MathCAD - Damped, Forced Vibrations (JCB-edited).xmcd Page 1 of 4
m
k c
Pei t
( )u t
Damped, Forced Vibrations
Specify the initial displacement and velocity of the mass
Initial displacement u0 0.0
Initial velocity v0 0.0
Specify the stiffness, mass, and fraction of critical damping
k 0.4 m 1 β 0.20
Specify the amplitude and circular frequency of the load
P 1.0 Ω 1.0
First consider the displacement time history of the transient vibrations:
ωn
k
m
0.6325
A
i ωn β ωn 1 β
2




 u0
2 ωn 1 β
2

i v0
2 ωn 1 β
2


i ωn β ωn 1 β
2
 Ω




2 ωn 1 β
2

P
k

1
1
Ω
2
ωn
2
 2 i β
Ω
ωn


A 0.495 0.039i
B
i ωn β ωn 1 β
2




 u0
2 ωn 1 β
2

i v0
2 ωn 1 β
2


i ωn β ωn 1 β
2




 Ω




2 ωn 1 β
2

P
k

1
1
Ω
2
ωn
2
 2 i β
Ω
ωn


B 1.91 0.635i
Dr. Glenn Rix Web Site
MathCAD - Damped, Forced Vibrations (JCB-edited).xmcd Page 2 of 4
The constants parameters, A and B can be simplified further which assists us in observing the
influence of the different parameter groups.
δst
P
k
2.500 ωd ωn 1 β
2
 0.6197 r
Ω
ωn
1.581 rD
ωd
ωn

Φ
1
1 r
2
  2 i β r

α
1
2 1 β
2

0.5103
A α rD i β  u0 i
v0
ωn
 rD r i β  Φ δst






 0.495 0.039i
B α rD i β  u0 i
v0
ωn
 rD r i β  Φ δst






 1.91 0.635i
ut t( ) exp ωn β t  A exp i ωd t  B exp i ωd t  
Plot the displacement time history of the transient vibrations
t 0 0.1 50
0 5 10 15 20 25 30 35 40 45 50
2
1
1
2
Time
Displacement
Im ut t( ) 
t
Dr. Glenn Rix Web Site
MathCAD - Damped, Forced Vibrations (JCB-edited).xmcd Page 3 of 4
Now consider the steady state component of the vibrations which is given by:
uss t( )
P
k
1
1
Ω
2
ωn
2









2 i β
Ω
ωn









 exp i Ω t( )
Let AH Φ δst 1.415 0.597i
uss t( ) AH exp i Ω t( )
0 5 10 15 20 25 30 35 40 45 50
2
1
1
2
Time
Displacement
Im uss t( ) 
t
Now combine the two displacement components u t( ) Im ut t( )  Im uss t( ) 
0 10 20 30 40 50
3
2
1
1
2
3
Time
Displacement
u t( )
t
Dr. Glenn Rix Web Site
MathCAD - Damped, Forced Vibrations (JCB-edited).xmcd Page 4 of 4
Plot the load and displacement simultaneously
p t( ) Im P exp i Ω t( )( )
0 5 10 15 20 25 30 35 40 45 50
3
2
1
1
2
3
Time
Displacement
u t( )
p t( )
t
Dr. Glenn Rix Web Site

Math cad damped, forced vibrations (jcb-edited)

  • 1.
    MathCAD - Damped,Forced Vibrations (JCB-edited).xmcd Page 1 of 4 m k c Pei t ( )u t Damped, Forced Vibrations Specify the initial displacement and velocity of the mass Initial displacement u0 0.0 Initial velocity v0 0.0 Specify the stiffness, mass, and fraction of critical damping k 0.4 m 1 β 0.20 Specify the amplitude and circular frequency of the load P 1.0 Ω 1.0 First consider the displacement time history of the transient vibrations: ωn k m 0.6325 A i ωn β ωn 1 β 2      u0 2 ωn 1 β 2  i v0 2 ωn 1 β 2   i ωn β ωn 1 β 2  Ω     2 ωn 1 β 2  P k  1 1 Ω 2 ωn 2  2 i β Ω ωn   A 0.495 0.039i B i ωn β ωn 1 β 2      u0 2 ωn 1 β 2  i v0 2 ωn 1 β 2   i ωn β ωn 1 β 2      Ω     2 ωn 1 β 2  P k  1 1 Ω 2 ωn 2  2 i β Ω ωn   B 1.91 0.635i Dr. Glenn Rix Web Site
  • 2.
    MathCAD - Damped,Forced Vibrations (JCB-edited).xmcd Page 2 of 4 The constants parameters, A and B can be simplified further which assists us in observing the influence of the different parameter groups. δst P k 2.500 ωd ωn 1 β 2  0.6197 r Ω ωn 1.581 rD ωd ωn  Φ 1 1 r 2   2 i β r  α 1 2 1 β 2  0.5103 A α rD i β  u0 i v0 ωn  rD r i β  Φ δst        0.495 0.039i B α rD i β  u0 i v0 ωn  rD r i β  Φ δst        1.91 0.635i ut t( ) exp ωn β t  A exp i ωd t  B exp i ωd t   Plot the displacement time history of the transient vibrations t 0 0.1 50 0 5 10 15 20 25 30 35 40 45 50 2 1 1 2 Time Displacement Im ut t( )  t Dr. Glenn Rix Web Site
  • 3.
    MathCAD - Damped,Forced Vibrations (JCB-edited).xmcd Page 3 of 4 Now consider the steady state component of the vibrations which is given by: uss t( ) P k 1 1 Ω 2 ωn 2          2 i β Ω ωn           exp i Ω t( ) Let AH Φ δst 1.415 0.597i uss t( ) AH exp i Ω t( ) 0 5 10 15 20 25 30 35 40 45 50 2 1 1 2 Time Displacement Im uss t( )  t Now combine the two displacement components u t( ) Im ut t( )  Im uss t( )  0 10 20 30 40 50 3 2 1 1 2 3 Time Displacement u t( ) t Dr. Glenn Rix Web Site
  • 4.
    MathCAD - Damped,Forced Vibrations (JCB-edited).xmcd Page 4 of 4 Plot the load and displacement simultaneously p t( ) Im P exp i Ω t( )( ) 0 5 10 15 20 25 30 35 40 45 50 3 2 1 1 2 3 Time Displacement u t( ) p t( ) t Dr. Glenn Rix Web Site