SlideShare a Scribd company logo
Fall	
  2015	
  
	
   1	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  
	
   LOYOLA	
  MARYMOUNT	
  UNIVERSITY	
  	
  
	
  
The Renewal of the Tin Shed Building
Santa Barbara, CA
Final	
  draft	
  design	
  report	
  
	
  
	
  
	
  
Loyola Marymount University
Bader Alghunaim
November 30, 2015
Civil 305: Structural Analysis
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  
Fall	
  2015	
  
	
   2	
  
LOYOLA	
  MARYMOUNT	
  UNIVERSITY	
  	
  
	
  
Department	
  of	
  Civil	
  Engineering	
  and	
  Environmental	
  Science	
  
Loyola	
  Marymount	
  University	
  	
  
1	
  LMU	
  Drive	
  	
  
Los	
  Angeles,	
  CA	
  90045	
  
	
  
Dear	
  Dr.	
  Manoogian,	
  	
  
	
  
Final	
  Report	
  of	
  the	
  Tin	
  Shed	
  Building	
  
I	
  have	
  pleasure	
  in	
  submitting	
  the	
  enclosed	
  final	
  report	
  of	
  my	
  structural	
  project.	
  This	
  report	
  satisfies	
  the	
  
requirements	
  and	
  instructions	
  you	
  provided.	
  Enclosed	
  is	
  the	
  primary	
  design	
  report	
  and	
  
recommendations	
  for	
  the	
  project.	
  
Included	
  in	
  this	
  report	
  is:	
  background	
  information	
  on	
  Santa	
  Barbara’s	
  building	
  codes,	
  the	
  purpose	
  of	
  the	
  
building,	
  the	
  building’s	
  design	
  loads,	
  the	
  girder	
  and	
  column	
  layout,	
  the	
  tributary	
  load	
  maps,	
  and	
  the	
  
beam	
  and	
  column	
  selections.	
  	
  
It	
  has	
  been	
  a	
  great	
  experience	
  to	
  work	
  on	
  this	
  project.	
  I	
  am	
  glad	
  to	
  say	
  that	
  my	
  structural	
  analysis	
  of	
  the	
  
Tin	
  Shed	
  building	
  fulfills	
  the	
  reports	
  requirements.	
  Please	
  review	
  this	
  report	
  and	
  contact	
  me	
  with	
  your	
  
questions,	
  comments	
  and	
  concerns	
  so	
  as	
  to	
  proceed	
  to	
  the	
  final	
  stage	
  of	
  the	
  construction	
  of	
  the	
  Tin	
  
Shed.	
  
	
  
Sincerely,	
  
	
  
Bader	
  Alghunaim	
  
	
  
	
  
	
  
Civil	
  Engineering	
  Associate	
  	
  
Fall	
  2015	
  
	
   3	
  
Table of Contents
	
  
1. Introduction
1.1.Background……………………………………………………….4
1.2.Purpose…………………………………………………………….4
2. Design Loads
2.1.Assumptions……………………………………………………….8
2.2.Load Table………………………………………………………...10
2.3.Worst Case LRFD Load Combination Table………..…………….10
2.4.Material Selection………………………………………………….10
3. Tributary Loads
3.1.Column and Girder Layout………………………………...……….11
3.2.Tributary Load Maps……………………………………………….12
3.3.Tributary Load Tables…………………………………………..….15
4. Beam Selections
4.1.Beam Selections For EW Girders………………………………….18
4.2.Beam Selections for NS Girders……………………………………19
4.3.Column Selections……………………………….………………….20
4.4.Column and Girder Layout with Beam Selections………………….21
5. Appendix
5.1.Calculations……………………………….…………………..…….22
5.2.LRFD Load Combination Table………………….………………….24
6. References……………………………….…………………………….25
	
  
Fall	
  2015	
  
	
   4	
  
1. Introduction:
1.1.Background:
The new tin shed will be a redesigned version of the previous Engineering Design Center.
This new structure will consist mostly of a single floor for machining and material
processing, as well as a small second story for light storage. This new design center will
replace the previous one located at:
1230 Garden Street,
Santa Barbara, CA, 93101
	
  
Figure	
  1:	
  Geographic	
  map	
  of	
  the	
  location	
  of	
  the	
  Engineering	
  Design	
  Center	
  
The new design center will be built with the dimensions 100’ W x 40’L x 30’H, identical to
the previous design center dimensions. The newly added second floor will be 50’W x 40’L x
12’H, and will be situated above the machining area. The new design center will be built in Santa
Barbara, therefore industry code for standard rain, wind and seismic conditions should be
applied. An emphasis on earthquake conditions should be taken into account during construction,
since the location is prone to earthquakes. Snow conditions should be ignored, as the area is not
prone to snowfall.
1.2.Purpose:
The new design of the Engineering Design Center, nicknamed the “Tin Shed” by students,
will create a more student friendly environment with a storage space on a second floor above the
machining area. This storage space on the second floor creates a space for the students to work
and utilize the machinery in place. The original design did not account for a separate floor for
storage and was therefore not as efficiently organized. The new design center will be divided into
Fall	
  2015	
  
	
   5	
  
three sections. The first half of the first floor will be the student work area, the second half of the
first floor will be the machining area, and the third section will be the second floor storage area.
Figures 2, 3, 4, 5, 6, and 7 show the skeletal drawing, exterior views, and floor plans of the
building.
	
  
Figure	
  2:	
  Skeletal	
  Drawing	
  for	
  new	
  design	
  
	
  
Figure	
  3:	
  Top	
  view	
  of	
  new	
  design	
  
	
  	
  
Fall	
  2015	
  
	
   6	
  
	
  
Figure	
  4:	
  Exterior	
  view	
  of	
  new	
  design	
  
	
  
Figure	
  5:	
  Exterior	
  view	
  with	
  wall	
  removed	
  
Fall	
  2015	
  
	
   7	
  
	
  
Figure	
  6:	
  2nd	
  Floor	
  floorplan	
  
	
  
Figure	
  7:	
  1st	
  Floor	
  floorplan	
  
Fall	
  2015	
  
	
   8	
  
2. Design Loads:
2.1. Assumptions
The location for the New Design Center is Santa Barbara. The primary sources for the loads
on the building are the IBC 2012 and ASCE 7-10. These sources will help determine the
minimum design loads caused by the wind, seismic, rain, dead, and live loads acting on the
building. The Design Center will be designed as a Risk Category 3, fully exposed, Exposure
Category B, Terrain Category B, fully enclosed building. The loads applied to each floor are
uniform.
Dead Loads (D)
The dead load assumed for the roof is 60 psf. This assumption was made after calculating
the weight of the roof itself and adding it to the weight of the ceiling. Assuming a 4inch thick
concrete slab (with 9.6 pounds per square foot per inch of thickness), a steel deck, steel joists,
insulation, and a bituminous smooth surface membrane; the roof is calculated to weigh 50.9psf
(ASCE 7-10, C3-1). The remaining dead loads are from the ceiling. Assuming a suspended steel
channel system, acoustical tile, lights and ducting, the remaining dead load is calculated to 8 psf
(ASCE 7-10, C3-1). The total dead load is calculated to be 58.9 psf. This number was then
rounded up to 60psf. See Appendix for calculations.
The dead load assumed for the 2nd
floor is 60 psf. This assumption was made after
calculating the weight of the 2nd
floor itself and adding it to the weight of the ceiling. Assuming a
4inch thick concrete slab (with 9.6 pounds per square foot per inch of thickness), a steel deck,
steel joists, carpeting and padding; the 2nd
floor is calculated to weigh 49.4psf (ASCE 7-10, C3-
1). The remaining dead loads are from the ceiling. Assuming a suspended steel channel system,
acoustical tile, lights and ducting, the remaining dead load is calculated to 8 psf (ASCE 7-10,
C3-1). The total dead load is calculated to be 57.4 psf. This number was then rounded up to
60psf. See Appendix for calculations.
Live Loads (L)
The live load for the 2nd
floor is assumed to be 125psf. This is the industry standard
loading for light storage areas (IBC 2012, Table 4-1). The live load for the roof is assumed to be
0psf. This is under the assumption that there will be no consistent live loads on the roof.
Roof Live Loads (𝑳 𝑹)
The roof live load is assumed to be 20psf. This is the industry standard minimum design
load for all roofs (IBC 2012).
Fall	
  2015	
  
	
   9	
  
Rain Loads (R)
The flow rate is dependent of the area of the building and the rain intensity (i), which was
taken form Figure 1611.1 to be 3 in/hr. The total area (A) of the roof is 4000𝑓𝑡!
. Implementing a
two-drain system, the area served by each drain will then be 2000 𝑓𝑡!
. Therefore flow rate (Q) of
rain was calculated to be 62.4 gpm. Assuming 4 inch drain diameters and using table 2.5 (Mike
11), dh=1’’ A ds of 2’’ was then assumed and the rain load was calculated to be 15.6psf. See
Appendix for calculations.
Rain loads on the 2nd
floor are assumed to be 0psf since the design center is a fully enclosed
building.
Snow Loads (S)
Snow Loads on the roof were calculated to be 0 psf. For snow loads, the snow importance
factor 𝐼!, exposure factor 𝐶!, thermal factor 𝐶!, and ground snow load 𝑝! are all required to
calculate snow load (S). The design center is assumed to be a risk category 3 building and will
therefore have an 𝐼!of 1.1 (ASCE 7-10 1.5-2). It is also assumed to be a Category B fully
exposed building and will therefore have a 𝐶!of 0.9 (ASCE 7-10, Table 7-2). Since the structure
is heated and is not a greenhouse, its 𝐶!is 1.0 (ASCE 7-10, Table 7-3). As for the ground snow
loads, since Santa Barbara has an elevation of 3ft above sea level (far below 1500 ft) 𝑝!=0 (IBC
2012). When all of these factors are taken into consideration the assumed snow load is
calculated to be 0psf. Calculations in Appendix
Snow loads on the 2nd
floor are assumed to be 0psf since the design center is a fully
enclosed building.
Wind Loads (W)
The wind loads were calculated to be 25.8psf. In order to calculate this load the wind speed
of Santa Barbara was determined to be 115mph (IBC 2012, Figure 1609B). The topographical
factor (𝑘!") was assumed to be 1.0 since the design center was built on flat land. And k1 and k2
were taken from ASCE 27.3.1 to be 0.6 and 0.7 respectively. With all of these assumptions taken
into consideration, the calculated wind load was 25.8psf.
Wind loads on the 2nd
floor are assumed to be 0psf since the design center is a fully enclosed
building.
Earthquake Loads (E)
The seismic/earthquake loads were assumed to be 10psf. These values were given.
Fall	
  2015	
  
	
   10	
  
2.2.Load Table
Table 1, below, presents the calculated loads given by dead (D), live (L), live roof (𝐿!),
rain(R), snow (S), wind (W), and seismic stresses (E). Calculations can be found in the
Appendix (section 5.1).
Table	
  1:	
  Load	
  Table	
  
Load	
   2nd
	
  Floor	
  (psf)	
   Roof	
  (psf)	
   Source	
  
D	
   60	
   60	
   ASCE	
  7-­‐10,	
  Table	
  C3-­‐
1	
  
L	
   125	
   0	
   IBC	
  2012,	
  pg19,	
  
Table	
  4-­‐1	
  
Lr	
   0	
   20	
   IBC	
  2012,	
  pg	
  333	
  
R	
   0	
   15.6	
   IBC	
  2012,	
  pg	
  360	
  
S	
   0	
   0	
   ASCE	
  7-­‐10,	
  29-­‐34	
  
W	
   0	
   25.8	
  
	
  
ASCE	
  7-­‐10,	
  27.3.1,pg	
  
261	
  
IBC	
  Figure	
  1609B	
  pg	
  
351	
  
E	
   10	
   10	
   Given	
  
2.3.Worst Case LRFD Load Combination Table
Table 2, below, uses the highest valued combination of the values in Table 1 to predict
the LRFD worst-case load combination for both the roof and 2nd
floor. Calculations can be found
in the Appendix (section 5.2).
	
  
Table	
  2:	
  Worst	
  Case	
  Scenario	
  LRFD	
  Table	
  
Floor	
   Design	
  Load	
  (psf)	
  
Roof	
   116.9	
  
2nd
	
  Floor	
   272	
  
2.4.Material Selection
The material used for this building are Wide-flange Steel beams, and columns made out of
Structural Steel, ASTM A529 Grade 50, Yield Stress of 50,000 lb/in2
Fall	
  2015	
  
	
   11	
  
3. Tributary Loads
3.1. Column and Girder Layout
The column and girder layouts for the roof and 2nd
floor can be seen in frame format in
Figures 8 and 9, respectively. Each column is 1ft by 1ft. Girders in the North-South direction
are 20 ft long, and girders in the East-West direction are 25 ft long.
	
  
Figure	
  8:	
  Frame	
  of	
  Roof	
  
	
  
Figure	
  9:	
  Frame	
  of	
  2nd	
  Floor	
  
Fall	
  2015	
  
	
   12	
  
3.2. Tributary Load Maps
This section contains the tributary load maps. Figures 10 and 11 show the tributary loads on
the EW and NS girders on the roof respectively. Figure 12 shows the tributary loads on the
columns of the roof. The 2nd
floor tributary girder load maps are shown in figures 13 and 14,
and the 2nd
floor tributary load map for the columns is shown in figure 15.
	
  
Figure	
  10:Tributary	
  Load	
  For	
  Girders	
  on	
  Roof	
  East-­‐West	
  
	
  	
  
	
  
Figure	
  11:Tributary	
  Loads	
  For	
  Girders	
  on	
  Roof	
  North-­‐South	
  
Fall	
  2015	
  
	
   13	
  
	
  
Figure	
  12:Tributary	
  Loads	
  For	
  Columns	
  on	
  Roof	
  
	
  
	
  
Figure	
  13:	
  Tributary	
  Loads	
  For	
  Girders	
  on	
  2nd	
  Floor	
  East-­‐West	
  
	
  
Fall	
  2015	
  
	
   14	
  
	
  
Figure	
  14:Tributary	
  Loads	
  For	
  Girders	
  on	
  2nd	
  Floor	
  North-­‐South	
  
	
  
	
  
Figure	
  15:	
  Tributary	
  Loads	
  For	
  Columns	
  on	
  2nd	
  Floor	
  
Fall	
  2015	
  
	
   15	
  
3.3. Tributary Load Tables
The implemented design load combination for the 272psf for the 2nd
floor and 116.9psf
for the roof. The implemented load combinations take into account the live, dead, snow,
wind, earthquake and rain loads acting on the building. Tables 3 and 4 depict the tributary
load effect on the EW girders on the roof and second floor respectively. Tables 5 and 6 show
the tributary load effect on the NS girders on the roof and second floor respectively. These
four tables show the calculated weight and moment due to the tributary load on each girder.
Table 7 shows the force on each column due to the tributary loads.
Table	
  3:	
  Tributary	
  Loads	
  For	
  EW	
  Girders	
  on	
  Roof	
  
	
  
Design	
  Load	
  
	
  
Length	
   Weight	
   Moment	
  
Girder	
   (kip/ft^2)	
  
	
  
(ft)	
   (kips/ft)	
   (kips-­‐ft)	
  
A1B1	
   0.1169	
  
	
  
20	
   1.46	
   73.1	
  
A2B2	
   0.1169	
  
	
  
20	
   2.92	
   146	
  
A3B3	
   0.1169	
  
	
  
20	
   2.92	
   146	
  
A4B4	
   0.1169	
  
	
  
20	
   2.92	
   146	
  
A5B5	
   0.1169	
  
	
  
20	
   1.46	
   73.1	
  
B1C1	
   0.1169	
  
	
  
20	
   1.46	
   73.1	
  
B2C2	
   0.1169	
  
	
  
20	
   2.92	
   146	
  
B3C3	
   0.1169	
  
	
  
20	
   2.92	
   146	
  
B4C4	
   0.1169	
  
	
  
20	
   2.92	
   146	
  
B5C5	
   0.1169	
  
	
  
20	
   1.46	
   73.1	
  
	
  
	
  
	
  
	
  
	
  
	
   	
  
Fall	
  2015	
  
	
   16	
  
Table	
  4:	
  Tributary	
  Loads	
  for	
  EW	
  Girders	
  on	
  2nd	
  Floor	
  
	
  
Design	
  Load	
   Length	
   Weight	
   Moment	
  
Girder	
   (kip/ft^2)	
   (ft)	
   (kips/ft)	
   (kips-­‐ft)	
  
A1B1	
   0.272	
   20	
   3.4	
   170	
  
A2B2	
   0.272	
   20	
   6.8	
   340	
  
A3B3	
   0.272	
   20	
   3.4	
   170	
  
B1C1	
   0.272	
   20	
   3.4	
   170	
  
B2C2	
   0.272	
   20	
   6.8	
   340	
  
B3C3	
   0.272	
   20	
   3.4	
   170	
  
Table	
  5:	
  Tributary	
  Load	
  Table	
  for	
  NS	
  Girders	
  on	
  Roof	
  
	
  
	
   Design	
  Load	
   Length	
   Weight	
   Moment	
  
Girder	
   	
   (kip/ft^2)	
   (ft)	
   (kips/ft)	
   (kips-­‐ft)	
  
A12	
   	
   0.1169	
   25	
   1.169	
   91.3	
  
A23	
   	
   0.1169	
   25	
   1.169	
   91.3	
  
A34	
   	
   0.1169	
   25	
   1.169	
   91.3	
  
A45	
   	
   0.1169	
   25	
   1.169	
   91.3	
  
B12	
   	
   0.1169	
   25	
   2.338	
   183	
  
B23	
   	
   0.1169	
   25	
   2.338	
   183	
  
B34	
   	
   0.1169	
   25	
   2.338	
   183	
  
B45	
   	
   0.1169	
   25	
   2.338	
   183	
  
C12	
   	
   0.1169	
   25	
   1.169	
   91.3	
  
C23	
   	
   0.1169	
   25	
   1.169	
   91.3	
  
C34	
   	
   0.1169	
   25	
   1.169	
   91.3	
  
C45	
   	
   0.1169	
   25	
   1.169	
   91.3	
  
Fall	
  2015	
  
	
   17	
  
Table	
  6:	
  Tributary	
  Loads	
  for	
  NS	
  Girders	
  on	
  2nd	
  Floor	
  
	
  
Girder	
   Design	
  Load	
  
	
  
Length	
   Weight	
   Moment	
  
	
  
(kip/ft^2)	
  
	
  
(ft)	
   (kips/ft)	
   (kips-­‐ft)	
  
A12	
   0.272	
  
	
  
25	
   2.72	
   213	
  
A23	
   0.272	
  
	
  
25	
   2.72	
   213	
  
B12	
   0.272	
  
	
  
25	
   5.44	
   425	
  
B23	
   0.272	
  
	
  
25	
   5.44	
   425	
  
C12	
   0.272	
  
	
  
25	
   2.72	
   213	
  
C23	
   0.272	
  
	
  
25	
   2.72	
   213	
  
Table	
  7:	
  Tributary	
  Loads	
  on	
  Columns	
  
Columns	
   Pr	
  (kips)	
   Ps(kips)	
   Pt(kips)	
   Eff.	
  Length	
  (ft)	
  
A1	
   14.6	
   34	
   48.6	
   18	
  
A2	
   29.2	
   68	
   97.2	
   18	
  
A3	
   29.2	
   34	
   63.2	
   18	
  
A4	
   29.2	
   0	
   29.2	
   30	
  
A5	
   14.6	
   0	
   14.6	
   30	
  
B1	
   29.2	
   68	
   97.2	
   18	
  
B2	
   58.4	
   136	
   194.4	
   18	
  
B3	
   58.4	
   68	
   126.4	
   18	
  
B4	
   58.4	
   0	
   58.4	
   30	
  
B5	
   29.2	
   0	
   29.2	
   30	
  
C1	
   14.6	
   34	
   48.6	
   18	
  
C2	
   29.2	
   68	
   97.2	
   18	
  
Fall	
  2015	
  
	
   18	
  
C3	
   29.2	
   34	
   63.2	
   18	
  
C4	
   29.2	
   0	
   29.2	
   30	
  
C5	
   14.6	
   0	
   14.6	
   30	
  
	
  
4. Beam Selection
4.1. Beam Selections for EW Girders
Using the calculated moments from the previous section, beams were selected for the EW girders
based on the moment due to the tributary load acting on the beams. The beams were selected using the
AISC Steel Manual, 14th
edition. Tables 8 and 9 show the beams selected for each girder, on the roof and
second floor respectively, as well its maximum bending moment, moment of inertia, and maximum
displacement due to the load acting on it.
Table	
  8:	
  EW	
  Beam	
  Selection	
  Table	
  for	
  Roof	
  
Girder	
   Length	
  
(ft)	
  
Weight	
  
(kip/ft)	
  
Selection	
   Bending	
  
Moment	
  
(kips-­‐ft)	
  
E	
  
(ksi)	
  
Moment	
  of	
  inertia	
  
(in^4)	
  
Max	
  
Displacement	
  
(in)	
  
A1B1	
   20	
   1.169	
   W12	
  x	
  16	
   75.4	
   29000	
   103	
   1.76	
  
A2B2	
   20	
   1.169	
   W14	
  x	
  26	
   151	
   29000	
   245	
   1.48	
  
A3B3	
   20	
   1.169	
   W14	
  x	
  26	
   151	
   29000	
   245	
   1.48	
  
A4B4	
   20	
   1.169	
   W14	
  x	
  26	
   151	
   29000	
   245	
   1.48	
  
A5B5	
   20	
   2.338	
   W12	
  x	
  16	
   75.4	
   29000	
   103	
   1.76	
  
B1C1	
   20	
   2.338	
   W12	
  x	
  16	
   75.4	
   29000	
   103	
   1.76	
  
B2C2	
   20	
   2.338	
   W14	
  x	
  26	
   151	
   29000	
   245	
   1.48	
  
B3C3	
   20	
   2.338	
   W14	
  x	
  26	
   151	
   29000	
   245	
   1.48	
  
B4C4	
   20	
   1.169	
   W14	
  x	
  26	
   151	
   29000	
   245	
   1.48	
  
B5C5	
   20	
   1.169	
   W12	
  x	
  16	
   75.4	
   29000	
   103	
   1.76	
  
Table	
  9:	
  EW	
  Beam	
  Selection	
  Table	
  for	
  2
nd
	
  Floor	
  
Girder	
   Length	
  
(ft)	
  
Weight	
  
(kip/ft)	
  
Selection	
   Bending	
  
Moment	
  
(kips-­‐ft)	
  
E	
  
(ksi)	
  
Moment	
  of	
  inertia	
  
(in^4)	
  
Max	
  
Displacement	
  
(in)	
  
A1B1	
   20	
   3.4	
   W14	
  x	
  30	
   177	
   29000	
   291	
   1.45	
  
A2B2	
   20	
   6.8	
   W21	
  x	
  44	
   358	
   29000	
   843	
   1.00	
  
A3B3	
   20	
   3.4	
   W14	
  x	
  30	
   177	
   29000	
   291	
   1.45	
  
B1C1	
   20	
   3.4	
   W14	
  x	
  30	
   177	
   29000	
   291	
   1.45	
  
B2C2	
   20	
   6.8	
   W21	
  x	
  44	
   358	
   29000	
   843	
   1.00	
  
B3C3	
   20	
   3.4	
   W14	
  x	
  30	
   177	
   29000	
   291	
   1.45	
  
Fall	
  2015	
  
	
   19	
  
	
  
4.2. Beam Selections for NS Girders
Using the calculated moments from the previous section, beams were selected for the NS girders based
on the moment due to the tributary load acting on the beams. The beams were selected using the AISC
Steel Manual, 14th
edition. Tables 10 and 11 show the beams selected for each girder, on the roof and
second floor respectively, as well its maximum bending moment, moment of inertia, and maximum
displacement due to the load acting on it.
Table	
  10:	
  NS	
  Beam	
  Selection	
  Table	
  for	
  Roof	
  
Girder	
   Length	
  
(ft)	
  
Weight	
  
(kip/ft)	
  
Selection	
   Bending	
  
Moment	
  
(kips-­‐ft)	
  
E	
  
(ksi)	
  
Moment	
  of	
  inertia	
  
(in^4)	
  
Max	
  
Displacement	
  
(in)	
  
A12	
   25	
   1.169	
   W12	
  x	
  19	
   92.6	
   29000	
   130	
   2.73	
  
A23	
   25	
   1.169	
   W12	
  x	
  19	
   92.6	
   29000	
   130	
   2.73	
  
A34	
   25	
   1.169	
   W12	
  x	
  19	
   92.6	
   29000	
   130	
   2.73	
  
A45	
   25	
   1.169	
   W12	
  x	
  19	
   92.6	
   29000	
   130	
   2.73	
  
B12	
   25	
   2.338	
   W16	
  x	
  31	
   203	
   29000	
   375	
   1.89	
  
B23	
   25	
   2.338	
   W16	
  x	
  31	
   203	
   29000	
   375	
   1.89	
  
B34	
   25	
   2.338	
   W16	
  x	
  31	
   203	
   29000	
   375	
   1.89	
  
B45	
   25	
   2.338	
   W16	
  x	
  31	
   203	
   29000	
   375	
   1.89	
  
C12	
   25	
   1.169	
   W12	
  x	
  19	
   92.6	
   29000	
   130	
   2.73	
  
C23	
   25	
   1.169	
   W12	
  x	
  19	
   92.6	
   29000	
   130	
   2.73	
  
C34	
   25	
   1.169	
   W12	
  x	
  19	
   92.6	
   29000	
   130	
   2.73	
  
C45	
   25	
   1.169	
   W12	
  x	
  19	
   92.6	
   29000	
   130	
   2.73	
  
Table	
  11:	
  NS	
  Beam	
  Selection	
  Table	
  for	
  2
nd
	
  Floor	
  
Girder	
   Length	
  
(ft)	
  
Weight	
  
(kip/ft)	
  
Selection	
   Bending	
  
Moment	
  
(kips-­‐ft)	
  
E	
  
(ksi)	
  
Moment	
  of	
  inertia	
  
(in^4)	
  
Max	
  
Displacement	
  
(in)	
  
A12	
   25	
   2.72	
   W18	
  x	
  35	
   249	
   29000	
   510	
   1.62	
  
A23	
   25	
   2.72	
   W18	
  x	
  35	
   249	
   29000	
   510	
   1.62	
  
B12	
   25	
   5.44	
   W21	
  x	
  55	
   473	
   29000	
   1330	
   1.24	
  
B23	
   25	
   5.44	
   W21	
  x	
  55	
   473	
   29000	
   1330	
   1.24	
  
C12	
   25	
   2.72	
   W18	
  x	
  35	
   249	
   29000	
   510	
   1.62	
  
C23	
   25	
   2.72	
   W18	
  x	
  35	
   249	
   29000	
   510	
   1.62	
  
	
  
	
  
	
  
Fall	
  2015	
  
	
   20	
  
4.3. Column Selections
Using the calculated forces from the previous section, columns were. The beams were selected
using the AISC Steel Manual, 14th
edition. Table 12 shows the selected columns.
Table	
  12:	
  Column	
  Selections	
  	
  
Columns	
   Pr	
  (kips)	
   Ps(kips)	
   Pt(kips)	
   Eff.	
  Length	
  (ft)	
   Selection	
  
A1	
   14.6	
   34	
   48.6	
   18	
   W8	
  x	
  31	
  
A2	
   29.2	
   68	
   97.2	
   18	
   W8	
  x	
  31	
  
A3	
   29.2	
   34	
   63.2	
   18	
   W8	
  x	
  31	
  
A4	
   29.2	
   0	
   29.2	
   30	
   W8	
  x	
  31	
  
A5	
   14.6	
   0	
   14.6	
   30	
   W8	
  x	
  31	
  
B1	
   29.2	
   68	
   97.2	
   18	
   W8	
  x	
  31	
  
B2	
   58.4	
   136	
   194.4	
   18	
   W8	
  x	
  35	
  
B3	
   58.4	
   68	
   126.4	
   18	
   W8	
  x	
  31	
  
B4	
   58.4	
   0	
   58.4	
   30	
   W8	
  x	
  31	
  
B5	
   29.2	
   0	
   29.2	
   30	
   W8	
  x	
  31	
  
C1	
   14.6	
   34	
   48.6	
   18	
   W8	
  x	
  31	
  
C2	
   29.2	
   68	
   97.2	
   18	
   W8	
  x	
  31	
  
C3	
   29.2	
   34	
   63.2	
   18	
   W8	
  x	
  31	
  
C4	
   29.2	
   0	
   29.2	
   30	
   W8	
  x	
  31	
  
C5	
   14.6	
   0	
   14.6	
   30	
   W8	
  x	
  31	
  
Fall	
  2015	
  
	
   21	
  
4.4. Column and Girder Layout with Beam Selections
Figures 16 and 17 show the girder layout with their selected beams for the roof and
second floor respectively. Figure 18 shows the column layout with the selected columns.
	
  
Figure	
  16:	
  Girder	
  Layout	
  for	
  Roof	
  with	
  Labeled	
  Girders
	
  
Figure	
  17:	
  Girder	
  Layout	
  for	
  2nd	
  Floor	
  with	
  Labeled	
  Girders
	
  
Figure	
  18:Column	
  Layout	
  with	
  labeled	
  columns
Fall	
  2015	
  
	
   22	
  
5. Appendix
5.1. Load Calculations
• Dead	
  Loads:	
  
♦ 𝑅𝑜𝑜𝑓  𝐷𝑒𝑎𝑑  𝐿𝑜𝑎𝑑 = 𝑅𝑜𝑜𝑓  𝑊𝑒𝑖𝑔ℎ𝑡 + 𝐶𝑒𝑖𝑙𝑖𝑛𝑔  𝑊𝑒𝑖𝑔ℎ𝑡	
  
Ø Roof:	
  
§ 4in	
  thick	
  concrete	
  slab	
  (9.6	
  psf	
  per	
  inch	
  of	
  thickness)	
  
§ Steel	
  deck	
  =	
  5psf	
  
§ Steel	
  Joists	
  =	
  5	
  psf	
  
§ Insulation	
  =	
  1	
  psf	
  
§ Bituminous	
  smooth	
  surface	
  membrane	
  (1.5psf)	
  
§ 𝑤𝑒𝑖𝑔ℎ𝑡 = 9.6
!"#
!"
4𝑖𝑛 + 5𝑝𝑠𝑓 + 5𝑝𝑠𝑓 + 1𝑝𝑠𝑓 + 1.5𝑝𝑠𝑓	
  
§ 𝑤𝑒𝑖𝑔ℎ𝑡 = 50.9𝑝𝑠𝑓	
  
Ø Ceiling	
  	
  
§ Suspended	
  steel	
  channel	
  system	
  =	
  2	
  psf	
  
§ Acoustic	
  tile	
  =	
  1	
  psf	
  
§ Ducting	
  =	
  4psf	
  
§ Lighting	
  =	
  1psf	
  
§ 𝑤𝑒𝑖𝑔ℎ𝑡 = 2𝑝𝑠𝑓 + 1𝑝𝑠𝑓 + 4𝑝𝑠𝑓 + 1𝑝𝑠𝑓	
  
§ 𝑤𝑒𝑖𝑔ℎ𝑡 = 8𝑝𝑠𝑓	
  
♦ 𝐷𝑒𝑎𝑑  𝐿𝑜𝑎𝑑 = 50.9𝑝𝑠𝑓 + 8𝑝𝑠𝑓	
  
♦ 𝐷𝑒𝑎𝑑  𝐿𝑜𝑎𝑑 = 58.9𝑝𝑠𝑓~60𝑝𝑠𝑓	
  
• 2nd
	
  floor	
  Dead	
  Loads	
  
♦ 𝐷𝑒𝑎𝑑  𝐿𝑜𝑎𝑑 = 2𝑛𝑑  𝐹𝑙𝑜𝑜𝑟  𝑊𝑒𝑖𝑔ℎ𝑡 + 𝐶𝑒𝑖𝑙𝑖𝑛𝑔  𝑊𝑒𝑖𝑔ℎ𝑡	
  
Ø 2nd
	
  floor:	
  
§ 4in	
  thick	
  concrete	
  slab	
  (9.6	
  psf	
  per	
  inch	
  of	
  thickness)	
  
§ Steel	
  deck	
  =	
  5psf	
  
§ Steel	
  Joists	
  =	
  5	
  psf	
  
§ Carpeting	
  and	
  padding	
  =	
  1	
  psf	
  
§ 𝑤𝑒𝑖𝑔ℎ𝑡 = 9.6
!"#
!"
4𝑖𝑛 + 5𝑝𝑠𝑓 + 5𝑝𝑠𝑓 + 1𝑝𝑠𝑓	
  
§ 𝑤𝑒𝑖𝑔ℎ𝑡 = 49.4𝑝𝑠𝑓	
  
Ø Ceiling	
  	
  
§ Suspended	
  steel	
  channel	
  system	
  =	
  2	
  psf	
  
§ Acoustic	
  tile	
  =	
  1	
  psf	
  
§ Ducting	
  =	
  4psf	
  
§ Lighting	
  =	
  1psf	
  
§ 𝑤𝑒𝑖𝑔ℎ𝑡 = 2𝑝𝑠𝑓 + 1𝑝𝑠𝑓 + 4𝑝𝑠𝑓 + 1𝑝𝑠𝑓	
  
§ 𝑤𝑒𝑖𝑔ℎ𝑡 = 8𝑝𝑠𝑓	
  
♦ 𝐷𝑒𝑎𝑑  𝐿𝑜𝑎𝑑 = 49.4𝑝𝑠𝑓 + 8𝑝𝑠𝑓	
  
♦ 𝐷𝑒𝑎𝑑  𝐿𝑜𝑎𝑑 = 57.4𝑝𝑠𝑓~60𝑝𝑠𝑓	
  
• Roof	
  Live	
  Loads:	
  
♦ 𝐿! = 20𝑝𝑠𝑓	
  
Ø Industry	
  standard	
  
• Live	
  Load	
  Second	
  Floor:	
  
♦ Light	
  storage	
  
Fall	
  2015	
  
	
   23	
  
♦ 𝐿 = 125  𝑝𝑠𝑓	
  
• Rain	
  Loads:	
  
♦ 𝑄 = 0.0104𝐴𝑖	
  
Ø A=	
  Total	
  area	
  of	
  roof	
  =100!
𝑥  40!
= 4000  𝑓𝑡!
	
  
§ Implement	
  2	
  drain	
  system	
  
§ Area	
  served	
  by	
  drain	
  =	
  2000𝑓𝑡!
	
  
Ø 𝑖=	
  rainfall	
  intensity=	
  3	
  inches	
  per	
  hour	
  
♦ 𝑄 = 0.0104(2000)(3)	
  
♦ 𝑄 = 62.4  𝑔𝑝𝑚  	
  
♦ Using	
  Table	
  2.5	
  in	
  notes,	
   𝑑! = 1𝑖𝑛,	
  and	
  assuming	
  4	
  inch	
  diameter	
  drain	
  
♦ 𝑅 = 5.2(𝑑! + 𝑑!)	
  
Ø 𝑑! = 1  𝑖𝑛,	
  from	
  table	
  2.5	
  in	
  Mike	
  11.	
  	
  
Ø 𝑑! = 2  𝑖𝑛,	
  given	
  in	
  example	
  Mike	
  11.	
  
♦ 𝑅 = 5.2 1+2 	
  
♦ 𝑅 = 15.6  𝑝𝑠𝑓	
  
• Snow	
  Loads	
  
♦ 𝑆 = 𝑝! = 0.7𝐶! 𝐶! 𝐼! 𝑝!	
  
Ø 𝐶! = 0.9	
  
§ Since	
  the	
  Engineering	
  design	
  center	
  is	
  a	
  Category	
  B,	
  Fully	
  Exposed	
  structure.	
  
(ASCE	
  7-­‐10,	
  26.7.3,	
  pg	
  251)	
  
Ø 𝐶! = 1	
  
Ø 𝐼! = 1.1	
  
§ Since	
  the	
  structure	
  is	
  a	
  risk	
  category	
  3	
  building	
  
Ø 𝑝! = 0	
  
§ Since	
   the	
   elevation	
   of	
   the	
   building	
   is	
   3	
   ft	
   and	
   well	
   below	
   the	
   threshold	
  
elevation	
  of	
  1500	
  ft	
  required	
  for	
  a	
  basic	
  ground	
  snow	
  load	
  in	
  Santa	
  Barbara.	
  
♦ 𝑆 = 𝑝! = 0.7 0.9 1 1.1 0 	
  
♦ 𝑆 = 0𝑝𝑠𝑓  
• Wind	
  Loads:	
  
♦ Done	
   using	
   excel	
   table	
   below.	
   Highest	
   absolute	
   value	
   was	
   selected	
   (highlighted	
  
below)	
  
♦ 	
  
• Seismic	
  Loads:	
  
♦ 𝑆 = 10𝑝𝑠𝑓	
  
♦ Given	
   	
  
Constants h"18 h""30
Risk"Category"III
V=115"mph 115
Kzt=1.0 1
Kz"(18')=0.60 0.6
Kz"(30')=0.70 0.7
Cnet"Windward"Wall"+"Int"Pressure 0.43 8.734848 10.190656
Cnet"Windward"Wall"K"Internal"Pressure 0.73 0.00112128 17.300416
Cnet"Leeward"Wall"+"Int"Pressure K0.51 K12.086592
Cnet"Leeward"Wall"K"Int"Pressure K0.21 K4.976832
Cnet"Side"Walls"+"Internal"Pressure K0.66 K15.641472
Cnet"Side"Walls"K"Internal"Pressure K0.35 K8.29472
Flat"Roof"+"Internal"Pressure K1.09 K25.832128
Flat"Roof"K"Internal"Pressure K0.79 K18.722368
2nd"Floor Roof
Fall	
  2015	
  
	
   24	
  
5.2. LRFD Load Combination Table
Table	
  13:	
  LRFD	
  Worst	
  Case	
  Scenario	
  Excel	
  Sheet	
  
Roof (psf)
D 60
L 0
Lr 20
R 15.6
W 25.8
S 0
f1 0.5
f2 0.2
H 0
E Assumed 10
1.4D 84
1.2D+1.6(L+H)+.5Lr 82
1.2D+1.6(L+H)+.5S 72
1.2D+1.6(L+H)+.5R 79.8
1.2D+1.6Lr+1.6H+f1(L) 104
1.2D+1.6S+1.6H+f1L 72
1.2D+1.6R+1.6H+f1L 97.0
1.2D+1.6Lr+1.6H+0.5W 116.9
1.2D+1.6S+1.6H+0.5W 84.9
1.2D+1.6R+1.6H+0.5W 109.9
1.2D+W+f1L+1.6H+.5*Lr 108.6
1.2D+W+f1L+1.6H+.5*S 97.8
1.2D+W+f1L+1.6H+.5*R 105.6
1.2D+1E+f1L++1.6H+f2S 82
0.9D+W+1.6H 95.3
.9D+1.0E+1.6H 64
2nd floor Storage Area (psf)
D 60
L 125
E 10
f1 0.5
1.4D 84
1.2D+1.6L 272
1.2D+E+f1L 144.5
Fall	
  2015	
  
	
   25	
  
6. References
American Institute of Steel Construction. Steel Construction Manual. 14th ed. N.p.:
American Institute of Steel Construction, 2010. Print.
American Society of Civil Engineers. Minimum Design Loads for Buildings and Other
Structures. Reston, VA: American Society of Civil Engineers/Structural
Engineering Institute, 2010. Print.
International Code Council. 2012 International Building Code. Country Club Hills, IL:
International Code Council, 2011. Print.
	
  
	
  
	
  

More Related Content

What's hot

short cv Jan 96 onward
short cv Jan 96 onwardshort cv Jan 96 onward
short cv Jan 96 onward
John Jones
 
15.2.2 bored pile wall - method statement
15.2.2   bored pile wall - method statement15.2.2   bored pile wall - method statement
15.2.2 bored pile wall - method statement
NECB
 
CV_Rolando M. Garcia_Feb 2016
CV_Rolando M. Garcia_Feb 2016CV_Rolando M. Garcia_Feb 2016
CV_Rolando M. Garcia_Feb 2016
Rolando Garcia
 
Q913 re1 w4 lec 14
Q913 re1 w4 lec 14Q913 re1 w4 lec 14
Q913 re1 w4 lec 14
AFATous
 
CV. Mechincal Engineer
CV. Mechincal EngineerCV. Mechincal Engineer
CV. Mechincal Engineer
Ahmad Hassan
 
Q921 re1 lec11 v1
Q921 re1 lec11 v1Q921 re1 lec11 v1
Q921 re1 lec11 v1
AFATous
 
Sathiyaprabhu Piping Stress Engineer CV 2015
Sathiyaprabhu Piping Stress Engineer CV 2015Sathiyaprabhu Piping Stress Engineer CV 2015
Sathiyaprabhu Piping Stress Engineer CV 2015
sathiya prabhu
 
Resume - Tarun Sharma - Pipe stress engineer
Resume - Tarun Sharma - Pipe stress engineerResume - Tarun Sharma - Pipe stress engineer
Resume - Tarun Sharma - Pipe stress engineer
Tarun Sharna
 
Vause Wayne - 6829
Vause Wayne - 6829Vause Wayne - 6829
Vause Wayne - 6829
wayne vause
 
Q913 re1 w4 lec 13
Q913 re1 w4 lec 13Q913 re1 w4 lec 13
Q913 re1 w4 lec 13
AFATous
 

What's hot (18)

short cv Jan 96 onward
short cv Jan 96 onwardshort cv Jan 96 onward
short cv Jan 96 onward
 
15.2.2 bored pile wall - method statement
15.2.2   bored pile wall - method statement15.2.2   bored pile wall - method statement
15.2.2 bored pile wall - method statement
 
CV_Rolando M. Garcia_Feb 2016
CV_Rolando M. Garcia_Feb 2016CV_Rolando M. Garcia_Feb 2016
CV_Rolando M. Garcia_Feb 2016
 
Overview & Application 2010 CBCvChapter 16, 16A, 17 &17A
Overview & Application 2010 CBCvChapter 16, 16A, 17 &17AOverview & Application 2010 CBCvChapter 16, 16A, 17 &17A
Overview & Application 2010 CBCvChapter 16, 16A, 17 &17A
 
Q913 re1 w4 lec 14
Q913 re1 w4 lec 14Q913 re1 w4 lec 14
Q913 re1 w4 lec 14
 
CV. Mechincal Engineer
CV. Mechincal EngineerCV. Mechincal Engineer
CV. Mechincal Engineer
 
Q921 re1 lec11 v1
Q921 re1 lec11 v1Q921 re1 lec11 v1
Q921 re1 lec11 v1
 
Process Engineer
Process EngineerProcess Engineer
Process Engineer
 
Sathiyaprabhu Piping Stress Engineer CV 2015
Sathiyaprabhu Piping Stress Engineer CV 2015Sathiyaprabhu Piping Stress Engineer CV 2015
Sathiyaprabhu Piping Stress Engineer CV 2015
 
Peot proyecto especial olmos tinajones
Peot proyecto especial olmos tinajonesPeot proyecto especial olmos tinajones
Peot proyecto especial olmos tinajones
 
Company profile
Company profileCompany profile
Company profile
 
Resume - Tarun Sharma - Pipe stress engineer
Resume - Tarun Sharma - Pipe stress engineerResume - Tarun Sharma - Pipe stress engineer
Resume - Tarun Sharma - Pipe stress engineer
 
Vause Wayne - 6829
Vause Wayne - 6829Vause Wayne - 6829
Vause Wayne - 6829
 
Ictad specifications-for-works
Ictad specifications-for-worksIctad specifications-for-works
Ictad specifications-for-works
 
Q913 re1 w4 lec 13
Q913 re1 w4 lec 13Q913 re1 w4 lec 13
Q913 re1 w4 lec 13
 
CV at 2015 Aug
CV at 2015 AugCV at 2015 Aug
CV at 2015 Aug
 
GLM-introduction and approach
GLM-introduction and approachGLM-introduction and approach
GLM-introduction and approach
 
Summary of Experience
Summary of ExperienceSummary of Experience
Summary of Experience
 

Similar to Manoogian Task 5 Final Report

ANACOSTIA GATEWAY report
ANACOSTIA GATEWAY reportANACOSTIA GATEWAY report
ANACOSTIA GATEWAY report
Ngo Quan
 
Penstock Design for a Hydro-electric Pumped Storage Station Report_Ayman_Sidd...
Penstock Design for a Hydro-electric Pumped Storage Station Report_Ayman_Sidd...Penstock Design for a Hydro-electric Pumped Storage Station Report_Ayman_Sidd...
Penstock Design for a Hydro-electric Pumped Storage Station Report_Ayman_Sidd...
Ayman Siddique
 
CE4410 Final Design Report
CE4410 Final Design ReportCE4410 Final Design Report
CE4410 Final Design Report
Chase Bowman
 
finalprojectreportg2-141218075116-conversion-gate01 (1).pdf
finalprojectreportg2-141218075116-conversion-gate01 (1).pdffinalprojectreportg2-141218075116-conversion-gate01 (1).pdf
finalprojectreportg2-141218075116-conversion-gate01 (1).pdf
AbdurRazzak187410
 
CEE598_Gummaraj_Bharath_Final_Project
CEE598_Gummaraj_Bharath_Final_ProjectCEE598_Gummaraj_Bharath_Final_Project
CEE598_Gummaraj_Bharath_Final_Project
Bharath Gummaraj
 

Similar to Manoogian Task 5 Final Report (20)

ANACOSTIA GATEWAY report
ANACOSTIA GATEWAY reportANACOSTIA GATEWAY report
ANACOSTIA GATEWAY report
 
Tower design-Chapter 2-pile caps design
Tower design-Chapter 2-pile caps designTower design-Chapter 2-pile caps design
Tower design-Chapter 2-pile caps design
 
IRJET- Structural Analysis and Design of Pump House
IRJET- Structural Analysis and Design of Pump HouseIRJET- Structural Analysis and Design of Pump House
IRJET- Structural Analysis and Design of Pump House
 
Ab bp warehouse hvac calculation
Ab bp warehouse hvac calculationAb bp warehouse hvac calculation
Ab bp warehouse hvac calculation
 
Hospital building project
Hospital building projectHospital building project
Hospital building project
 
Analysis of 3+ story building in staad pro
Analysis of 3+ story building in staad proAnalysis of 3+ story building in staad pro
Analysis of 3+ story building in staad pro
 
Penstock Design for a Hydro-electric Pumped Storage Station Report_Ayman_Sidd...
Penstock Design for a Hydro-electric Pumped Storage Station Report_Ayman_Sidd...Penstock Design for a Hydro-electric Pumped Storage Station Report_Ayman_Sidd...
Penstock Design for a Hydro-electric Pumped Storage Station Report_Ayman_Sidd...
 
CE4410 Final Design Report
CE4410 Final Design ReportCE4410 Final Design Report
CE4410 Final Design Report
 
Design and analasys of a g+2 residential building
Design and analasys of a g+2 residential building Design and analasys of a g+2 residential building
Design and analasys of a g+2 residential building
 
report2
report2report2
report2
 
Lateral Load Analysis of Elevated Intze Water Tank By STAAD.PRO
Lateral Load Analysis of Elevated Intze Water Tank By STAAD.PROLateral Load Analysis of Elevated Intze Water Tank By STAAD.PRO
Lateral Load Analysis of Elevated Intze Water Tank By STAAD.PRO
 
finalprojectreportg2-141218075116-conversion-gate01 (1).pdf
finalprojectreportg2-141218075116-conversion-gate01 (1).pdffinalprojectreportg2-141218075116-conversion-gate01 (1).pdf
finalprojectreportg2-141218075116-conversion-gate01 (1).pdf
 
CEE598_Gummaraj_Bharath_Final_Project
CEE598_Gummaraj_Bharath_Final_ProjectCEE598_Gummaraj_Bharath_Final_Project
CEE598_Gummaraj_Bharath_Final_Project
 
SUBSURFACE EVALUATION FULL SCALE EOR WATER FLOODING A - M FAULT ANTICLINE SHA...
SUBSURFACE EVALUATION FULL SCALE EOR WATER FLOODING A - M FAULT ANTICLINE SHA...SUBSURFACE EVALUATION FULL SCALE EOR WATER FLOODING A - M FAULT ANTICLINE SHA...
SUBSURFACE EVALUATION FULL SCALE EOR WATER FLOODING A - M FAULT ANTICLINE SHA...
 
Fire Induced Progressive Collapse of Multi-Storied Steel Structure
Fire Induced Progressive Collapse of Multi-Storied Steel StructureFire Induced Progressive Collapse of Multi-Storied Steel Structure
Fire Induced Progressive Collapse of Multi-Storied Steel Structure
 
Analysis and Design of RCC Residential Building in StaadPro
Analysis and Design of RCC Residential Building in StaadProAnalysis and Design of RCC Residential Building in StaadPro
Analysis and Design of RCC Residential Building in StaadPro
 
Elevated water tank
Elevated water tankElevated water tank
Elevated water tank
 
Analysis and design of multi-storey building using staad.Pro
Analysis and design of multi-storey building using staad.ProAnalysis and design of multi-storey building using staad.Pro
Analysis and design of multi-storey building using staad.Pro
 
uni arc
uni arcuni arc
uni arc
 
multi storey buidling
multi storey buidlingmulti storey buidling
multi storey buidling
 

Manoogian Task 5 Final Report

  • 1. Fall  2015     1                                                   LOYOLA  MARYMOUNT  UNIVERSITY       The Renewal of the Tin Shed Building Santa Barbara, CA Final  draft  design  report         Loyola Marymount University Bader Alghunaim November 30, 2015 Civil 305: Structural Analysis                                          
  • 2. Fall  2015     2   LOYOLA  MARYMOUNT  UNIVERSITY       Department  of  Civil  Engineering  and  Environmental  Science   Loyola  Marymount  University     1  LMU  Drive     Los  Angeles,  CA  90045     Dear  Dr.  Manoogian,       Final  Report  of  the  Tin  Shed  Building   I  have  pleasure  in  submitting  the  enclosed  final  report  of  my  structural  project.  This  report  satisfies  the   requirements  and  instructions  you  provided.  Enclosed  is  the  primary  design  report  and   recommendations  for  the  project.   Included  in  this  report  is:  background  information  on  Santa  Barbara’s  building  codes,  the  purpose  of  the   building,  the  building’s  design  loads,  the  girder  and  column  layout,  the  tributary  load  maps,  and  the   beam  and  column  selections.     It  has  been  a  great  experience  to  work  on  this  project.  I  am  glad  to  say  that  my  structural  analysis  of  the   Tin  Shed  building  fulfills  the  reports  requirements.  Please  review  this  report  and  contact  me  with  your   questions,  comments  and  concerns  so  as  to  proceed  to  the  final  stage  of  the  construction  of  the  Tin   Shed.     Sincerely,     Bader  Alghunaim         Civil  Engineering  Associate    
  • 3. Fall  2015     3   Table of Contents   1. Introduction 1.1.Background……………………………………………………….4 1.2.Purpose…………………………………………………………….4 2. Design Loads 2.1.Assumptions……………………………………………………….8 2.2.Load Table………………………………………………………...10 2.3.Worst Case LRFD Load Combination Table………..…………….10 2.4.Material Selection………………………………………………….10 3. Tributary Loads 3.1.Column and Girder Layout………………………………...……….11 3.2.Tributary Load Maps……………………………………………….12 3.3.Tributary Load Tables…………………………………………..….15 4. Beam Selections 4.1.Beam Selections For EW Girders………………………………….18 4.2.Beam Selections for NS Girders……………………………………19 4.3.Column Selections……………………………….………………….20 4.4.Column and Girder Layout with Beam Selections………………….21 5. Appendix 5.1.Calculations……………………………….…………………..…….22 5.2.LRFD Load Combination Table………………….………………….24 6. References……………………………….…………………………….25  
  • 4. Fall  2015     4   1. Introduction: 1.1.Background: The new tin shed will be a redesigned version of the previous Engineering Design Center. This new structure will consist mostly of a single floor for machining and material processing, as well as a small second story for light storage. This new design center will replace the previous one located at: 1230 Garden Street, Santa Barbara, CA, 93101   Figure  1:  Geographic  map  of  the  location  of  the  Engineering  Design  Center   The new design center will be built with the dimensions 100’ W x 40’L x 30’H, identical to the previous design center dimensions. The newly added second floor will be 50’W x 40’L x 12’H, and will be situated above the machining area. The new design center will be built in Santa Barbara, therefore industry code for standard rain, wind and seismic conditions should be applied. An emphasis on earthquake conditions should be taken into account during construction, since the location is prone to earthquakes. Snow conditions should be ignored, as the area is not prone to snowfall. 1.2.Purpose: The new design of the Engineering Design Center, nicknamed the “Tin Shed” by students, will create a more student friendly environment with a storage space on a second floor above the machining area. This storage space on the second floor creates a space for the students to work and utilize the machinery in place. The original design did not account for a separate floor for storage and was therefore not as efficiently organized. The new design center will be divided into
  • 5. Fall  2015     5   three sections. The first half of the first floor will be the student work area, the second half of the first floor will be the machining area, and the third section will be the second floor storage area. Figures 2, 3, 4, 5, 6, and 7 show the skeletal drawing, exterior views, and floor plans of the building.   Figure  2:  Skeletal  Drawing  for  new  design     Figure  3:  Top  view  of  new  design      
  • 6. Fall  2015     6     Figure  4:  Exterior  view  of  new  design     Figure  5:  Exterior  view  with  wall  removed  
  • 7. Fall  2015     7     Figure  6:  2nd  Floor  floorplan     Figure  7:  1st  Floor  floorplan  
  • 8. Fall  2015     8   2. Design Loads: 2.1. Assumptions The location for the New Design Center is Santa Barbara. The primary sources for the loads on the building are the IBC 2012 and ASCE 7-10. These sources will help determine the minimum design loads caused by the wind, seismic, rain, dead, and live loads acting on the building. The Design Center will be designed as a Risk Category 3, fully exposed, Exposure Category B, Terrain Category B, fully enclosed building. The loads applied to each floor are uniform. Dead Loads (D) The dead load assumed for the roof is 60 psf. This assumption was made after calculating the weight of the roof itself and adding it to the weight of the ceiling. Assuming a 4inch thick concrete slab (with 9.6 pounds per square foot per inch of thickness), a steel deck, steel joists, insulation, and a bituminous smooth surface membrane; the roof is calculated to weigh 50.9psf (ASCE 7-10, C3-1). The remaining dead loads are from the ceiling. Assuming a suspended steel channel system, acoustical tile, lights and ducting, the remaining dead load is calculated to 8 psf (ASCE 7-10, C3-1). The total dead load is calculated to be 58.9 psf. This number was then rounded up to 60psf. See Appendix for calculations. The dead load assumed for the 2nd floor is 60 psf. This assumption was made after calculating the weight of the 2nd floor itself and adding it to the weight of the ceiling. Assuming a 4inch thick concrete slab (with 9.6 pounds per square foot per inch of thickness), a steel deck, steel joists, carpeting and padding; the 2nd floor is calculated to weigh 49.4psf (ASCE 7-10, C3- 1). The remaining dead loads are from the ceiling. Assuming a suspended steel channel system, acoustical tile, lights and ducting, the remaining dead load is calculated to 8 psf (ASCE 7-10, C3-1). The total dead load is calculated to be 57.4 psf. This number was then rounded up to 60psf. See Appendix for calculations. Live Loads (L) The live load for the 2nd floor is assumed to be 125psf. This is the industry standard loading for light storage areas (IBC 2012, Table 4-1). The live load for the roof is assumed to be 0psf. This is under the assumption that there will be no consistent live loads on the roof. Roof Live Loads (𝑳 𝑹) The roof live load is assumed to be 20psf. This is the industry standard minimum design load for all roofs (IBC 2012).
  • 9. Fall  2015     9   Rain Loads (R) The flow rate is dependent of the area of the building and the rain intensity (i), which was taken form Figure 1611.1 to be 3 in/hr. The total area (A) of the roof is 4000𝑓𝑡! . Implementing a two-drain system, the area served by each drain will then be 2000 𝑓𝑡! . Therefore flow rate (Q) of rain was calculated to be 62.4 gpm. Assuming 4 inch drain diameters and using table 2.5 (Mike 11), dh=1’’ A ds of 2’’ was then assumed and the rain load was calculated to be 15.6psf. See Appendix for calculations. Rain loads on the 2nd floor are assumed to be 0psf since the design center is a fully enclosed building. Snow Loads (S) Snow Loads on the roof were calculated to be 0 psf. For snow loads, the snow importance factor 𝐼!, exposure factor 𝐶!, thermal factor 𝐶!, and ground snow load 𝑝! are all required to calculate snow load (S). The design center is assumed to be a risk category 3 building and will therefore have an 𝐼!of 1.1 (ASCE 7-10 1.5-2). It is also assumed to be a Category B fully exposed building and will therefore have a 𝐶!of 0.9 (ASCE 7-10, Table 7-2). Since the structure is heated and is not a greenhouse, its 𝐶!is 1.0 (ASCE 7-10, Table 7-3). As for the ground snow loads, since Santa Barbara has an elevation of 3ft above sea level (far below 1500 ft) 𝑝!=0 (IBC 2012). When all of these factors are taken into consideration the assumed snow load is calculated to be 0psf. Calculations in Appendix Snow loads on the 2nd floor are assumed to be 0psf since the design center is a fully enclosed building. Wind Loads (W) The wind loads were calculated to be 25.8psf. In order to calculate this load the wind speed of Santa Barbara was determined to be 115mph (IBC 2012, Figure 1609B). The topographical factor (𝑘!") was assumed to be 1.0 since the design center was built on flat land. And k1 and k2 were taken from ASCE 27.3.1 to be 0.6 and 0.7 respectively. With all of these assumptions taken into consideration, the calculated wind load was 25.8psf. Wind loads on the 2nd floor are assumed to be 0psf since the design center is a fully enclosed building. Earthquake Loads (E) The seismic/earthquake loads were assumed to be 10psf. These values were given.
  • 10. Fall  2015     10   2.2.Load Table Table 1, below, presents the calculated loads given by dead (D), live (L), live roof (𝐿!), rain(R), snow (S), wind (W), and seismic stresses (E). Calculations can be found in the Appendix (section 5.1). Table  1:  Load  Table   Load   2nd  Floor  (psf)   Roof  (psf)   Source   D   60   60   ASCE  7-­‐10,  Table  C3-­‐ 1   L   125   0   IBC  2012,  pg19,   Table  4-­‐1   Lr   0   20   IBC  2012,  pg  333   R   0   15.6   IBC  2012,  pg  360   S   0   0   ASCE  7-­‐10,  29-­‐34   W   0   25.8     ASCE  7-­‐10,  27.3.1,pg   261   IBC  Figure  1609B  pg   351   E   10   10   Given   2.3.Worst Case LRFD Load Combination Table Table 2, below, uses the highest valued combination of the values in Table 1 to predict the LRFD worst-case load combination for both the roof and 2nd floor. Calculations can be found in the Appendix (section 5.2).   Table  2:  Worst  Case  Scenario  LRFD  Table   Floor   Design  Load  (psf)   Roof   116.9   2nd  Floor   272   2.4.Material Selection The material used for this building are Wide-flange Steel beams, and columns made out of Structural Steel, ASTM A529 Grade 50, Yield Stress of 50,000 lb/in2
  • 11. Fall  2015     11   3. Tributary Loads 3.1. Column and Girder Layout The column and girder layouts for the roof and 2nd floor can be seen in frame format in Figures 8 and 9, respectively. Each column is 1ft by 1ft. Girders in the North-South direction are 20 ft long, and girders in the East-West direction are 25 ft long.   Figure  8:  Frame  of  Roof     Figure  9:  Frame  of  2nd  Floor  
  • 12. Fall  2015     12   3.2. Tributary Load Maps This section contains the tributary load maps. Figures 10 and 11 show the tributary loads on the EW and NS girders on the roof respectively. Figure 12 shows the tributary loads on the columns of the roof. The 2nd floor tributary girder load maps are shown in figures 13 and 14, and the 2nd floor tributary load map for the columns is shown in figure 15.   Figure  10:Tributary  Load  For  Girders  on  Roof  East-­‐West         Figure  11:Tributary  Loads  For  Girders  on  Roof  North-­‐South  
  • 13. Fall  2015     13     Figure  12:Tributary  Loads  For  Columns  on  Roof       Figure  13:  Tributary  Loads  For  Girders  on  2nd  Floor  East-­‐West    
  • 14. Fall  2015     14     Figure  14:Tributary  Loads  For  Girders  on  2nd  Floor  North-­‐South       Figure  15:  Tributary  Loads  For  Columns  on  2nd  Floor  
  • 15. Fall  2015     15   3.3. Tributary Load Tables The implemented design load combination for the 272psf for the 2nd floor and 116.9psf for the roof. The implemented load combinations take into account the live, dead, snow, wind, earthquake and rain loads acting on the building. Tables 3 and 4 depict the tributary load effect on the EW girders on the roof and second floor respectively. Tables 5 and 6 show the tributary load effect on the NS girders on the roof and second floor respectively. These four tables show the calculated weight and moment due to the tributary load on each girder. Table 7 shows the force on each column due to the tributary loads. Table  3:  Tributary  Loads  For  EW  Girders  on  Roof     Design  Load     Length   Weight   Moment   Girder   (kip/ft^2)     (ft)   (kips/ft)   (kips-­‐ft)   A1B1   0.1169     20   1.46   73.1   A2B2   0.1169     20   2.92   146   A3B3   0.1169     20   2.92   146   A4B4   0.1169     20   2.92   146   A5B5   0.1169     20   1.46   73.1   B1C1   0.1169     20   1.46   73.1   B2C2   0.1169     20   2.92   146   B3C3   0.1169     20   2.92   146   B4C4   0.1169     20   2.92   146   B5C5   0.1169     20   1.46   73.1                
  • 16. Fall  2015     16   Table  4:  Tributary  Loads  for  EW  Girders  on  2nd  Floor     Design  Load   Length   Weight   Moment   Girder   (kip/ft^2)   (ft)   (kips/ft)   (kips-­‐ft)   A1B1   0.272   20   3.4   170   A2B2   0.272   20   6.8   340   A3B3   0.272   20   3.4   170   B1C1   0.272   20   3.4   170   B2C2   0.272   20   6.8   340   B3C3   0.272   20   3.4   170   Table  5:  Tributary  Load  Table  for  NS  Girders  on  Roof       Design  Load   Length   Weight   Moment   Girder     (kip/ft^2)   (ft)   (kips/ft)   (kips-­‐ft)   A12     0.1169   25   1.169   91.3   A23     0.1169   25   1.169   91.3   A34     0.1169   25   1.169   91.3   A45     0.1169   25   1.169   91.3   B12     0.1169   25   2.338   183   B23     0.1169   25   2.338   183   B34     0.1169   25   2.338   183   B45     0.1169   25   2.338   183   C12     0.1169   25   1.169   91.3   C23     0.1169   25   1.169   91.3   C34     0.1169   25   1.169   91.3   C45     0.1169   25   1.169   91.3  
  • 17. Fall  2015     17   Table  6:  Tributary  Loads  for  NS  Girders  on  2nd  Floor     Girder   Design  Load     Length   Weight   Moment     (kip/ft^2)     (ft)   (kips/ft)   (kips-­‐ft)   A12   0.272     25   2.72   213   A23   0.272     25   2.72   213   B12   0.272     25   5.44   425   B23   0.272     25   5.44   425   C12   0.272     25   2.72   213   C23   0.272     25   2.72   213   Table  7:  Tributary  Loads  on  Columns   Columns   Pr  (kips)   Ps(kips)   Pt(kips)   Eff.  Length  (ft)   A1   14.6   34   48.6   18   A2   29.2   68   97.2   18   A3   29.2   34   63.2   18   A4   29.2   0   29.2   30   A5   14.6   0   14.6   30   B1   29.2   68   97.2   18   B2   58.4   136   194.4   18   B3   58.4   68   126.4   18   B4   58.4   0   58.4   30   B5   29.2   0   29.2   30   C1   14.6   34   48.6   18   C2   29.2   68   97.2   18  
  • 18. Fall  2015     18   C3   29.2   34   63.2   18   C4   29.2   0   29.2   30   C5   14.6   0   14.6   30     4. Beam Selection 4.1. Beam Selections for EW Girders Using the calculated moments from the previous section, beams were selected for the EW girders based on the moment due to the tributary load acting on the beams. The beams were selected using the AISC Steel Manual, 14th edition. Tables 8 and 9 show the beams selected for each girder, on the roof and second floor respectively, as well its maximum bending moment, moment of inertia, and maximum displacement due to the load acting on it. Table  8:  EW  Beam  Selection  Table  for  Roof   Girder   Length   (ft)   Weight   (kip/ft)   Selection   Bending   Moment   (kips-­‐ft)   E   (ksi)   Moment  of  inertia   (in^4)   Max   Displacement   (in)   A1B1   20   1.169   W12  x  16   75.4   29000   103   1.76   A2B2   20   1.169   W14  x  26   151   29000   245   1.48   A3B3   20   1.169   W14  x  26   151   29000   245   1.48   A4B4   20   1.169   W14  x  26   151   29000   245   1.48   A5B5   20   2.338   W12  x  16   75.4   29000   103   1.76   B1C1   20   2.338   W12  x  16   75.4   29000   103   1.76   B2C2   20   2.338   W14  x  26   151   29000   245   1.48   B3C3   20   2.338   W14  x  26   151   29000   245   1.48   B4C4   20   1.169   W14  x  26   151   29000   245   1.48   B5C5   20   1.169   W12  x  16   75.4   29000   103   1.76   Table  9:  EW  Beam  Selection  Table  for  2 nd  Floor   Girder   Length   (ft)   Weight   (kip/ft)   Selection   Bending   Moment   (kips-­‐ft)   E   (ksi)   Moment  of  inertia   (in^4)   Max   Displacement   (in)   A1B1   20   3.4   W14  x  30   177   29000   291   1.45   A2B2   20   6.8   W21  x  44   358   29000   843   1.00   A3B3   20   3.4   W14  x  30   177   29000   291   1.45   B1C1   20   3.4   W14  x  30   177   29000   291   1.45   B2C2   20   6.8   W21  x  44   358   29000   843   1.00   B3C3   20   3.4   W14  x  30   177   29000   291   1.45  
  • 19. Fall  2015     19     4.2. Beam Selections for NS Girders Using the calculated moments from the previous section, beams were selected for the NS girders based on the moment due to the tributary load acting on the beams. The beams were selected using the AISC Steel Manual, 14th edition. Tables 10 and 11 show the beams selected for each girder, on the roof and second floor respectively, as well its maximum bending moment, moment of inertia, and maximum displacement due to the load acting on it. Table  10:  NS  Beam  Selection  Table  for  Roof   Girder   Length   (ft)   Weight   (kip/ft)   Selection   Bending   Moment   (kips-­‐ft)   E   (ksi)   Moment  of  inertia   (in^4)   Max   Displacement   (in)   A12   25   1.169   W12  x  19   92.6   29000   130   2.73   A23   25   1.169   W12  x  19   92.6   29000   130   2.73   A34   25   1.169   W12  x  19   92.6   29000   130   2.73   A45   25   1.169   W12  x  19   92.6   29000   130   2.73   B12   25   2.338   W16  x  31   203   29000   375   1.89   B23   25   2.338   W16  x  31   203   29000   375   1.89   B34   25   2.338   W16  x  31   203   29000   375   1.89   B45   25   2.338   W16  x  31   203   29000   375   1.89   C12   25   1.169   W12  x  19   92.6   29000   130   2.73   C23   25   1.169   W12  x  19   92.6   29000   130   2.73   C34   25   1.169   W12  x  19   92.6   29000   130   2.73   C45   25   1.169   W12  x  19   92.6   29000   130   2.73   Table  11:  NS  Beam  Selection  Table  for  2 nd  Floor   Girder   Length   (ft)   Weight   (kip/ft)   Selection   Bending   Moment   (kips-­‐ft)   E   (ksi)   Moment  of  inertia   (in^4)   Max   Displacement   (in)   A12   25   2.72   W18  x  35   249   29000   510   1.62   A23   25   2.72   W18  x  35   249   29000   510   1.62   B12   25   5.44   W21  x  55   473   29000   1330   1.24   B23   25   5.44   W21  x  55   473   29000   1330   1.24   C12   25   2.72   W18  x  35   249   29000   510   1.62   C23   25   2.72   W18  x  35   249   29000   510   1.62        
  • 20. Fall  2015     20   4.3. Column Selections Using the calculated forces from the previous section, columns were. The beams were selected using the AISC Steel Manual, 14th edition. Table 12 shows the selected columns. Table  12:  Column  Selections     Columns   Pr  (kips)   Ps(kips)   Pt(kips)   Eff.  Length  (ft)   Selection   A1   14.6   34   48.6   18   W8  x  31   A2   29.2   68   97.2   18   W8  x  31   A3   29.2   34   63.2   18   W8  x  31   A4   29.2   0   29.2   30   W8  x  31   A5   14.6   0   14.6   30   W8  x  31   B1   29.2   68   97.2   18   W8  x  31   B2   58.4   136   194.4   18   W8  x  35   B3   58.4   68   126.4   18   W8  x  31   B4   58.4   0   58.4   30   W8  x  31   B5   29.2   0   29.2   30   W8  x  31   C1   14.6   34   48.6   18   W8  x  31   C2   29.2   68   97.2   18   W8  x  31   C3   29.2   34   63.2   18   W8  x  31   C4   29.2   0   29.2   30   W8  x  31   C5   14.6   0   14.6   30   W8  x  31  
  • 21. Fall  2015     21   4.4. Column and Girder Layout with Beam Selections Figures 16 and 17 show the girder layout with their selected beams for the roof and second floor respectively. Figure 18 shows the column layout with the selected columns.   Figure  16:  Girder  Layout  for  Roof  with  Labeled  Girders   Figure  17:  Girder  Layout  for  2nd  Floor  with  Labeled  Girders   Figure  18:Column  Layout  with  labeled  columns
  • 22. Fall  2015     22   5. Appendix 5.1. Load Calculations • Dead  Loads:   ♦ 𝑅𝑜𝑜𝑓  𝐷𝑒𝑎𝑑  𝐿𝑜𝑎𝑑 = 𝑅𝑜𝑜𝑓  𝑊𝑒𝑖𝑔ℎ𝑡 + 𝐶𝑒𝑖𝑙𝑖𝑛𝑔  𝑊𝑒𝑖𝑔ℎ𝑡   Ø Roof:   § 4in  thick  concrete  slab  (9.6  psf  per  inch  of  thickness)   § Steel  deck  =  5psf   § Steel  Joists  =  5  psf   § Insulation  =  1  psf   § Bituminous  smooth  surface  membrane  (1.5psf)   § 𝑤𝑒𝑖𝑔ℎ𝑡 = 9.6 !"# !" 4𝑖𝑛 + 5𝑝𝑠𝑓 + 5𝑝𝑠𝑓 + 1𝑝𝑠𝑓 + 1.5𝑝𝑠𝑓   § 𝑤𝑒𝑖𝑔ℎ𝑡 = 50.9𝑝𝑠𝑓   Ø Ceiling     § Suspended  steel  channel  system  =  2  psf   § Acoustic  tile  =  1  psf   § Ducting  =  4psf   § Lighting  =  1psf   § 𝑤𝑒𝑖𝑔ℎ𝑡 = 2𝑝𝑠𝑓 + 1𝑝𝑠𝑓 + 4𝑝𝑠𝑓 + 1𝑝𝑠𝑓   § 𝑤𝑒𝑖𝑔ℎ𝑡 = 8𝑝𝑠𝑓   ♦ 𝐷𝑒𝑎𝑑  𝐿𝑜𝑎𝑑 = 50.9𝑝𝑠𝑓 + 8𝑝𝑠𝑓   ♦ 𝐷𝑒𝑎𝑑  𝐿𝑜𝑎𝑑 = 58.9𝑝𝑠𝑓~60𝑝𝑠𝑓   • 2nd  floor  Dead  Loads   ♦ 𝐷𝑒𝑎𝑑  𝐿𝑜𝑎𝑑 = 2𝑛𝑑  𝐹𝑙𝑜𝑜𝑟  𝑊𝑒𝑖𝑔ℎ𝑡 + 𝐶𝑒𝑖𝑙𝑖𝑛𝑔  𝑊𝑒𝑖𝑔ℎ𝑡   Ø 2nd  floor:   § 4in  thick  concrete  slab  (9.6  psf  per  inch  of  thickness)   § Steel  deck  =  5psf   § Steel  Joists  =  5  psf   § Carpeting  and  padding  =  1  psf   § 𝑤𝑒𝑖𝑔ℎ𝑡 = 9.6 !"# !" 4𝑖𝑛 + 5𝑝𝑠𝑓 + 5𝑝𝑠𝑓 + 1𝑝𝑠𝑓   § 𝑤𝑒𝑖𝑔ℎ𝑡 = 49.4𝑝𝑠𝑓   Ø Ceiling     § Suspended  steel  channel  system  =  2  psf   § Acoustic  tile  =  1  psf   § Ducting  =  4psf   § Lighting  =  1psf   § 𝑤𝑒𝑖𝑔ℎ𝑡 = 2𝑝𝑠𝑓 + 1𝑝𝑠𝑓 + 4𝑝𝑠𝑓 + 1𝑝𝑠𝑓   § 𝑤𝑒𝑖𝑔ℎ𝑡 = 8𝑝𝑠𝑓   ♦ 𝐷𝑒𝑎𝑑  𝐿𝑜𝑎𝑑 = 49.4𝑝𝑠𝑓 + 8𝑝𝑠𝑓   ♦ 𝐷𝑒𝑎𝑑  𝐿𝑜𝑎𝑑 = 57.4𝑝𝑠𝑓~60𝑝𝑠𝑓   • Roof  Live  Loads:   ♦ 𝐿! = 20𝑝𝑠𝑓   Ø Industry  standard   • Live  Load  Second  Floor:   ♦ Light  storage  
  • 23. Fall  2015     23   ♦ 𝐿 = 125  𝑝𝑠𝑓   • Rain  Loads:   ♦ 𝑄 = 0.0104𝐴𝑖   Ø A=  Total  area  of  roof  =100! 𝑥  40! = 4000  𝑓𝑡!   § Implement  2  drain  system   § Area  served  by  drain  =  2000𝑓𝑡!   Ø 𝑖=  rainfall  intensity=  3  inches  per  hour   ♦ 𝑄 = 0.0104(2000)(3)   ♦ 𝑄 = 62.4  𝑔𝑝𝑚     ♦ Using  Table  2.5  in  notes,   𝑑! = 1𝑖𝑛,  and  assuming  4  inch  diameter  drain   ♦ 𝑅 = 5.2(𝑑! + 𝑑!)   Ø 𝑑! = 1  𝑖𝑛,  from  table  2.5  in  Mike  11.     Ø 𝑑! = 2  𝑖𝑛,  given  in  example  Mike  11.   ♦ 𝑅 = 5.2 1+2   ♦ 𝑅 = 15.6  𝑝𝑠𝑓   • Snow  Loads   ♦ 𝑆 = 𝑝! = 0.7𝐶! 𝐶! 𝐼! 𝑝!   Ø 𝐶! = 0.9   § Since  the  Engineering  design  center  is  a  Category  B,  Fully  Exposed  structure.   (ASCE  7-­‐10,  26.7.3,  pg  251)   Ø 𝐶! = 1   Ø 𝐼! = 1.1   § Since  the  structure  is  a  risk  category  3  building   Ø 𝑝! = 0   § Since   the   elevation   of   the   building   is   3   ft   and   well   below   the   threshold   elevation  of  1500  ft  required  for  a  basic  ground  snow  load  in  Santa  Barbara.   ♦ 𝑆 = 𝑝! = 0.7 0.9 1 1.1 0   ♦ 𝑆 = 0𝑝𝑠𝑓   • Wind  Loads:   ♦ Done   using   excel   table   below.   Highest   absolute   value   was   selected   (highlighted   below)   ♦   • Seismic  Loads:   ♦ 𝑆 = 10𝑝𝑠𝑓   ♦ Given     Constants h"18 h""30 Risk"Category"III V=115"mph 115 Kzt=1.0 1 Kz"(18')=0.60 0.6 Kz"(30')=0.70 0.7 Cnet"Windward"Wall"+"Int"Pressure 0.43 8.734848 10.190656 Cnet"Windward"Wall"K"Internal"Pressure 0.73 0.00112128 17.300416 Cnet"Leeward"Wall"+"Int"Pressure K0.51 K12.086592 Cnet"Leeward"Wall"K"Int"Pressure K0.21 K4.976832 Cnet"Side"Walls"+"Internal"Pressure K0.66 K15.641472 Cnet"Side"Walls"K"Internal"Pressure K0.35 K8.29472 Flat"Roof"+"Internal"Pressure K1.09 K25.832128 Flat"Roof"K"Internal"Pressure K0.79 K18.722368 2nd"Floor Roof
  • 24. Fall  2015     24   5.2. LRFD Load Combination Table Table  13:  LRFD  Worst  Case  Scenario  Excel  Sheet   Roof (psf) D 60 L 0 Lr 20 R 15.6 W 25.8 S 0 f1 0.5 f2 0.2 H 0 E Assumed 10 1.4D 84 1.2D+1.6(L+H)+.5Lr 82 1.2D+1.6(L+H)+.5S 72 1.2D+1.6(L+H)+.5R 79.8 1.2D+1.6Lr+1.6H+f1(L) 104 1.2D+1.6S+1.6H+f1L 72 1.2D+1.6R+1.6H+f1L 97.0 1.2D+1.6Lr+1.6H+0.5W 116.9 1.2D+1.6S+1.6H+0.5W 84.9 1.2D+1.6R+1.6H+0.5W 109.9 1.2D+W+f1L+1.6H+.5*Lr 108.6 1.2D+W+f1L+1.6H+.5*S 97.8 1.2D+W+f1L+1.6H+.5*R 105.6 1.2D+1E+f1L++1.6H+f2S 82 0.9D+W+1.6H 95.3 .9D+1.0E+1.6H 64 2nd floor Storage Area (psf) D 60 L 125 E 10 f1 0.5 1.4D 84 1.2D+1.6L 272 1.2D+E+f1L 144.5
  • 25. Fall  2015     25   6. References American Institute of Steel Construction. Steel Construction Manual. 14th ed. N.p.: American Institute of Steel Construction, 2010. Print. American Society of Civil Engineers. Minimum Design Loads for Buildings and Other Structures. Reston, VA: American Society of Civil Engineers/Structural Engineering Institute, 2010. Print. International Code Council. 2012 International Building Code. Country Club Hills, IL: International Code Council, 2011. Print.