Ā a2xĀ 2Ā  +Ā ā€¦Ā  +Ā  anxĀ nĀ  +Ā  ā€¦,Ā  whichĀ  hasĀ  infinitelyĀ  manyĀ  nonĀ­zeroĀ  terms.Ā  Ā  ThereĀ  isĀ  aĀ  correspondenceĀ betweenĀ generatingĀ functionsĀ andĀ sequences.Ā (ThatĀ is,Ā  a0Ā  +Ā a1xĀ +Ā a2xĀ 2Ā  +Ā ā€¦ Ā« a0,Ā a1,Ā a2,Ā ā€¦.).Ā  4.4.1Ā Example:Ā (i).Ā TheĀ generatingĀ functionĀ ofĀ theĀ sequenceĀ 1,Ā 2,Ā 3,Ā ā€¦Ā ofĀ  naturalĀ numbersĀ isĀ f(x)Ā =Ā 1Ā +Ā 2xĀ +Ā 3xĀ 2Ā  +Ā ā€¦.Ā  (ii).Ā  TheĀ  generatingĀ  functionĀ  ofĀ  theĀ  arithmeticĀ  sequenceĀ  1,Ā  4,Ā  7,Ā  10,Ā  ā€¦Ā  isĀ  f(x)Ā =Ā 1Ā +Ā 4xĀ +Ā 7xĀ 2Ā  +Ā 10xĀ 3Ā  +Ā ā€¦.Ā  4.4.2Ā NoteĀ  LetĀ f(x)Ā =Ā a0Ā +Ā a1x +Ā a2xĀ 2Ā  +Ā ā€¦Ā andĀ g(x)Ā =Ā b0Ā +Ā b1x +Ā b2xĀ 2Ā  +Ā ā€¦Ā beĀ twoĀ generatingĀ  sequences,Ā  thenĀ f(x)Ā  +Ā  g(x)Ā  =Ā  (a0Ā  +Ā b0)Ā  +Ā  (a1Ā  +Ā  b1)xĀ +Ā  (a2Ā  +Ā  b2)xĀ 2Ā  +Ā  ā€¦Ā  andĀ  f(x)g(x)Ā =Ā (a0b0)Ā +Ā (a1b0Ā  +Ā a0b1)xĀ +Ā (a0b2Ā  +Ā a1b1Ā  +Ā a2b0)xĀ 2Ā  +Ā ā€¦,Ā theĀ coefficientĀ ofĀ  xĀ nĀ  inĀ theĀ product f(x)g(x)Ā isĀ theĀ finiteĀ sum: a0bnĀ + a1bn ā€“ 1Ā + a2bn ā€“ 2Ā + ā€¦Ā + anb0.Ā  4.4.3Ā ExampleĀ  IfĀ  f(x)Ā  =Ā  1Ā  +Ā  xĀ  +Ā  xĀ 2Ā  +Ā  ā€¦Ā  +Ā  xĀ nĀ  +Ā  ā€¦Ā  andĀ  g(x)Ā  =Ā  1Ā  ā€“Ā  xĀ  +Ā  xĀ 2Ā  ā€“Ā  xĀ 3Ā  +ā€¦Ā  +Ā  (Ā­1)Ā nĀ  xĀ nĀ  +Ā  ā€¦,Ā  thenĀ  f(x)Ā  +Ā  g(x)Ā  =Ā  (1Ā  +Ā  1)Ā  +Ā  (1Ā  ā€“Ā  1)xĀ  +Ā  (1Ā  +Ā  1)xĀ 2Ā  +Ā  ā€¦Ā  +Ā  (1Ā +Ā (Ā­1)Ā nĀ  )xĀ nĀ  +Ā ā€¦Ā  =Ā Ā 2Ā +Ā 2xĀ 2Ā  +Ā 2xĀ 4Ā  +Ā ā€¦Ā  f(x)g(x)Ā =Ā 1Ā +Ā [1(Ā­1)Ā +Ā 1(1)]xĀ +Ā [1(1)Ā +Ā 1(Ā­1)Ā +Ā 1(1)]xĀ 2Ā  +Ā ā€¦Ā  =Ā 1Ā +Ā xĀ 2Ā  +Ā xĀ 4Ā  +Ā xĀ 6Ā  +Ā ā€¦
  • 15. DiscreteĀ Ā MathematicsĀ  UnitĀ 4Ā  SikkimĀ ManipalĀ UniversityĀ  PageĀ No:Ā 113Ā  4.4.4Ā ProblemĀ  SolveĀ theĀ recurrenceĀ relation anĀ =Ā 3an ā€“ 1,Ā n Ā³ 1,Ā a0Ā =Ā 1 usingĀ generatingĀ function.Ā  Solution:Ā Ā ConsiderĀ theĀ generatingĀ functionĀ f(x)Ā =Ā a0Ā  +Ā a1xĀ +Ā a2xĀ 2Ā  +Ā ā€¦Ā +Ā anxĀ nĀ  +Ā ā€¦Ā ofĀ theĀ sequenceĀ a0,Ā a1,Ā a2Ā  ā€¦Ā  3x.f(x)Ā =Ā 3a0xĀ +Ā 3a1xĀ 2Ā  +Ā ā€¦Ā +Ā 3anĀ ā€“Ā 1xĀ nĀ  +Ā ā€¦Ā  f(x)Ā ā€“Ā 3x.f(x)Ā =Ā a0Ā  +Ā (a1Ā  ā€“Ā 3a0)xĀ +Ā (a2Ā  ā€“Ā 3a1)xĀ 2Ā  +Ā ā€¦.Ā +Ā (anĀ  ā€“Ā 3anĀ Ā­Ā 1)xĀ nĀ  +Ā ā€¦Ā  SinceĀ a0Ā  =Ā 1,Ā a1Ā =Ā 3a0Ā  andĀ inĀ general,Ā anĀ =Ā 3anĀ ā€“Ā 1,Ā weĀ getĀ (1Ā ā€“Ā 3x)Ā f(x)Ā =Ā 1 ƞ f(x)Ā =Ā  xĀ 3Ā 1Ā  1 - =Ā (1Ā ā€“Ā 3x)Ā Ā­1Ā  =Ā 1Ā +Ā 3xĀ +Ā (3x)Ā 2Ā  +Ā ā€¦Ā +Ā (3x)Ā nĀ  +Ā ā€¦Ā  ThereforeĀ an,Ā whichĀ isĀ theĀ coefficientĀ ofĀ xĀ nĀ  inĀ f(x),Ā isĀ equalĀ toĀ 3Ā nĀ  .Ā  4.4.5Ā ProblemĀ  SolveĀ theĀ recurrenceĀ relationĀ anĀ  =Ā 2anĀ­1Ā  ā€“Ā anĀ­2,Ā Ā n Ā³ 2,Ā givenĀ a0Ā  =Ā 3,Ā a1Ā  =Ā Ā­2Ā  usingĀ theĀ generatingĀ function.Ā  Solution:Ā LetĀ f(x)Ā =Ā a0Ā  +Ā a1xĀ +Ā a2xĀ 2Ā  +Ā ā€¦Ā +Ā anxĀ nĀ  +Ā ā€¦Ā  2xf(x)Ā =Ā Ā Ā Ā Ā Ā Ā Ā 2a0xĀ +Ā 2a1xĀ 2Ā  +Ā ā€¦Ā +Ā 2anĀ­1xĀ nĀ  +Ā ā€¦Ā  xĀ 2Ā  f(x)Ā =Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā a0xĀ 2Ā  +Ā ā€¦Ā +Ā Ā anĀ­2xĀ nĀ  +Ā ā€¦Ā  ThereforeĀ f(x)Ā ā€“Ā 2xf(x)Ā +Ā xĀ 2Ā  f(x)Ā =Ā a0Ā  +Ā (a1Ā ā€“Ā 2a0)xĀ +Ā (a2Ā  ā€“2a1+Ā a0)xĀ 2Ā  +Ā ā€¦Ā  +Ā (anĀ  ā€“Ā 2anĀ­1Ā  +Ā anĀ­2)xĀ nĀ  +Ā ā€¦Ā =Ā 3Ā ā€“Ā 8xĀ (sinceĀ a0Ā  =Ā 3,Ā a1Ā  =Ā Ā­2Ā andĀ anĀ  ā€“Ā 2anĀ­1Ā  +Ā anĀ­2Ā  =Ā 0Ā forĀ Ā Ā Ā Ā Ā Ā Ā n Ā³ 2).Ā  OnĀ simplification,Ā weĀ getĀ f(x)Ā = ( )2Ā  xĀ 1Ā  1 - (3Ā ā€“Ā 8x)Ā  =Ā Ā (Ā 1Ā +Ā 2x+Ā 3xĀ 2Ā  +Ā ā€¦Ā +Ā (n+1)Ā xĀ nĀ  +Ā ā€¦)(3Ā ā€“Ā 8x)Ā  =Ā Ā 3Ā ā€“Ā 2xĀ ā€“Ā 7xĀ 2Ā  ā€“Ā 12xĀ 3Ā  +Ā ā€¦Ā +Ā (ā€“Ā 5nĀ +Ā 3)xĀ nĀ  +Ā ā€¦.Ā  ThereforeĀ theĀ coefficientĀ ofĀ xĀ nĀ  ,Ā thatĀ is.Ķ¾Ā anĀ  =Ā 3Ā ā€“5nĀ  isĀ theĀ solution.
  • 16. DiscreteĀ Ā MathematicsĀ  UnitĀ 4Ā  SikkimĀ ManipalĀ UniversityĀ  PageĀ No:Ā 114Ā  4.5Ā IntegerĀ FunctionsĀ  4.5.1Ā DefinitionĀ  ForĀ anyĀ realĀ numberĀ x,Ā weĀ defineĀ theĀ floorĀ ofĀ xĀ as Ć«xĆ» =theĀ greatestĀ integerĀ lessĀ thanĀ orĀ equalĀ to x=maxĀ {n / n Ā£ x, n isĀ anĀ integer}Ā  4.5.2Ā ExampleĀ  TakeĀ xĀ =Ā 2.52,Ā then Ć« x Ć» =Ā  maxĀ {nĀ /Ā n Ā£ x,Ā nĀ isĀ anĀ integer}Ā =Ā maxĀ {1,Ā 2}Ā Ā =Ā 2.Ā  4.5.3Ā DefinitionĀ  ForĀ anyĀ realĀ numberĀ x,Ā weĀ defineĀ theĀ ceilingĀ ofĀ xĀ as Ć© x Ć¹ =Ā theĀ leastĀ integerĀ greaterĀ thanĀ orĀ equalĀ toĀ xĀ =Ā minĀ {nĀ /Ā n Ā³ x,Ā nĀ isĀ anĀ  integer}.Ā  4.5.4Ā Ā ExampleĀ  TakeĀ xĀ =Ā 3.732,Ā then Ć© x Ć¹ =Ā minĀ {nĀ /Ā n Ā³ x,Ā nĀ isĀ anĀ integer}Ā =Ā minĀ {4,Ā 5,Ā 6,Ā 7ā€¦}Ā =Ā 4.Ā  ObserveĀ thatĀ forĀ anyĀ realĀ numberĀ x, Ć« x Ć» Ā£ xĀ and Ć© x Ć¹ Ā³ x.Ā  4.5.5Ā GeometricĀ InterpretationĀ  FloorĀ  andĀ  CeilingĀ  functionsĀ  mayĀ  beĀ  understoodĀ  fromĀ  theirĀ  graphicalĀ  (orĀ geometrical)Ā representation.Ā ConsiderĀ theĀ lineĀ f(x)Ā =Ā x,Ā theĀ diagonalĀ onĀ I,Ā IIIĀ  coordinates,Ā take x=e=2.71828ā€¦.Ā Ā weĀ describeĀ floorĀ andĀ ceilingĀ ofĀ e asĀ follows:
  • 17. DiscreteĀ Ā MathematicsĀ  UnitĀ 4Ā  SikkimĀ ManipalĀ UniversityĀ  PageĀ No:Ā 115Ā  whereĀ weĀ denoteĀ  FromĀ theĀ graph, Ć«eĆ» =Ā 2 Ć©x Ć¹ =Ā ā€¦ā€¦ā€¦... Ć©eĆ¹ =Ā 3 Ć«x Ć» =Ā Ā _____ Ć«Ā­eĆ» =Ā Ā­3, Ć©Ā­eĆ¹ =Ā Ā­2Ā  4.5.6Ā PropertiesĀ  i)Ā  FromĀ  theĀ  aboveĀ  graph,Ā  itĀ  canĀ  beĀ  observedĀ  that,Ā  theĀ  twoĀ  functions Ć©x Ć¹ and Ć«xĆ» areĀ equalĀ atĀ integerĀ points.Ā Ā ThatĀ is, Ć«xĆ» =Ā x ƛ xĀ isĀ anĀ  integer ƛ Ć©xĆ¹ =Ā x.Ā  ā€¢Ā  ā€¢Ā  ā€¢Ā  ā€¢Ā  ā€¢Ā ā€¢Ā  ā€¢Ā  ā€¢Ā  ā€¢Ā  ā€¢Ā  ā€¢Ā ā€¢Ā  ā€¢Ā  ā€¢Ā  ā€¢Ā  ā€¢Ā  ā€¢Ā  ā€¢Ā  ā€¢Ā  ā€¢Ā  ā€¢Ā  ā€¢Ā  1Ā  3Ā 2Ā  4Ā  5Ā Ā­1Ā Ā­3Ā  Ā­2Ā Ā­4Ā Ā­5Ā  1Ā  3Ā  2Ā  4Ā  Ā­1 Ā­3Ā  Ā­2Ā  Ā­4Ā  ā€¢Ā  ā€¢Ā  ā€¢Ā  ā€¢Ā  ā€¢Ā  ā€¢Ā  FloorĀ  FloorĀ  CeilingĀ  CeilingĀ  f(x)Ā =Ā xĀ  f(x)Ā  xĀ =Ā Ā­eĀ  xĀ =Ā eĀ  xĀ  Ā­2.7182Ā  2.7182Ā  0
  • 18. DiscreteĀ Ā MathematicsĀ  UnitĀ 4Ā  SikkimĀ ManipalĀ UniversityĀ  PageĀ No:Ā 116Ā  ii) Ć©xĆ¹ ā€“Ā xĀ Ā =Ā [Ā xĀ isĀ notĀ anĀ integer]Ā  ThatĀ is, Ć©xĆ¹ ā€“ Ć«xĆ» = Ć® Ć­ ƬĀ  otherwiseĀ 0,Ā  integerĀ anĀ notĀ isĀ ifĀ 1,Ā  xĀ  iii)Ā  xĀ ā€“Ā 1Ā < Ć«xĆ» andĀ xĀ +Ā 1Ā > Ć©xĆ¹ ƞ xĀ ā€“1Ā < Ć«xĆ» Ā£ x Ā£ Ć©xĆ¹ <Ā xĀ +Ā 1Ā  iv) Ć«Ā­xĆ» =Ā Ā­ Ć©xĆ¹ and Ć©Ā­xĆ¹ =Ā Ā­Ć«xĆ» .Ā  4.5.7Ā Ā SomeĀ RulesĀ onĀ floorĀ andĀ ceilingĀ functionsĀ  InĀ allĀ theĀ followingĀ cases,Ā xĀ isĀ realĀ andĀ nĀ isĀ anĀ integer.Ā  1. Ć«xĆ» =Ā n ƛ n Ā£ xĀ <Ā nĀ +Ā 1Ā  2. Ć«xĆ» =Ā n ƛ xĀ ā€“1Ā <Ā n Ā£ xĀ  3. Ć©xĆ¹ =Ā n ƛ nĀ ā€“1Ā <Ā x Ā£ nĀ  4. Ć©xĆ¹ =Ā n ƛ x Ā£ nĀ <Ā xĀ +Ā 1.Ā  4.5.8 ExampleĀ  TheĀ aboveĀ rulesĀ canĀ beĀ illustrated,Ā byĀ takingĀ xĀ =Ā 4.5. Ć«4.5Ć» =Ā 4 ƛ 4 Ā£ 4.5Ā <Ā 5 Ć«4.5Ć» =Ā 4 ƛ 3.5Ā <Ā 4 Ā£ 4.5 Ć©4.5Ć¹ =Ā 5 ƛ 4Ā <Ā 4.5 Ā£ 5 Ć©4.5Ć¹ =Ā 5 ƛ 4.5 Ā£ 5Ā <Ā 5.5Ā  4.5.9 ProblemĀ  4.5.10Ā  ProveĀ that Ć«xĀ +Ā nĆ» = Ć«xĆ» +Ā n,Ā forĀ anyĀ integerĀ nĀ andĀ realĀ x.Ā  Solution:Ā CaseĀ (i):Ā Ā Ā TheĀ proofĀ isĀ clearĀ whenĀ xĀ isĀ anĀ integer.Ā  CaseĀ (ii):Ā Ā SupposeĀ thatĀ xĀ isĀ anyĀ real.Ā Ā Then Ć«xĆ» Ā£ x ƞ Ć«xĆ» +Ā n Ā£ xĀ +Ā nĀ Ā­Ā­Ā­Ā­(i)Ā  AlsoĀ forĀ anyĀ realĀ x,Ā andĀ integerĀ n,Ā xĀ +Ā nĀ < Ć«xĆ» +Ā nĀ +Ā 1Ā  Ā­Ā­Ā­Ā­Ā­Ā­Ā­Ā­Ā­Ā­(ii)Ā  FromĀ (i)Ā &Ā (ii) Ć«xĆ» +Ā n Ā£ xĀ +Ā nĀ < Ć«xĆ» +Ā nĀ +Ā 1Ā  Ā­Ā­Ā­Ā­Ā­Ā­Ā­Ā­Ā­(iii)Ā  TakeĀ kĀ = Ć«xĆ» +Ā nĀ Ā andĀ yĀ =Ā xĀ +Ā nĀ  ThenĀ (iii)Ā becomesĀ k Ā£ yĀ <Ā kĀ +Ā 1,Ā yĀ isĀ realĀ andĀ kĀ isĀ anĀ integerĀ  ByĀ ruleĀ (1)Ā ofĀ 4.5.7,Ā weĀ get Ć«yĆ» =Ā kĀ  ThatĀ is, Ć«xĀ +Ā nĆ» = Ć«xĆ» +Ā n.
  • 19. DiscreteĀ Ā MathematicsĀ  UnitĀ 4Ā  SikkimĀ ManipalĀ UniversityĀ  PageĀ No:Ā 117Ā  4.5.11Ā  RemarkĀ  InĀ general,Ā takingĀ outĀ ofĀ aĀ constantĀ factorĀ isĀ notĀ true.Ā  TakeĀ nĀ =Ā 2Ā andĀ xĀ =Ā  2Ā  1Ā  .Ā  Now Ć«nxĆ» = Ć«2.Ā  2Ā  1 Ć» = Ć«1Ć» =Ā 1Ā whereĀ asĀ  n Ć«xĆ» =Ā 2 Ć« 2Ā  1 Ć» =Ā 2.0Ā =Ā 0.Ā Therefore Ć«nxĆ» ā‰ Ā n Ć«xĆ».Ā  4.5.12Ā  NoteĀ  AnyĀ inequalityĀ betweenĀ aĀ realĀ andĀ anĀ integerĀ isĀ equivalentĀ toĀ aĀ floorĀ orĀ  ceilingĀ inequalityĀ betweenĀ integers:Ā  (1)Ā  xĀ <Ā n ƛ Ć«xĆ» <Ā nĀ  (2)Ā  nĀ <Ā x ƛ nĀ < Ć©xĆ¹ (3)Ā  x Ā£ n ƛ Ć©xĆ¹ Ā£ nĀ  (4)Ā  n Ā£ x ƛ n Ā£ Ć«xĆ» TheĀ differenceĀ betweenĀ xĀ and Ć«xĆ» isĀ calledĀ theĀ fractionalĀ partĀ ofĀ x.Ā  ItĀ isĀ denotedĀ byĀ {x}.Ā Ā ThatĀ is,Ā {x}Ā =Ā xĀ ā€“ Ć«xĆ» .Ā  4.5.13Ā  Note:Ā  i)Ā  LetĀ xĀ beĀ aĀ realĀ number.Ā Ā IfĀ xĀ =Ā nĀ + q ,Ā whereĀ nĀ isĀ anĀ integerĀ andĀ  0 Ā£ q <Ā 1,Ā thenĀ RuleĀ (1)Ā ofĀ 2.5.7,Ā nĀ = Ć«xĆ» and q =Ā {x}.Ā  ii)Ā  IfĀ nĀ isĀ anĀ arbitraryĀ real,Ā thenĀ theĀ condition Ć«xĀ +Ā nĆ» = Ć«xĆ» +Ā n,Ā doesĀ notĀ  hold.Ā  ForĀ example,Ā takeĀ xĀ =Ā 2.5Ā andĀ nĀ =Ā 3.2.Ā Ā Then Ć«xĀ +Ā nĆ» = Ć«2.5Ā +Ā 3.2Ć» = Ć«5.7Ć» =Ā 5,Ā and Ć«xĆ» +nĀ = Ć«2.5Ć» +3.2Ā =Ā 2Ā +Ā 3.2Ā =Ā 5.2.Ā  Therefore Ć«xĀ +Ā nĆ» ā‰  Ć«xĆ» +Ā n,Ā ifĀ nĀ isĀ arbitraryĀ real.Ā  4.5.14Ā  ProblemĀ  ProveĀ thatĀ Ā = Ć« Ć»Ā xĀ  ,Ā realĀ Ā numberĀ x Ā³ 0.
  • 20. DiscreteĀ Ā MathematicsĀ  UnitĀ 4Ā  SikkimĀ ManipalĀ UniversityĀ  PageĀ No:Ā 118Ā  Solution:Ā IfĀ xĀ isĀ anĀ integer,Ā thenĀ clearlyĀ  = Ć« Ć»Ā xĀ  (sinceĀ xĀ integer ƞ Ć«xĆ» =Ā x)Ā  SupposeĀ xĀ isĀ anyĀ realĀ number.Ā LetĀ mĀ = Ć« ƻƫ Ć»Ā x ƛ m Ā£ Ć« Ć»Ā xĀ  <Ā mĀ +1Ā Ā Ā Ā Ā Ā (byĀ RuleĀ (1),Ā ofĀ 4.5.7) ƛ mĀ 2 Ā£ Ć«xĆ» <Ā (mĀ +Ā 1)Ā 2Ā  (squaring) ƛ mĀ 2 Ā£ xĀ <Ā (mĀ +Ā 1)Ā 2 ƛ m Ā£Ā  xĀ  <Ā mĀ +Ā 1Ā Ā Ā Ā Ā Ā Ā Ā (takingĀ squareĀ root) ƛ mĀ = Ć«Ā  x Ć» (byĀ RuleĀ (1)Ā ofĀ 4.5.7)Ā  ThusĀ forĀ anyĀ realĀ x Ā³ 0, Ć« ƻƫ Ć»Ā xĀ  = Ć« Ć»Ā xĀ  .Ā  SimilarlyĀ forĀ ceilingĀ functions, Ć© Ć© Ć¹Ā x Ć¹ = Ć©Ā  x Ć¹ ,Ā forĀ realĀ x Ā³ 0.Ā Ā TheĀ proofĀ isĀ  quiteĀ similar.Ā  4.5.15Ā  NoteĀ  LetĀ xĀ beĀ anyĀ real.Ā Ā Ā ThenĀ theĀ nearestĀ integerĀ toĀ xĀ isĀ  nĀ = { } { } { }[ ] { }ĆÆĆ® ĆÆ Ć­ Ƭ <<+ <Ā£ 1Ā xĀ 0.5Ā ifĀ xĀ Ā­Ā 1Ā xĀ  0.5Ā xĀ 0Ā ifĀ xĀ Ā­Ā xĀ  ForĀ instance,Ā takeĀ xĀ =Ā 2.4,Ā theĀ nearestĀ integerĀ isĀ 2.Ā Ā ThenĀ nĀ =Ā xĀ ā€“Ā {x}Ā =Ā 2.4Ā ā€“Ā  0.4Ā (sinceĀ {x}Ā =Ā 0.4)Ā =Ā 2Ā  ForĀ xĀ =Ā 2.6,Ā nĀ =Ā 2.6Ā +Ā {1Ā Ā­Ā 0.6}Ā =Ā 2.6Ā +Ā 0.4Ā =Ā 3.Ā  4.5.16Ā  ProblemĀ  FindĀ aĀ necessaryĀ andĀ sufficientĀ conditionĀ that Ć«nxĆ» =Ā n Ć«xĆ» ,Ā whenĀ nĀ isĀ aĀ  positiveĀ integer.Ā  Solution:Ā Consider Ć«nxĆ» = Ć«nĀ (Ć«xĆ» +Ā {x})Ć» (since Ć«xĆ» =Ā x ā€“ {x} ƞ xĀ = Ć«xĆ» +Ā {x}Ā )Ā  = Ć« n Ć«xĆ» +Ā nĀ {x}Ć» =Ā n Ć«xĆ» + Ć«nĀ {x}Ć»
  • 21. DiscreteĀ Ā MathematicsĀ  UnitĀ 4Ā  SikkimĀ ManipalĀ UniversityĀ  PageĀ No:Ā 119Ā  Therefore Ć«nxĆ» =Ā nĆ«xĆ» ƛ Ć«n{x}Ć» =Ā 0 ƛ 0 Ā£ n{x}Ā <Ā 1 ƛ {x}<Ā  nĀ  1Ā  ,Ā nĀ isĀ aĀ  positiveĀ integer.Ā ThereforeĀ theĀ necessaryĀ andĀ sufficientĀ conditionĀ for Ć«nxĆ» =Ā  n Ć«xĆ» isĀ thatĀ {x}Ā <Ā  nĀ  1Ā  .Ā  SelfĀ AssessmentĀ QuestionsĀ  1.Ā  SolveĀ  theĀ  recurrenceĀ  relationĀ  anĀ  =Ā  5anĀ­1Ā  ā€“Ā  6anĀ­2,Ā  Ā  n Ā³ 2,Ā  givenĀ  a0Ā  =Ā  1,Ā  a1Ā  =Ā 4.Ā  2.Ā  SolveĀ  theĀ  recurrenceĀ  anĀ  =Ā  4anĀ­1Ā  ā€“Ā  4anĀ­2,Ā  n Ā³ 2Ā  withĀ  initialĀ  conditionsĀ  a0Ā  =1,Ā a1Ā =Ā 4.Ā  3.Ā  SolveĀ theĀ recurrenceĀ relationĀ anĀ  =Ā Ā­3anĀ­1Ā +Ā n,Ā n Ā³ 1,Ā whereĀ a0Ā =Ā 1.Ā  4.Ā  SolveĀ anĀ  =Ā 2anĀ­1Ā  +Ā 3anĀ­2Ā +Ā 5Ā nĀ  ,Ā n Ā³ 2,Ā givenĀ a0Ā  =Ā Ā­2,Ā a1Ā  =Ā 1.Ā  5.Ā  IfĀ f(x)Ā =Ā 1Ā +Ā xĀ +Ā xĀ 2Ā  +Ā ā€¦.,Ā +Ā xĀ nĀ  +Ā ā€¦..Ā andĀ g(x)Ā =Ā 1Ā ā€“Ā xĀ +Ā xĀ 2Ā  ā€“Ā xĀ 3Ā  +Ā ā€¦..Ā +Ā  (Ā­1)Ā nĀ  xĀ nĀ  +Ā ā€¦.Ā FindĀ f(x)Ā +Ā g(x),Ā andĀ f(x).g(x).Ā  6.Ā  SolveĀ theĀ recurrenceĀ relationĀ anĀ  =Ā 3anĀ­1,Ā n Ā³ 1Ā givenĀ a0Ā =Ā 1.Ā  4.6Ā SummaryĀ  TheĀ applicationsĀ ofĀ recurrenceĀ relationsĀ wereĀ discussed.Ā Ā ThisĀ providesĀ theĀ  baseĀ forĀ solvingĀ recurrencesĀ usingĀ floorĀ andĀ ceilingĀ functions.Ā Ā TheĀ readerĀ  willĀ  beĀ  ableĀ  toĀ  solveĀ  theĀ  recurrencesĀ  usingĀ  theĀ  generatingĀ  functionĀ  techniquesĶ¾Ā  alsoĀ  itĀ  givesĀ  theĀ  toolĀ  forĀ  practicalĀ  problemsĀ  involvingĀ  theĀ  differenceĀ equations,Ā andĀ problemsĀ onĀ analyticalĀ numberĀ theory.Ā  4.7Ā TerminalĀ QuestionsĀ  1.Ā  SolveĀ theĀ recurrenceĀ anĀ  =Ā Ā­3anĀ­1Ā  +Ā 10anĀ­2,Ā n Ā³ 2,Ā givenĀ a0Ā  =Ā 1,Ā a1Ā  =Ā 4.Ā  2.Ā  SolveĀ theĀ recurrenceĀ relationĀ anĀ  =Ā Ā­anĀ­1Ā  +Ā 2nĀ ā€“Ā 3,Ā n Ā³ 1,Ā givenĀ a0Ā =1.Ā  3.Ā  FindĀ  theĀ  valuesĀ  ofĀ  (i). Ć«3.8Ć» Ķ¾Ā  (ii). Ć«99.1Ć» Ķ¾Ā  (iii) Ć«66.5Ć» Ķ¾Ā  (iv). Ć©2.1Ć¹ Ķ¾Ā  (v). Ć©3.9Ć¹ Ķ¾Ā andĀ (vi). Ć©1.9Ć¹ where Ć« Ć» and Ć© Ć¹ areĀ twoĀ floorĀ andĀ  ceilingĀ functions.
  • 22. DiscreteĀ Ā MathematicsĀ  UnitĀ 4Ā  SikkimĀ ManipalĀ UniversityĀ  PageĀ No:Ā 120Ā  4.8Ā AnswersĀ  SelfĀ AssessmentĀ QuestionsĀ  1.Ā  anĀ  =Ā Ā­2Ā nĀ  +Ā 2(3Ā nĀ  ).Ā  2.Ā  anĀ  =Ā 2Ā nĀ  +Ā n(2Ā nĀ  )Ā =Ā (nĀ +Ā 1).2Ā nĀ  .Ā  3.Ā  anĀ  =Ā  16Ā  3Ā  +Ā  4Ā  1Ā  nĀ +Ā  16Ā  13Ā  (Ā­3)Ā nĀ  .Ā  4.Ā  anĀ  =Ā  12Ā  25Ā  (5Ā nĀ  )Ā ā€“Ā  24Ā  17Ā  (Ā­1)Ā nĀ  ā€“Ā  8Ā  27Ā  (3Ā nĀ  ).Ā  5.Ā  f(x)Ā +Ā g(x)Ā =Ā 2Ā +Ā 2xĀ 2Ā  +Ā 2xĀ 4Ā  +Ā ā€¦.Ā  f(x).g(x)Ā =Ā 1Ā +Ā xĀ 2Ā  +Ā xĀ 4Ā  +Ā xĀ 6Ā  +Ā ā€¦..Ā  6.Ā  anĀ  =Ā 3Ā nĀ  .Ā  TerminalĀ QuestionsĀ  1.Ā  anĀ  =Ā Ā­Ā  7Ā  2Ā  (Ā­5)Ā nĀ  +Ā  7Ā  9Ā  (2Ā nĀ  ).Ā  2.Ā  anĀ  = ĆÆĆ® ĆÆ Ć­ Ƭ - + oddĀ isĀ nĀ ifĀ 3Ā nĀ  evenĀ isĀ nĀ ifĀ 1Ā nĀ  .Ā  3.Ā  (i).Ā 3Ķ¾Ā Ā (ii).Ā 99Ķ¾Ā Ā (iii).Ā 66Ķ¾Ā Ā (iv).Ā 3Ķ¾Ā Ā (v).Ā 4Ķ¾Ā Ā (vi).Ā 2.