10.1 Parametric Equations

  Curves can be defined by functions:

                  =          (   )

                   =
                             +
                       ···

  But they cannot describe all general curves.
Parametric equations:

                = ( ),       = ()

Ex:

      =     ,       = + ,

      =    ,       =         ,
                       ···
Parametric curve:

    =      ,    = + ,
Parametric curve:

    =      ,    = + ,
Parametric curve:

    =      ,    = + ,
Parametric curve:

    =      ,    = + ,
Parametric curve:

     =     ,    =   ,
Parametric curve:

     =     ,    =   ,
Parametric curve:

     =     ,    =   ,
Parametric curve:

     =     ,    =   ,
More examples:

= +        ,     = +   ,
More examples:

  =              =       ,
      +              +
More examples:

= +       ,      =   +   ,
More examples:


   =

   =
Find parametric equations for the circles
with center ( , ) and radius .

        y
                    r

                        (h,k)




        o                        x
Find parametric equations for the circles
with center ( , ) and radius .

        y
                    r

                        (h,k)




        o                        x


        = +
        = +
Eliminate the parameter to find the Cartesian
equation of the curve.
   =         ,    =           ,
Eliminate the parameter to find the Cartesian
equation of the curve.
   =         ,        =            ,

                 +(          ) =

                 y



                          (0,3)


                      o                x
Eliminate the parameter to find the Cartesian
equation of the curve.
   =         ,        =              ,

                 +(          ) =

                 y                           s pos sible!
                                   N ot alway



                          (0,3)


                      o                  x
10.2 Calculus with
  parametric Curves

             = ( ),    = ()


Tangents

Areas

Arc Length

Area of Surfaces of Revolution
Tangents:
Tangents:

  If    = ,


              =
Tangents:

  If    = ,


              =



        =         =
Tangents:

  If    = ,


              =



        =         =


                          !!
                      =
Ex: Find the tangents of the curve at   ( , ):
            =   ,    =
Ex: Find the tangents of the curve at   ( , ):
            =     ,       =

At   ( , ), = ±       .

       =              =       =±
Ex: Find the tangents of the curve at   ( , ):
            =     ,       =

At   ( , ), = ±       .

       =              =           =±

The equations of the tangents are:

                =±        (   )

Calculus II - 15