SlideShare a Scribd company logo
1 of 12
REPUBLICA DEL PERU
GOBIERNO REGIONAL DE LAMBAYEQUE
PROYECTO ESPECIAL OLMOS - TINAJONES
PROYECTO OLMOS
INFORME TECNICO
(VERSION DEFINITIVO)
SERVICIO DE VALIDACIÓN DEL DISEÑO DE LA PRESA LIMÓN DE
ALTURAS DE 43 M (CONSTRUIDA) Y 82 M (SOBREELEVACION FUTURA)
PARA ESCENARIOS ESTATICOS Y DINAMICOS
Fuente: PEOT (2009)
Dr. Sc., PhD, Ing. YURY P. LYAPICHEV
EXPERTO EN DISEÑO Y CONSTRUCCI ÓN DE PRESAS ALTAS
lyapichev@mail.ru
Moscú -119146, 2-do Frunzenskaya calle 7
Telf. (+7 910) 4913416
Federación de Rusia
Noviembre 2012
LAMBAYEQUE - PERU
CONTENIDO
RESUMEN EJECUTIVO
1.0 INTRODUCCION 01
1.1 Generalidades 01
1.2 Objetivos 01
1.3 Alcances del servicio 02
1.4 Componentes del diseño actual de la presa Limón 03
2.0 REVISION Y ANALISIS DE INFORMACION TECNICADE LA PRESALIMON 05
2.1 Estudio Definitivo del Proyecto Olmos 05
2.2 Expediente Técnico e Ingeniería de Detalle de las Obras de Trasvase 10
2.3 Informe técnico de validación del diseño de la presa CFRD Limón 10
2.4 Información de pruebas de Campo y ensayos geotécnicos de la Presa Limón 16
2.4.1 Del Estudio Definitivo 1982 16
2.4.2 Del Expediente Técnico 2005 - Presa Limón I Etapa 16
2.4.3 Durante la construcción de la Presa Limón I Etapa 16
3.0 INSPECCION IN SITU DE LA PRESACRFD LIMON 17
3.1 Inspecciones visuales de la presa Limón y obras conexas 17
3.2 Inspección de la instrumentación de la presa Limón 17
3.3 Reuniones y visitas efectuadas 18
4.0 VALIDACION DEL DISEÑO DE LAPRESACFRD LIMON 19
4.1 Validación del diseño de la presa CFRD Limón H=43 m de altura 19
4.1.1 Análisis de filtración de la fundación y cuerpo de la presa H=43 m 19
4.1.1.1 Parámetros de filtración 19
4.1.1.2 Análisis del flujo de filtración en régimen permanente 20
4.1.1.3 Resultados del análisis de filtración 24
4.1.2 Análisis de estabilidad estática y sísmica para escenarios a corto
y largo plazo de la presa H=43 m 33
4.1.2.1 Métodos de los Institutos VNIIG e Hidroproyecto (Rusia) 33
4.1.2.2 Cálculo de aceleraciones en la presa por el SNIP 2003 (0.26g) 38
4.1.2.3 Cálculo de aceleraciones en la presa por el SNIP 1981 (0.26g) 42
4.1.2.4 Cálculo de aceleraciones en la presa por el SNIP 2003 (0.19g) 44
4.1.2.5 Cálculo de aceleraciones en la presa por el SNIP 1981 (0.19g) 46
4.1.2.6 Resultados de cálculo de estabilidad estática y sísmica de la
Presa Limón H=43 m 48
4.1.3 Cálculos de esfuerzos y deformaciones del cuerpo de la presa H=43 m 56
4.1.3.1 Casos analizados y parámetros de materiales para los
cálculos estáticos y dinámicos 56
4.1.3.2 Esfuerzos y deformaciones de la presa H=43 m construida 58
4.1.3.3 Conclusiones 73
4.2 Validación del diseño de la presa CFRD Limón H=82 m de altura 75
4.2.1 Análisis de filtración de la fundación y cuerpo de la presa H=82 m 75
4.2.2 Análisis de estabilidad estática y sísmica para escenarios a corto
y largo plazo de la presa H=82 m 84
4.2.2.1 Cálculo de aceleraciones en la presa por el SNIP 1981(1995)
(0.38g, E=2000 MPa) 84
4.2.2.2 Cálculo de aceleraciones en la presa por el SNIP 2003
(0.38g, E=1000 MPa) 88
4.2.2.3 Cálculo de aceleraciones en la presa por el SNIP 1981
(0.38g, E=1000 MPa) 91
4.2.2.4 Cálculo de aceleraciones en la presa por el SNIP 1981
(0.38g, E=2000 MPa) 94
4.2.2.5 Cálculo de aceleraciones en la presa por el SNIP 2003
(0.38g, E=2000 MPa) 97
4.2.2.6 Cálculo de aceleraciones en la presa por el SNIP 2003
(0.27g, E=2000 MPa) 99
4.2.2.7 Resultados de cálculo de estabilidad estática y sísmica de la
Presa Limón H=82 m - Variante 1 102
4.2.2.8 Resultados de cálculo de estabilidad estática y sísmica de la
Presa Limón H=82 m - Variante 2 110
4.2.3 Cálculos de esfuerzos y deformaciones del cuerpo de la presa H=82 m 122
4.2.3.1 Casos analizados y parámetros de materiales para los
cálculos estáticos y dinámicos 122
4.2.3.2 Esfuerzos y deformaciones de la presa H=82 m - Variante 1 124
4.2.3.3 Esfuerzos y deformaciones de la presa H=82 m - Variante 2 141
4.2.3.4 Conclusiones 149
ANEXOS
ANEXO 1 Comportamiento estático de las presas de enrocado con pantalla de concreto
ANEXO 1A Capítulo 12 - Clasificación, Evaluación y Selección Modelos Matemáticos
ANEXO 1B FLAC-3D Overview
ANEXO 1C Mohr-Coloumb model in the analyses by FLAC-3 software
ANEXO 2 Recomendaciones principales para el diseño de presas de enrocado
ANEXO 3 Seguridad sísmica de presas de enrocado con pantalla de concreto
ANEXO 4 Evaluacion preliminar de sísmo-resistencia de presa Limon 1 y 2
ANEXO 5 Recomendaciones generales para analises dinamicos de presas de enrocado
con pantalla de concreto
Esquema de Presa Limon y obras conexas
1. Static and dynamic analyses of the heightening (from 43 to 82 m) of
concrete face gravel dam CFGD Limon (Peru)
1.1. Introduction
In June 2012 the Government of Lambayeque province (Peru) invited Dr., Prof. Yury
Lyapichev as an international consultant and member of ICOLD Committee on Dam Design to
perform the expert validation of design of the heightening of concrete face gravel dam (CFGD)
Limon from 43 to 82 m. The dam is the main element of project “Proyecto Especial Olmos–
Tinajones (PEOT)”. The hydraulic transfer scheme of the multi-purpose project (for hydropower
& irrigationes) includes the TransAndes water-transfer 26 km long tunnel now completed. The
82 m high Limon CFGD is located on the right bank of the Huancabamba river in the remote
region of Andes with a very high seismicity (North-East of Peru, 980 km from Lima).
In the first PEOT project, developed by Hydroproject Institute (Moscow) in 1982, the variant
of 82 m high Limon rockfill dam with clay core was adopted as one-stage dam construction. But
later due to the political and financial problems in Peru the project implementation was delayed
for nearly 20 years and was resumed as a two-stage construction by BOT scheme, proposed by
Odebrecht construction company (Brazil). The company changed the Soviet design of one-stage
82 m high Limon traditional rockfill dam in favor of two-stage CFGD (43 and 82 m high).
1.2. Seepage analysis Limon CFGD (H=82 m) and its alluvial (40 m deep) foundation
In the figure 1.1a is presented the geometry of dam with zones of materials and its 40 m deep
alluvial strata of foundation in channel section 10-10' and their permeability coefficients. In the
figure 1.1b is presented the finite element mesh of dam and its foundation in channel section 10.
Fig. 1.1a. Zoning and permeability of soils of CFGD Limon H=82 m and its foundation in channel section
Fig. 1.1b. Finite element mesh of CFGD Limon H=82 m and (40 m deep) foundation in channel section
Fig. 1.2a. Equipotential lines of the total seepage heads in rock foundation below the concrete diaphragm
The results of the equipotential lines of total seepage heads in the rock foundation below the
plastic concrete diaphragm are presented in the figure 1.2a, verifying the significant reduction of
the total seepage heads by the effect of the plastic concrete diaphragm in the dam foundation.
Also, in the figure 1.2b is verified the significant reduction of the seepage pressure heads in the
rock foundation mainly due to the plastic concrete diaphragm.
Fig.1.2b. Equipotential lines of seepage pressure heads in rock foundation below the concrete diaphragm
Table 1.1 shows the unit seepage flows in the dam foundation for construction stages of H=43
m and H=82 m in sections 8-8' (in right abutment) and 10-10' (channel section) below the
concrete diaphragm, in the central dam axis and below the dam toe. The relationship of unit
seepage flows in section 8-8' shows that seepage flow in the foundation of the dam H=82 m
would be more than twice the seepage flow in the foundation of the dam H=43 m.
Table 1.1. Unit seepage flows in the dam foundation for construction stages of H=43 m and H=82 m
Dam Section
Unit seepage flows (m3
/s/m)
Below concrete
diaphragm
In axis of dam
cross-section
Below toe of
downstream slope
I Stage
H = 43 m
8 - 8' 1.373 x 10-3
1.37 x 10-3
0.744 x 10-3
10 - 10' 1.495 x 10-3
1.38 x 10-3
0.652 x 10-3
II Stage
H = 82 m
8 - 8' 2.865 x10-3
2.759 x 10-3
1.904 x 10-5
10 - 10' 3.163 x 10-3
2.791 x 10-3
0.536 x 10-3
Relation
QH82/QH43
8 - 8' 2.09 2.01 2.56
10 - 10' 2.12 2.02 0.82
1.3. Seismic (dynamic) analysis of 82 m high Limon CFGD under MCE action (Amax=0.57g)
The main results of dynamic nonlinear analysis of stress-strain state of Limon CFGD (H=82 m,
variant 2 with additional downstream rockfill zone) with full reservoir under Maximum Credible
Earthquake (MCE) action of the Mar-Chile Earthquake accelerogram are given in fig. 1.3-1.15.
Another MCE of the Lima-Peru Earthquake accelerogram was considered also in the dynamic
analysis, but its action was less dangerous than that of the Mar-Chile Earthquake accelerogram.
In fig. 1.3 the accelerogram of Mar-Chile Earthquake normalized to the maximum acceleration
of Amax=0.57g is shown. The Mar-Chile Earthquake with the return period T=5000 years and
Amax=0.57g corresponds to the recommendations of ICOLD Bulletin 148 (2010) and was much
more dangerous than adopted in previous (2009) brazilian design: Amax=0.39g, T≈1000 years.
The static and dynamic analyses of stress-strain state of Limon CFGD (H=43 and 82 m) were
made by FLAC software (USA), which was estimated in the ICOLD Congress (Canada, 2003) as
one of the best software for dynamic analyses of large rockfill dams including CFRDs. The finite
element model of Limon CFGD (H=43 and 82 m) with its foundation is shown in the fig. 1.4.
Fig. 1.3. Accelerogram of Mar-Chile Fig. 1.4. The finite element model of Limon CFGD
Earthquake normalized to Amax=0.57g (H=43 and 82 m) with its foundation
Parameters of the elasto-plastic model with Mohr-Coulomb criterion for dam materials and
foundation soils in static analyses of Limon CFGD (H=43 and 82 m) are given in the table 1.2.
Table 1.2. Parameters of Mohr-Coulomb model in static analyses of Limon CFGD (H=43 and 82 m)
Numbers and names of
zones of dam materials
and foundation soils
Material
or soils
Dry density
and void ratio
Parameters of deformation Parameters of shear
strength of materials
γdr, t/m3 n E
(MPa)
Angle of
dilatancy (0)
ν C (MPa) ψ(0)
1-st stage dam (H=43 m)
1, 3. Foundation Alluvium 2,15 0,2 108 0 0,30 0 42
2. Diaphragm Concrete 2,25 0 320 0 0,40 0,4 30
4. Plint slab Concrete 2,5 0 20000 0 0,17 1,0 60
5. Embankment zone Gravels and
pebbles
2,2 0,15 168 0 0,30 0 46,5
6. Transition zone Gravels 2,15 0,2 150 100 0,33 0 42
7. Transition zone Sand 2,1 0,25 100 100 0,33 0 40
8. Concrete face Concrete 2,5 0 20000 0 0,17 1,0 60
2-nd stage dam (H=82 m)
9. Embankment zone Gravels 2,2 0,15 168 0 0,30 0 46,5
10. Embankment zone Gravels 2,2 0,15 168 0 0,30 0 46,5
11. Transition zone Gravels 2,15 0,2 150 100 0,33 0 42
12. Transition zone Sand 2,1 0,25 100 100 0,33 0 40
13. Concrete face Concrete 2,5 0 20000 0 0,17 1,0 60
14. Downstream zone
with 2 berms
Pebbles 2,1 0,25 150 0 0,30 0 46,5
Fig.1.5. Scheme of CFGD Limon (H=42 and 82 m) Fig.1.6.Scheme of CFGD Limon (H=43 and 82 m) with
(adopted variant with d-s zone 14 with 2 berms) variable shear angles of gravel and pebble zones 10-11,15-17
Table 1.3.Values of shear angles of gravel and pebble zones 10-11, 15-17 depending on normal stresses
Normal stresses, σn , MPa 0,2 0,5 0,8 1,0 ≥1,2
Shear angles  (0
) of gravel and pebble zones 46,50
46,30
42,00
41,10
40,00
Scheme of zoning of CFGD Limon (H=82 m) with variable shear angles of gravel and pebble
zones 10-11, 15-17 (Fig.1.6) was used in the pseudo-static analyses of the downstream slope
stability under action of the acceleration in dam foundation Ahor =2/3• Amax =2/3• 0.57g=0.38g.
Fig.1.7. Distribution of seismic accelerations through Fig.1.8.Factors of seismic (Fmin=1,19>Fperm=1,06) and static
the dam height (H=82 m) using shear wedge method stability (Fmin=1,69>Fperm=1,25) of downstream slope
The distribution of seismic accelerations through the dam height was received according to
Russian seismic design norms for dams (SNiP-2003) using the shear wedge method (Figure 1.7).
Figure 1.8 shows results of static (the most dangerous circular surface 2) and seismic (the most
dangerous circular surface 1) stability of downstream slope of Limon CFGD (H=82 m) taking
into account the variable shear angles of gravel and pebble zones 10-11, 15-17. This figure show
that the minimum factor of the downstream slope stability under action of seismic loads is more
that permissible as per design norms SNiP-2003 (Fmin=1,22>Fperm=1,06) and corresponds to the
deep circular sliding surface between the dam crest and upper alluvial layers of dam foundation.
The comparison of results of the seismic stability analysis of the downstream slope of Limon
CFGD (H=82 m) with additional pebble zone 14 with two berms (fig.1.5) with results of the
same analysis of the dam but without the additional zone show that the inclusion of this zone in
the downstream slope provide a significant increase of the minimum factor of the downstream
slope stability from 1.05 up to 1.22).
Below in figures 1.9-1.12 the main results of dynamic nonlinear analysis of stress-strain state
of Limon CFGD (H==43 and H=82 m, variant with the additional downstream pebble zone) with
full reservoir under action of MCE of the Mar-Chile Earthquake accelerogram are presented.
Parameters of Mohr-Coulomb model used in the dynamic nonlinear analysis of Limon CFGD
(H=43 and 82 m) are given in table 1.4.
Table 1.4. Parameters of Mohr-Coulomb model in dynamic analyses of Limon CFGD (H=43 and 82 m)
Note: (σm) – medium stress (effective) in kPa
Fig. A. Curves of reduction of the shear modulus G/Gmax and
initial coefficient of damping ξ,% of soils of the dam and
its foundation
Fig. 1.9. Zones of Limon CFGD (H=43 and 82 m) with the shear and tension stress state of soils
under action of SMC of the Mar-Chile Earthquake accelerogram with Amax=0.57g
Numbers and
names of zones of
dam materials and
foundation soils
Material
or soils
Dry density
and void
ratio
Dynamic
modulus of
elasticity
Edyn
,, MPa
Shear modulus
Gmax (MPa)
Initial
coefficient of
damping ξ, %
Reduction of
parameters
Gmax and ξ
γdr,
t/m3
n
1-st stage dam (H=43 m)
1, 3. Foundation Alluvium 2,15 0,2 1300 Gmax=35(σm)0,5 5 see Fig. A
2. Diaphragm Concrete 2,25 0 1600 G= Edyn
/ [2(1+ν)] 3 --
4. Plint slab Concrete 2,5 0 20000 G= Edyn
/ [2(1+ν)] 2 --
5. Embankment
zone
Gravels and
pebbles
2,2 0,15 2000
Gmax=40(σm)0,5
5 see Fig. A
6. Transition zone Gravels 2,15 0,2 1000
Gmax=22(σm)0,5
4 see Fig. A
7. Transition zone Sand 2,15 0,2 700
Gmax=20(σm)0,5
4 see Fig. A
8. Concrete face Concrete 2, 5 0 20000
G= Edyn
/ [2(1+ν)]
5 --
2-nd stage dam (H=82 m)
9. Embankment
zone
Gravels 2,2 0,15 2000
Gmax=40(σm)0,5
5 see Fig. A
10. Embankment
zone
Gravels 2,2 0,15 2000
Gmax=40(σm)0,5
5 see Fig. A
11. Transition zone Gravels 2,15 0,2 1000 Gmax=22(σm)0,5 4 see Fig. A
12. Transition zone Sand 2,1 0,25 700
Gmax=20(σm)0,5
4 see Fig. A
13. Concrete face Concrete 2,5 0 20000 G= Edyn
/ [2(1+ν)] 5 -
14. Downstream zone
with 2 berms
Pebbles 2,15 0,2 1500 G=Edyn
/[2(1+ν)] 5 see Fig. A
The dam zones with the shear stress state of soils are painted in orange and zones with the
tension stress state of soils are painted in blue (Figure 1.9). Under action of the Mar-Chile
Earthquake the dam would suffer elasto-plastic deformations with large plastic displacements in
the wide zone of the downstream slope (Figure 1.10). The large plastic (residual) deformations
modified the dynamic stress-strain state of the dam and its foundation (Figures 1.10-1.11).
The horizontal and vertical displacement in the dam after the Mar-Chile Earthquake in the
upper part of the downstream slope are, respectively, 2.0 and 1.0 m; in the upper berm - 2.2 and
1.1 m; in the lower berm - 2.5 and 1.3 m and at the toe of the slope - 6.0 m and zero (Fig. 1.10).
The intensity of shear deformations (Figure 1.11) is concentrated in the narrow zone in the
lower part of the downstream slope of the dam.
Fig. 1.10. Horizontal (a) and vertical (b) displacements in Limon dam (82m) after Mar-Chile Earthquake
Fig. 1.11. Intensity of the shear deformations in Limon dam (82m) after the Mar-Chile Earthquake
Fig. 1.12. The time history of the residual horizontal (a) and vertical (b) displacements of the crest of
Limon dam (82 m) during the Mar-Chile Earthquake
The time history of the residual horizontal (a) and vertical (b) displacements of the dam crest
during the Mar-Chile Earthquake is shown in Figure 1.12. The maximum horizontal and vertical
displacements of the dam crest during the Mar-Chile Earthquake are, respectively, 1.5 and 1.1 m
Main conclusions
1. Horizontal and vertical displacements after the Mar-Chile Earthquake of the downstream slope
(between the dam crest and lower berm) are, respectively, 2.0-2.5 and 1.0-1.3 m. The maximum
horizontal and vertical displacements of the dam crest during the Mar-Chile Earthquake are,
respectively, 1.5 and 1.1 m and after the Earthquake - 0.4 and 0.3 m. These displacements about
two times lower than those in the previous variant 1 of the dam with the downstream slope of
(V/H=1/1.7) and the under-laying rockfill without berms.
2. In comparison with the previous variant 1 of Limon dam (H=82 m) with the downstream slope
of (V/H=1/1.7) and the under-laying rockfill without berms this variant 2 of Limon dam
(H=82m) with additional gravel zone with two berms on downstream slope is much more stable
and safe under action of very strong MCE of the Mar-Chile Earthquake. Therefore, this variant 2
of Limon dam can be adopted in the following detailed final design of 82 m high CFRD Limon.
Annex A. Analysis of stresses & deformations in the concrete face of CFRD (H=82m)
Fig. A1. Horizontal (a) & vertical (b) displacements of concrete face after filling of
the reservoir up to maximum elevation (CFRD of the 2nd stage, H=82 m)
Fig. A2. Longitudinal forces (a) & bending moments (b) in the concrete face after
filling of the reservoir up to maximum elevation (CFRD of the 2nd stage, H=82 m)
LEGEND:
A – Point on perimetral joint; B – Intermedial point; C - Point on the crest of dam of the 1st
stage;
D - Point on perimetral joint; B – Intermedial point; C - Point on the crest of dam of the 2nd
stage.
Displacements in points of concrete face: Forces N & bending moments M in points of concrete face:
A) Ux=0,14 m; Uz=- 0,16 m A) N=- 80 t (compressión); M=- 6 tm
B) Ux=0,16 m; Uz=- 0,18 m B) N=- 40 t (compressión); M=- 2 tm
C) Ux=0,14 m; Uz=- 0,14 m C) N=- 50 t (compressión); M= 0 tm
D) Ux=0,08 m; Uz=- 0,10 m D) N=- 50 t (compressión); M=- 2 tm
E) Ux=0,06 m; Uz=- 0,04 m E) N=- 50 t (compressión); M=- 4 tm
Deflections of concrete face: in point B (maximum) - 24 cm; in point C - 19 cm; in point D -13 cm
Results of analysis of the concrete face
The results of analysis of the concrete face are presented in Figures A1 & A2 (CFRD of the 2nd
stage, H=82 m with the following contents:
The displacements, bending moments and longitudinal forces (axial) in the concrete face are
presented for action of Maximum Credible Eartquake (MCE) of Mar-Chile after filling of the
reservoir up to maximum elevation (CFRD of the 2nd stage, H=82 m). It’s shown that the greatest
influences on the concrete face is axial compression, being of lesser bending moment value,
therefore, the concrete face will be in compression state.
With the dimensions of concrete face and adopted forces and moments it can determine the
bearing capacity and reinforcement of thick 0.55 and 0.42 m concrete face based on the diagram
of interaction force-bending.
Keep in mind that this reinforcement is also recommended to absorb stresses due to shrinkage
and thermal changes in concrete face.
The general observations on behavior of concrete face
Since, from the pattern of deformations, the behavior of the concrete face acts as a rigid wall to
the vibrations in the transverse direction of the valley, differs considerably from the rockfill and
transition zone materials, the transverse response across the valley of rockfill dam, may be
limited by the relatively rigid concrete face. This may lead to tension stresses in the plane of the
concrete face, seismic forces transferred from rockfil to the concrete face are limited by the
frictional forces between the transition zone of rockfill and concrete face. Like all the water load
is supported by the concrete face, these frictional forces are relatively high and therefore stresses
in the plane of concrete face can be significant enough to cause local deformations or shears of
concrete face slabs along its longitudinal joints.
The deformations of the dam can cause mainly the crack opening in concrete slabs and the
sliding along the surface of crack and suffer the oscilation movements.
La principal ventaja de las presas de enrocado con pantalla de concreto, reside en su resistencia a
la erosión en el caso de que el agua se filtre por una pantalla fisurada. Si la zona de materiales
bajo la pantalla tiene una granulometría correcta, el coeficiente de permeabilidad será del orden
de 10-3 cm/s y entonces ésta será estable, es decir que no alcanzará la erosión. Esto elimina el
riesgo de que se desarrollen importantes fugas bajo la pantalla fisurada.
The main advantage of rockfill dam with concrete face is its high resistance to erosion in case of
water seepage through a cracked concrete face. If the zone of materials under the concrete face
has a proper particle sizes the permeability coefficient will be around 10-3 cm/s and then zone
will be stable against its erosion. This eliminates the risk of major leakages developed under the
cracked concrete face.

More Related Content

What's hot

Q922+re2+l03 v1
Q922+re2+l03 v1Q922+re2+l03 v1
Q922+re2+l03 v1AFATous
 
Pratik Rao - Thesis Report FINAL
Pratik Rao - Thesis Report FINALPratik Rao - Thesis Report FINAL
Pratik Rao - Thesis Report FINALPratik Rao
 
Anchois 1- Oil&Gas Field
Anchois 1- Oil&Gas FieldAnchois 1- Oil&Gas Field
Anchois 1- Oil&Gas FieldJose V.Taboada
 
Training - Hydraulic Flood Modelling
Training - Hydraulic Flood ModellingTraining - Hydraulic Flood Modelling
Training - Hydraulic Flood ModellingAmaljit Bharali
 
Q913 re1 w4 lec 14
Q913 re1 w4 lec 14Q913 re1 w4 lec 14
Q913 re1 w4 lec 14AFATous
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
Q913 re1 w4 lec 16
Q913 re1 w4 lec 16Q913 re1 w4 lec 16
Q913 re1 w4 lec 16AFATous
 
2.2 gl for-hydaulic_design_of_shp_project
2.2 gl for-hydaulic_design_of_shp_project2.2 gl for-hydaulic_design_of_shp_project
2.2 gl for-hydaulic_design_of_shp_projectSaddam Mussie
 
performance evaluation of desilting devices
performance evaluation of desilting devicesperformance evaluation of desilting devices
performance evaluation of desilting devicesGurdeep singh Johar
 
Emergency Pipeline Repair Systems, A Global Overview of Best Practice
Emergency Pipeline Repair Systems, A Global Overview of Best PracticeEmergency Pipeline Repair Systems, A Global Overview of Best Practice
Emergency Pipeline Repair Systems, A Global Overview of Best PracticeJames Rowley
 
Sc 0009-rwpc-pip-civ-cal-0511 0-a
Sc 0009-rwpc-pip-civ-cal-0511 0-aSc 0009-rwpc-pip-civ-cal-0511 0-a
Sc 0009-rwpc-pip-civ-cal-0511 0-ajulio-civil
 
Proposed Methodology Shore Approach
Proposed Methodology  Shore ApproachProposed Methodology  Shore Approach
Proposed Methodology Shore ApproachMohd Zaini Baharum
 
120510 iasi morave river - Albert Schwingshandl
120510 iasi   morave river - Albert Schwingshandl120510 iasi   morave river - Albert Schwingshandl
120510 iasi morave river - Albert SchwingshandlRESTORE
 
A new soil tunnelling machine with waterjet technology
A new soil tunnelling machine with waterjet technologyA new soil tunnelling machine with waterjet technology
A new soil tunnelling machine with waterjet technologyPatricia Faria
 

What's hot (19)

[IJET-V1I2P10] Authors :L. O. Osuman, A. Dosunmu , B .S. Odagme
[IJET-V1I2P10] Authors :L. O. Osuman, A. Dosunmu , B .S. Odagme [IJET-V1I2P10] Authors :L. O. Osuman, A. Dosunmu , B .S. Odagme
[IJET-V1I2P10] Authors :L. O. Osuman, A. Dosunmu , B .S. Odagme
 
Q922+re2+l03 v1
Q922+re2+l03 v1Q922+re2+l03 v1
Q922+re2+l03 v1
 
Pratik Rao - Thesis Report FINAL
Pratik Rao - Thesis Report FINALPratik Rao - Thesis Report FINAL
Pratik Rao - Thesis Report FINAL
 
Anchois 1- Oil&Gas Field
Anchois 1- Oil&Gas FieldAnchois 1- Oil&Gas Field
Anchois 1- Oil&Gas Field
 
Training - Hydraulic Flood Modelling
Training - Hydraulic Flood ModellingTraining - Hydraulic Flood Modelling
Training - Hydraulic Flood Modelling
 
Q913 re1 w4 lec 14
Q913 re1 w4 lec 14Q913 re1 w4 lec 14
Q913 re1 w4 lec 14
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
Q913 re1 w4 lec 16
Q913 re1 w4 lec 16Q913 re1 w4 lec 16
Q913 re1 w4 lec 16
 
6532
65326532
6532
 
2.2 gl for-hydaulic_design_of_shp_project
2.2 gl for-hydaulic_design_of_shp_project2.2 gl for-hydaulic_design_of_shp_project
2.2 gl for-hydaulic_design_of_shp_project
 
performance evaluation of desilting devices
performance evaluation of desilting devicesperformance evaluation of desilting devices
performance evaluation of desilting devices
 
Spe 119460-ms
Spe 119460-msSpe 119460-ms
Spe 119460-ms
 
Deck Drainage
Deck DrainageDeck Drainage
Deck Drainage
 
Emergency Pipeline Repair Systems, A Global Overview of Best Practice
Emergency Pipeline Repair Systems, A Global Overview of Best PracticeEmergency Pipeline Repair Systems, A Global Overview of Best Practice
Emergency Pipeline Repair Systems, A Global Overview of Best Practice
 
Sc 0009-rwpc-pip-civ-cal-0511 0-a
Sc 0009-rwpc-pip-civ-cal-0511 0-aSc 0009-rwpc-pip-civ-cal-0511 0-a
Sc 0009-rwpc-pip-civ-cal-0511 0-a
 
Proposed Methodology Shore Approach
Proposed Methodology  Shore ApproachProposed Methodology  Shore Approach
Proposed Methodology Shore Approach
 
120510 iasi morave river - Albert Schwingshandl
120510 iasi   morave river - Albert Schwingshandl120510 iasi   morave river - Albert Schwingshandl
120510 iasi morave river - Albert Schwingshandl
 
Spe 123010-ms
Spe 123010-msSpe 123010-ms
Spe 123010-ms
 
A new soil tunnelling machine with waterjet technology
A new soil tunnelling machine with waterjet technologyA new soil tunnelling machine with waterjet technology
A new soil tunnelling machine with waterjet technology
 

Similar to Peot proyecto especial olmos tinajones

Metro Torino Extension - Design and construction problems
Metro Torino Extension - Design and construction problemsMetro Torino Extension - Design and construction problems
Metro Torino Extension - Design and construction problemsgifanta
 
Applications of BDJ - EN.pptx
Applications of BDJ - EN.pptxApplications of BDJ - EN.pptx
Applications of BDJ - EN.pptxNgcPhong3
 
GROUP_6_YOUNGMAN_L_ANNEX_15-16
GROUP_6_YOUNGMAN_L_ANNEX_15-16GROUP_6_YOUNGMAN_L_ANNEX_15-16
GROUP_6_YOUNGMAN_L_ANNEX_15-16Leo Youngman
 
Design and dynamic testing of precast piles oscar varde
Design and dynamic testing of precast piles   oscar vardeDesign and dynamic testing of precast piles   oscar varde
Design and dynamic testing of precast piles oscar vardecfpbolivia
 
Dam Break Analysis of Peringalkuthu Dam, Thrissur Using HEC-RAS
Dam Break Analysis of Peringalkuthu Dam, Thrissur Using HEC-RASDam Break Analysis of Peringalkuthu Dam, Thrissur Using HEC-RAS
Dam Break Analysis of Peringalkuthu Dam, Thrissur Using HEC-RASIRJET Journal
 
Transient analysis and fatigue life prediction of tubesheet
Transient analysis and fatigue life prediction of tubesheetTransient analysis and fatigue life prediction of tubesheet
Transient analysis and fatigue life prediction of tubesheeteSAT Publishing House
 
“HYDRAULIC AND HYDROLOGICAL IMPACT ON BRIDGE”
“HYDRAULIC AND HYDROLOGICAL IMPACT ON BRIDGE”“HYDRAULIC AND HYDROLOGICAL IMPACT ON BRIDGE”
“HYDRAULIC AND HYDROLOGICAL IMPACT ON BRIDGE”IRJET Journal
 
Sensitivity of Transient Phenomena Analysis of the Francis Turbine Power Plants
Sensitivity of Transient Phenomena Analysis of the Francis Turbine Power PlantsSensitivity of Transient Phenomena Analysis of the Francis Turbine Power Plants
Sensitivity of Transient Phenomena Analysis of the Francis Turbine Power PlantsIJERA Editor
 
Modelling and Stress Analysis of the Pig Loop Module of a Piping System.
Modelling and Stress Analysis of the Pig Loop Module of a Piping System.Modelling and Stress Analysis of the Pig Loop Module of a Piping System.
Modelling and Stress Analysis of the Pig Loop Module of a Piping System.IJRES Journal
 
Control Seepage Thought Earth Dams
Control Seepage Thought Earth DamsControl Seepage Thought Earth Dams
Control Seepage Thought Earth DamsAhmed Mansor
 
Factors affecting def and asr in the concrete dam at vrané nad vltavou
Factors affecting def and asr in the concrete dam at vrané nad vltavouFactors affecting def and asr in the concrete dam at vrané nad vltavou
Factors affecting def and asr in the concrete dam at vrané nad vltavoueSAT Publishing House
 
Trabajo final Hcanal ejercicios resueltos
Trabajo final Hcanal ejercicios resueltosTrabajo final Hcanal ejercicios resueltos
Trabajo final Hcanal ejercicios resueltosKeniaNamucheVite
 
Dam Health assessment using geophysics.
Dam Health assessment using geophysics.Dam Health assessment using geophysics.
Dam Health assessment using geophysics.shubham shukla
 
ICWES15 - The Study of two Phase Flow Wall Erosion using a Generalized Comput...
ICWES15 - The Study of two Phase Flow Wall Erosion using a Generalized Comput...ICWES15 - The Study of two Phase Flow Wall Erosion using a Generalized Comput...
ICWES15 - The Study of two Phase Flow Wall Erosion using a Generalized Comput...Engineers Australia
 
Application of Macro-Synthetic-Fiber-Reinforced Sprayed Concrete for Primary ...
Application of Macro-Synthetic-Fiber-Reinforced Sprayed Concrete for Primary ...Application of Macro-Synthetic-Fiber-Reinforced Sprayed Concrete for Primary ...
Application of Macro-Synthetic-Fiber-Reinforced Sprayed Concrete for Primary ...CrimsonPublishersAMMS
 

Similar to Peot proyecto especial olmos tinajones (20)

T4501109116
T4501109116T4501109116
T4501109116
 
Metro Torino Extension - Design and construction problems
Metro Torino Extension - Design and construction problemsMetro Torino Extension - Design and construction problems
Metro Torino Extension - Design and construction problems
 
Applications of BDJ - EN.pptx
Applications of BDJ - EN.pptxApplications of BDJ - EN.pptx
Applications of BDJ - EN.pptx
 
GROUP_6_YOUNGMAN_L_ANNEX_15-16
GROUP_6_YOUNGMAN_L_ANNEX_15-16GROUP_6_YOUNGMAN_L_ANNEX_15-16
GROUP_6_YOUNGMAN_L_ANNEX_15-16
 
Design and dynamic testing of precast piles oscar varde
Design and dynamic testing of precast piles   oscar vardeDesign and dynamic testing of precast piles   oscar varde
Design and dynamic testing of precast piles oscar varde
 
Dam Break Analysis of Peringalkuthu Dam, Thrissur Using HEC-RAS
Dam Break Analysis of Peringalkuthu Dam, Thrissur Using HEC-RASDam Break Analysis of Peringalkuthu Dam, Thrissur Using HEC-RAS
Dam Break Analysis of Peringalkuthu Dam, Thrissur Using HEC-RAS
 
Transient analysis and fatigue life prediction of tubesheet
Transient analysis and fatigue life prediction of tubesheetTransient analysis and fatigue life prediction of tubesheet
Transient analysis and fatigue life prediction of tubesheet
 
CO2QUEST - The effect of impurities on compression and pipeline transportatio...
CO2QUEST - The effect of impurities on compression and pipeline transportatio...CO2QUEST - The effect of impurities on compression and pipeline transportatio...
CO2QUEST - The effect of impurities on compression and pipeline transportatio...
 
“HYDRAULIC AND HYDROLOGICAL IMPACT ON BRIDGE”
“HYDRAULIC AND HYDROLOGICAL IMPACT ON BRIDGE”“HYDRAULIC AND HYDROLOGICAL IMPACT ON BRIDGE”
“HYDRAULIC AND HYDROLOGICAL IMPACT ON BRIDGE”
 
Sensitivity of Transient Phenomena Analysis of the Francis Turbine Power Plants
Sensitivity of Transient Phenomena Analysis of the Francis Turbine Power PlantsSensitivity of Transient Phenomena Analysis of the Francis Turbine Power Plants
Sensitivity of Transient Phenomena Analysis of the Francis Turbine Power Plants
 
Modelling and Stress Analysis of the Pig Loop Module of a Piping System.
Modelling and Stress Analysis of the Pig Loop Module of a Piping System.Modelling and Stress Analysis of the Pig Loop Module of a Piping System.
Modelling and Stress Analysis of the Pig Loop Module of a Piping System.
 
Ce syllabi-6 s-2010
Ce syllabi-6 s-2010Ce syllabi-6 s-2010
Ce syllabi-6 s-2010
 
Unu gtp-sc-12-36
Unu gtp-sc-12-36Unu gtp-sc-12-36
Unu gtp-sc-12-36
 
Control Seepage Thought Earth Dams
Control Seepage Thought Earth DamsControl Seepage Thought Earth Dams
Control Seepage Thought Earth Dams
 
Factors affecting def and asr in the concrete dam at vrané nad vltavou
Factors affecting def and asr in the concrete dam at vrané nad vltavouFactors affecting def and asr in the concrete dam at vrané nad vltavou
Factors affecting def and asr in the concrete dam at vrané nad vltavou
 
Trabajo final Hcanal ejercicios resueltos
Trabajo final Hcanal ejercicios resueltosTrabajo final Hcanal ejercicios resueltos
Trabajo final Hcanal ejercicios resueltos
 
Dam Health assessment using geophysics.
Dam Health assessment using geophysics.Dam Health assessment using geophysics.
Dam Health assessment using geophysics.
 
ICWES15 - The Study of two Phase Flow Wall Erosion using a Generalized Comput...
ICWES15 - The Study of two Phase Flow Wall Erosion using a Generalized Comput...ICWES15 - The Study of two Phase Flow Wall Erosion using a Generalized Comput...
ICWES15 - The Study of two Phase Flow Wall Erosion using a Generalized Comput...
 
CO2QUEST - Techno-economic Assessment of Impact of CO2 Impurities on its Tran...
CO2QUEST - Techno-economic Assessment of Impact of CO2 Impurities on its Tran...CO2QUEST - Techno-economic Assessment of Impact of CO2 Impurities on its Tran...
CO2QUEST - Techno-economic Assessment of Impact of CO2 Impurities on its Tran...
 
Application of Macro-Synthetic-Fiber-Reinforced Sprayed Concrete for Primary ...
Application of Macro-Synthetic-Fiber-Reinforced Sprayed Concrete for Primary ...Application of Macro-Synthetic-Fiber-Reinforced Sprayed Concrete for Primary ...
Application of Macro-Synthetic-Fiber-Reinforced Sprayed Concrete for Primary ...
 

More from Yury Lyapichev

Lyapichev Yury - Innovation structures of very lean RCC dams (Journal of Stru...
Lyapichev Yury - Innovation structures of very lean RCC dams (Journal of Stru...Lyapichev Yury - Innovation structures of very lean RCC dams (Journal of Stru...
Lyapichev Yury - Innovation structures of very lean RCC dams (Journal of Stru...Yury Lyapichev
 
Lyapichev: Analysis, design & behavior of CFRDs
Lyapichev: Analysis, design & behavior of CFRDsLyapichev: Analysis, design & behavior of CFRDs
Lyapichev: Analysis, design & behavior of CFRDsYury Lyapichev
 
Soluciones nuevas en presas en paises con alta sismisidad
Soluciones nuevas en presas en paises con alta sismisidadSoluciones nuevas en presas en paises con alta sismisidad
Soluciones nuevas en presas en paises con alta sismisidadYury Lyapichev
 
Curso postgrado internacional
Curso postgrado internacionalCurso postgrado internacional
Curso postgrado internacionalYury Lyapichev
 
Boletin inicial del curso internacional (Lyapichev)
Boletin inicial del curso internacional (Lyapichev)Boletin inicial del curso internacional (Lyapichev)
Boletin inicial del curso internacional (Lyapichev)Yury Lyapichev
 
Ляпичев. Проектирование, строительство и поведение современных высоких плотин...
Ляпичев. Проектирование, строительство и поведение современных высоких плотин...Ляпичев. Проектирование, строительство и поведение современных высоких плотин...
Ляпичев. Проектирование, строительство и поведение современных высоких плотин...Yury Lyapichev
 
Ляпичев. Проектирование, строительство и поведение современных высоких плотин...
Ляпичев. Проектирование, строительство и поведение современных высоких плотин...Ляпичев. Проектирование, строительство и поведение современных высоких плотин...
Ляпичев. Проектирование, строительство и поведение современных высоких плотин...Yury Lyapichev
 
Ляпичев. Проблема безопасности Богучанской КНП (HydroVision Russia, 2010)
Ляпичев. Проблема безопасности Богучанской КНП (HydroVision Russia, 2010)Ляпичев. Проблема безопасности Богучанской КНП (HydroVision Russia, 2010)
Ляпичев. Проблема безопасности Богучанской КНП (HydroVision Russia, 2010)Yury Lyapichev
 
ремонт центрального водосброса Саяно-Шушенской ГЭС
ремонт центрального водосброса Саяно-Шушенской ГЭС ремонт центрального водосброса Саяно-Шушенской ГЭС
ремонт центрального водосброса Саяно-Шушенской ГЭС Yury Lyapichev
 
Lyapichev. Laboratorio de segiridad de obras hidraulicas
Lyapichev. Laboratorio de segiridad de obras hidraulicasLyapichev. Laboratorio de segiridad de obras hidraulicas
Lyapichev. Laboratorio de segiridad de obras hidraulicasYury Lyapichev
 
Lyapichev. Research & teaching laboratory Safety of hydraulic structures (29 ...
Lyapichev. Research & teaching laboratory Safety of hydraulic structures (29 ...Lyapichev. Research & teaching laboratory Safety of hydraulic structures (29 ...
Lyapichev. Research & teaching laboratory Safety of hydraulic structures (29 ...Yury Lyapichev
 
Ляпичев. Программа школы Оценка рисков в гидротехнике (РУДН)
Ляпичев. Программа школы Оценка рисков в гидротехнике (РУДН)Ляпичев. Программа школы Оценка рисков в гидротехнике (РУДН)
Ляпичев. Программа школы Оценка рисков в гидротехнике (РУДН)Yury Lyapichev
 
Guidelines of Intern. Society for design of high CFRDs
Guidelines of Intern. Society for design of high CFRDsGuidelines of Intern. Society for design of high CFRDs
Guidelines of Intern. Society for design of high CFRDsYury Lyapichev
 
Seguridad de presas (Banco Mundial)
Seguridad de presas (Banco Mundial)Seguridad de presas (Banco Mundial)
Seguridad de presas (Banco Mundial)Yury Lyapichev
 
Lyapichev. Curso seguridad sismica de presas según de ICOLD
Lyapichev. Curso seguridad sismica de presas según de ICOLDLyapichev. Curso seguridad sismica de presas según de ICOLD
Lyapichev. Curso seguridad sismica de presas según de ICOLDYury Lyapichev
 
Lyapichev. Seguridad sismica de presas (ICOLD Congreso, 2003)
Lyapichev. Seguridad sismica de presas (ICOLD Congreso, 2003)Lyapichev. Seguridad sismica de presas (ICOLD Congreso, 2003)
Lyapichev. Seguridad sismica de presas (ICOLD Congreso, 2003)Yury Lyapichev
 
Lyapichev. Direcciones para gestión de seguridad de grandes presas y obras hi...
Lyapichev. Direcciones para gestión de seguridad de grandes presas y obras hi...Lyapichev. Direcciones para gestión de seguridad de grandes presas y obras hi...
Lyapichev. Direcciones para gestión de seguridad de grandes presas y obras hi...Yury Lyapichev
 
Lyapichev. Soluciones nuevas para grandes presas en Rusia y países con alta s...
Lyapichev. Soluciones nuevas para grandes presas en Rusia y países con alta s...Lyapichev. Soluciones nuevas para grandes presas en Rusia y países con alta s...
Lyapichev. Soluciones nuevas para grandes presas en Rusia y países con alta s...Yury Lyapichev
 
Ляпичев. Достоверность численных расчетов плотин
Ляпичев. Достоверность численных расчетов плотин Ляпичев. Достоверность численных расчетов плотин
Ляпичев. Достоверность численных расчетов плотин Yury Lyapichev
 

More from Yury Lyapichev (20)

Lyapichev Yury - Innovation structures of very lean RCC dams (Journal of Stru...
Lyapichev Yury - Innovation structures of very lean RCC dams (Journal of Stru...Lyapichev Yury - Innovation structures of very lean RCC dams (Journal of Stru...
Lyapichev Yury - Innovation structures of very lean RCC dams (Journal of Stru...
 
My abstracts
My abstractsMy abstracts
My abstracts
 
Lyapichev: Analysis, design & behavior of CFRDs
Lyapichev: Analysis, design & behavior of CFRDsLyapichev: Analysis, design & behavior of CFRDs
Lyapichev: Analysis, design & behavior of CFRDs
 
Soluciones nuevas en presas en paises con alta sismisidad
Soluciones nuevas en presas en paises con alta sismisidadSoluciones nuevas en presas en paises con alta sismisidad
Soluciones nuevas en presas en paises con alta sismisidad
 
Curso postgrado internacional
Curso postgrado internacionalCurso postgrado internacional
Curso postgrado internacional
 
Boletin inicial del curso internacional (Lyapichev)
Boletin inicial del curso internacional (Lyapichev)Boletin inicial del curso internacional (Lyapichev)
Boletin inicial del curso internacional (Lyapichev)
 
Ляпичев. Проектирование, строительство и поведение современных высоких плотин...
Ляпичев. Проектирование, строительство и поведение современных высоких плотин...Ляпичев. Проектирование, строительство и поведение современных высоких плотин...
Ляпичев. Проектирование, строительство и поведение современных высоких плотин...
 
Ляпичев. Проектирование, строительство и поведение современных высоких плотин...
Ляпичев. Проектирование, строительство и поведение современных высоких плотин...Ляпичев. Проектирование, строительство и поведение современных высоких плотин...
Ляпичев. Проектирование, строительство и поведение современных высоких плотин...
 
Ляпичев. Проблема безопасности Богучанской КНП (HydroVision Russia, 2010)
Ляпичев. Проблема безопасности Богучанской КНП (HydroVision Russia, 2010)Ляпичев. Проблема безопасности Богучанской КНП (HydroVision Russia, 2010)
Ляпичев. Проблема безопасности Богучанской КНП (HydroVision Russia, 2010)
 
ремонт центрального водосброса Саяно-Шушенской ГЭС
ремонт центрального водосброса Саяно-Шушенской ГЭС ремонт центрального водосброса Саяно-Шушенской ГЭС
ремонт центрального водосброса Саяно-Шушенской ГЭС
 
Lyapichev. Laboratorio de segiridad de obras hidraulicas
Lyapichev. Laboratorio de segiridad de obras hidraulicasLyapichev. Laboratorio de segiridad de obras hidraulicas
Lyapichev. Laboratorio de segiridad de obras hidraulicas
 
Lyapichev. Research & teaching laboratory Safety of hydraulic structures (29 ...
Lyapichev. Research & teaching laboratory Safety of hydraulic structures (29 ...Lyapichev. Research & teaching laboratory Safety of hydraulic structures (29 ...
Lyapichev. Research & teaching laboratory Safety of hydraulic structures (29 ...
 
Ляпичев. Программа школы Оценка рисков в гидротехнике (РУДН)
Ляпичев. Программа школы Оценка рисков в гидротехнике (РУДН)Ляпичев. Программа школы Оценка рисков в гидротехнике (РУДН)
Ляпичев. Программа школы Оценка рисков в гидротехнике (РУДН)
 
Guidelines of Intern. Society for design of high CFRDs
Guidelines of Intern. Society for design of high CFRDsGuidelines of Intern. Society for design of high CFRDs
Guidelines of Intern. Society for design of high CFRDs
 
Seguridad de presas (Banco Mundial)
Seguridad de presas (Banco Mundial)Seguridad de presas (Banco Mundial)
Seguridad de presas (Banco Mundial)
 
Lyapichev. Curso seguridad sismica de presas según de ICOLD
Lyapichev. Curso seguridad sismica de presas según de ICOLDLyapichev. Curso seguridad sismica de presas según de ICOLD
Lyapichev. Curso seguridad sismica de presas según de ICOLD
 
Lyapichev. Seguridad sismica de presas (ICOLD Congreso, 2003)
Lyapichev. Seguridad sismica de presas (ICOLD Congreso, 2003)Lyapichev. Seguridad sismica de presas (ICOLD Congreso, 2003)
Lyapichev. Seguridad sismica de presas (ICOLD Congreso, 2003)
 
Lyapichev. Direcciones para gestión de seguridad de grandes presas y obras hi...
Lyapichev. Direcciones para gestión de seguridad de grandes presas y obras hi...Lyapichev. Direcciones para gestión de seguridad de grandes presas y obras hi...
Lyapichev. Direcciones para gestión de seguridad de grandes presas y obras hi...
 
Lyapichev. Soluciones nuevas para grandes presas en Rusia y países con alta s...
Lyapichev. Soluciones nuevas para grandes presas en Rusia y países con alta s...Lyapichev. Soluciones nuevas para grandes presas en Rusia y países con alta s...
Lyapichev. Soluciones nuevas para grandes presas en Rusia y países con alta s...
 
Ляпичев. Достоверность численных расчетов плотин
Ляпичев. Достоверность численных расчетов плотин Ляпичев. Достоверность численных расчетов плотин
Ляпичев. Достоверность численных расчетов плотин
 

Recently uploaded

Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.Kamal Acharya
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlysanyuktamishra911
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfJiananWang21
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueBhangaleSonal
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringmulugeta48
 
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Bookingdharasingh5698
 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfRagavanV2
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdfKamal Acharya
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . pptDineshKumar4165
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Bookingdharasingh5698
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXssuser89054b
 
22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf203318pmpc
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performancesivaprakash250
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityMorshed Ahmed Rahath
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTbhaskargani46
 
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...soginsider
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...SUHANI PANDEY
 

Recently uploaded (20)

Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineering
 
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdf
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdf
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna Municipality
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
 
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
 

Peot proyecto especial olmos tinajones

  • 1. REPUBLICA DEL PERU GOBIERNO REGIONAL DE LAMBAYEQUE PROYECTO ESPECIAL OLMOS - TINAJONES PROYECTO OLMOS INFORME TECNICO (VERSION DEFINITIVO) SERVICIO DE VALIDACIÓN DEL DISEÑO DE LA PRESA LIMÓN DE ALTURAS DE 43 M (CONSTRUIDA) Y 82 M (SOBREELEVACION FUTURA) PARA ESCENARIOS ESTATICOS Y DINAMICOS Fuente: PEOT (2009) Dr. Sc., PhD, Ing. YURY P. LYAPICHEV EXPERTO EN DISEÑO Y CONSTRUCCI ÓN DE PRESAS ALTAS lyapichev@mail.ru Moscú -119146, 2-do Frunzenskaya calle 7 Telf. (+7 910) 4913416 Federación de Rusia Noviembre 2012 LAMBAYEQUE - PERU
  • 2. CONTENIDO RESUMEN EJECUTIVO 1.0 INTRODUCCION 01 1.1 Generalidades 01 1.2 Objetivos 01 1.3 Alcances del servicio 02 1.4 Componentes del diseño actual de la presa Limón 03 2.0 REVISION Y ANALISIS DE INFORMACION TECNICADE LA PRESALIMON 05 2.1 Estudio Definitivo del Proyecto Olmos 05 2.2 Expediente Técnico e Ingeniería de Detalle de las Obras de Trasvase 10 2.3 Informe técnico de validación del diseño de la presa CFRD Limón 10 2.4 Información de pruebas de Campo y ensayos geotécnicos de la Presa Limón 16 2.4.1 Del Estudio Definitivo 1982 16 2.4.2 Del Expediente Técnico 2005 - Presa Limón I Etapa 16 2.4.3 Durante la construcción de la Presa Limón I Etapa 16 3.0 INSPECCION IN SITU DE LA PRESACRFD LIMON 17 3.1 Inspecciones visuales de la presa Limón y obras conexas 17 3.2 Inspección de la instrumentación de la presa Limón 17 3.3 Reuniones y visitas efectuadas 18 4.0 VALIDACION DEL DISEÑO DE LAPRESACFRD LIMON 19 4.1 Validación del diseño de la presa CFRD Limón H=43 m de altura 19 4.1.1 Análisis de filtración de la fundación y cuerpo de la presa H=43 m 19 4.1.1.1 Parámetros de filtración 19 4.1.1.2 Análisis del flujo de filtración en régimen permanente 20 4.1.1.3 Resultados del análisis de filtración 24 4.1.2 Análisis de estabilidad estática y sísmica para escenarios a corto y largo plazo de la presa H=43 m 33 4.1.2.1 Métodos de los Institutos VNIIG e Hidroproyecto (Rusia) 33 4.1.2.2 Cálculo de aceleraciones en la presa por el SNIP 2003 (0.26g) 38 4.1.2.3 Cálculo de aceleraciones en la presa por el SNIP 1981 (0.26g) 42 4.1.2.4 Cálculo de aceleraciones en la presa por el SNIP 2003 (0.19g) 44 4.1.2.5 Cálculo de aceleraciones en la presa por el SNIP 1981 (0.19g) 46 4.1.2.6 Resultados de cálculo de estabilidad estática y sísmica de la Presa Limón H=43 m 48 4.1.3 Cálculos de esfuerzos y deformaciones del cuerpo de la presa H=43 m 56 4.1.3.1 Casos analizados y parámetros de materiales para los cálculos estáticos y dinámicos 56 4.1.3.2 Esfuerzos y deformaciones de la presa H=43 m construida 58 4.1.3.3 Conclusiones 73 4.2 Validación del diseño de la presa CFRD Limón H=82 m de altura 75 4.2.1 Análisis de filtración de la fundación y cuerpo de la presa H=82 m 75 4.2.2 Análisis de estabilidad estática y sísmica para escenarios a corto y largo plazo de la presa H=82 m 84 4.2.2.1 Cálculo de aceleraciones en la presa por el SNIP 1981(1995) (0.38g, E=2000 MPa) 84 4.2.2.2 Cálculo de aceleraciones en la presa por el SNIP 2003
  • 3. (0.38g, E=1000 MPa) 88 4.2.2.3 Cálculo de aceleraciones en la presa por el SNIP 1981 (0.38g, E=1000 MPa) 91 4.2.2.4 Cálculo de aceleraciones en la presa por el SNIP 1981 (0.38g, E=2000 MPa) 94 4.2.2.5 Cálculo de aceleraciones en la presa por el SNIP 2003 (0.38g, E=2000 MPa) 97 4.2.2.6 Cálculo de aceleraciones en la presa por el SNIP 2003 (0.27g, E=2000 MPa) 99 4.2.2.7 Resultados de cálculo de estabilidad estática y sísmica de la Presa Limón H=82 m - Variante 1 102 4.2.2.8 Resultados de cálculo de estabilidad estática y sísmica de la Presa Limón H=82 m - Variante 2 110 4.2.3 Cálculos de esfuerzos y deformaciones del cuerpo de la presa H=82 m 122 4.2.3.1 Casos analizados y parámetros de materiales para los cálculos estáticos y dinámicos 122 4.2.3.2 Esfuerzos y deformaciones de la presa H=82 m - Variante 1 124 4.2.3.3 Esfuerzos y deformaciones de la presa H=82 m - Variante 2 141 4.2.3.4 Conclusiones 149 ANEXOS ANEXO 1 Comportamiento estático de las presas de enrocado con pantalla de concreto ANEXO 1A Capítulo 12 - Clasificación, Evaluación y Selección Modelos Matemáticos ANEXO 1B FLAC-3D Overview ANEXO 1C Mohr-Coloumb model in the analyses by FLAC-3 software ANEXO 2 Recomendaciones principales para el diseño de presas de enrocado ANEXO 3 Seguridad sísmica de presas de enrocado con pantalla de concreto ANEXO 4 Evaluacion preliminar de sísmo-resistencia de presa Limon 1 y 2 ANEXO 5 Recomendaciones generales para analises dinamicos de presas de enrocado con pantalla de concreto Esquema de Presa Limon y obras conexas
  • 4. 1. Static and dynamic analyses of the heightening (from 43 to 82 m) of concrete face gravel dam CFGD Limon (Peru) 1.1. Introduction In June 2012 the Government of Lambayeque province (Peru) invited Dr., Prof. Yury Lyapichev as an international consultant and member of ICOLD Committee on Dam Design to perform the expert validation of design of the heightening of concrete face gravel dam (CFGD) Limon from 43 to 82 m. The dam is the main element of project “Proyecto Especial Olmos– Tinajones (PEOT)”. The hydraulic transfer scheme of the multi-purpose project (for hydropower & irrigationes) includes the TransAndes water-transfer 26 km long tunnel now completed. The 82 m high Limon CFGD is located on the right bank of the Huancabamba river in the remote region of Andes with a very high seismicity (North-East of Peru, 980 km from Lima). In the first PEOT project, developed by Hydroproject Institute (Moscow) in 1982, the variant of 82 m high Limon rockfill dam with clay core was adopted as one-stage dam construction. But later due to the political and financial problems in Peru the project implementation was delayed for nearly 20 years and was resumed as a two-stage construction by BOT scheme, proposed by Odebrecht construction company (Brazil). The company changed the Soviet design of one-stage 82 m high Limon traditional rockfill dam in favor of two-stage CFGD (43 and 82 m high). 1.2. Seepage analysis Limon CFGD (H=82 m) and its alluvial (40 m deep) foundation In the figure 1.1a is presented the geometry of dam with zones of materials and its 40 m deep alluvial strata of foundation in channel section 10-10' and their permeability coefficients. In the figure 1.1b is presented the finite element mesh of dam and its foundation in channel section 10. Fig. 1.1a. Zoning and permeability of soils of CFGD Limon H=82 m and its foundation in channel section Fig. 1.1b. Finite element mesh of CFGD Limon H=82 m and (40 m deep) foundation in channel section
  • 5. Fig. 1.2a. Equipotential lines of the total seepage heads in rock foundation below the concrete diaphragm The results of the equipotential lines of total seepage heads in the rock foundation below the plastic concrete diaphragm are presented in the figure 1.2a, verifying the significant reduction of the total seepage heads by the effect of the plastic concrete diaphragm in the dam foundation. Also, in the figure 1.2b is verified the significant reduction of the seepage pressure heads in the rock foundation mainly due to the plastic concrete diaphragm. Fig.1.2b. Equipotential lines of seepage pressure heads in rock foundation below the concrete diaphragm Table 1.1 shows the unit seepage flows in the dam foundation for construction stages of H=43 m and H=82 m in sections 8-8' (in right abutment) and 10-10' (channel section) below the concrete diaphragm, in the central dam axis and below the dam toe. The relationship of unit seepage flows in section 8-8' shows that seepage flow in the foundation of the dam H=82 m would be more than twice the seepage flow in the foundation of the dam H=43 m. Table 1.1. Unit seepage flows in the dam foundation for construction stages of H=43 m and H=82 m Dam Section Unit seepage flows (m3 /s/m) Below concrete diaphragm In axis of dam cross-section Below toe of downstream slope I Stage H = 43 m 8 - 8' 1.373 x 10-3 1.37 x 10-3 0.744 x 10-3 10 - 10' 1.495 x 10-3 1.38 x 10-3 0.652 x 10-3 II Stage H = 82 m 8 - 8' 2.865 x10-3 2.759 x 10-3 1.904 x 10-5 10 - 10' 3.163 x 10-3 2.791 x 10-3 0.536 x 10-3 Relation QH82/QH43 8 - 8' 2.09 2.01 2.56 10 - 10' 2.12 2.02 0.82
  • 6. 1.3. Seismic (dynamic) analysis of 82 m high Limon CFGD under MCE action (Amax=0.57g) The main results of dynamic nonlinear analysis of stress-strain state of Limon CFGD (H=82 m, variant 2 with additional downstream rockfill zone) with full reservoir under Maximum Credible Earthquake (MCE) action of the Mar-Chile Earthquake accelerogram are given in fig. 1.3-1.15. Another MCE of the Lima-Peru Earthquake accelerogram was considered also in the dynamic analysis, but its action was less dangerous than that of the Mar-Chile Earthquake accelerogram. In fig. 1.3 the accelerogram of Mar-Chile Earthquake normalized to the maximum acceleration of Amax=0.57g is shown. The Mar-Chile Earthquake with the return period T=5000 years and Amax=0.57g corresponds to the recommendations of ICOLD Bulletin 148 (2010) and was much more dangerous than adopted in previous (2009) brazilian design: Amax=0.39g, T≈1000 years. The static and dynamic analyses of stress-strain state of Limon CFGD (H=43 and 82 m) were made by FLAC software (USA), which was estimated in the ICOLD Congress (Canada, 2003) as one of the best software for dynamic analyses of large rockfill dams including CFRDs. The finite element model of Limon CFGD (H=43 and 82 m) with its foundation is shown in the fig. 1.4. Fig. 1.3. Accelerogram of Mar-Chile Fig. 1.4. The finite element model of Limon CFGD Earthquake normalized to Amax=0.57g (H=43 and 82 m) with its foundation Parameters of the elasto-plastic model with Mohr-Coulomb criterion for dam materials and foundation soils in static analyses of Limon CFGD (H=43 and 82 m) are given in the table 1.2. Table 1.2. Parameters of Mohr-Coulomb model in static analyses of Limon CFGD (H=43 and 82 m) Numbers and names of zones of dam materials and foundation soils Material or soils Dry density and void ratio Parameters of deformation Parameters of shear strength of materials γdr, t/m3 n E (MPa) Angle of dilatancy (0) ν C (MPa) ψ(0) 1-st stage dam (H=43 m) 1, 3. Foundation Alluvium 2,15 0,2 108 0 0,30 0 42 2. Diaphragm Concrete 2,25 0 320 0 0,40 0,4 30 4. Plint slab Concrete 2,5 0 20000 0 0,17 1,0 60 5. Embankment zone Gravels and pebbles 2,2 0,15 168 0 0,30 0 46,5 6. Transition zone Gravels 2,15 0,2 150 100 0,33 0 42 7. Transition zone Sand 2,1 0,25 100 100 0,33 0 40 8. Concrete face Concrete 2,5 0 20000 0 0,17 1,0 60 2-nd stage dam (H=82 m) 9. Embankment zone Gravels 2,2 0,15 168 0 0,30 0 46,5 10. Embankment zone Gravels 2,2 0,15 168 0 0,30 0 46,5 11. Transition zone Gravels 2,15 0,2 150 100 0,33 0 42 12. Transition zone Sand 2,1 0,25 100 100 0,33 0 40 13. Concrete face Concrete 2,5 0 20000 0 0,17 1,0 60 14. Downstream zone with 2 berms Pebbles 2,1 0,25 150 0 0,30 0 46,5
  • 7. Fig.1.5. Scheme of CFGD Limon (H=42 and 82 m) Fig.1.6.Scheme of CFGD Limon (H=43 and 82 m) with (adopted variant with d-s zone 14 with 2 berms) variable shear angles of gravel and pebble zones 10-11,15-17 Table 1.3.Values of shear angles of gravel and pebble zones 10-11, 15-17 depending on normal stresses Normal stresses, σn , MPa 0,2 0,5 0,8 1,0 ≥1,2 Shear angles  (0 ) of gravel and pebble zones 46,50 46,30 42,00 41,10 40,00 Scheme of zoning of CFGD Limon (H=82 m) with variable shear angles of gravel and pebble zones 10-11, 15-17 (Fig.1.6) was used in the pseudo-static analyses of the downstream slope stability under action of the acceleration in dam foundation Ahor =2/3• Amax =2/3• 0.57g=0.38g. Fig.1.7. Distribution of seismic accelerations through Fig.1.8.Factors of seismic (Fmin=1,19>Fperm=1,06) and static the dam height (H=82 m) using shear wedge method stability (Fmin=1,69>Fperm=1,25) of downstream slope The distribution of seismic accelerations through the dam height was received according to Russian seismic design norms for dams (SNiP-2003) using the shear wedge method (Figure 1.7). Figure 1.8 shows results of static (the most dangerous circular surface 2) and seismic (the most dangerous circular surface 1) stability of downstream slope of Limon CFGD (H=82 m) taking into account the variable shear angles of gravel and pebble zones 10-11, 15-17. This figure show that the minimum factor of the downstream slope stability under action of seismic loads is more that permissible as per design norms SNiP-2003 (Fmin=1,22>Fperm=1,06) and corresponds to the deep circular sliding surface between the dam crest and upper alluvial layers of dam foundation. The comparison of results of the seismic stability analysis of the downstream slope of Limon CFGD (H=82 m) with additional pebble zone 14 with two berms (fig.1.5) with results of the same analysis of the dam but without the additional zone show that the inclusion of this zone in the downstream slope provide a significant increase of the minimum factor of the downstream slope stability from 1.05 up to 1.22). Below in figures 1.9-1.12 the main results of dynamic nonlinear analysis of stress-strain state of Limon CFGD (H==43 and H=82 m, variant with the additional downstream pebble zone) with full reservoir under action of MCE of the Mar-Chile Earthquake accelerogram are presented. Parameters of Mohr-Coulomb model used in the dynamic nonlinear analysis of Limon CFGD (H=43 and 82 m) are given in table 1.4.
  • 8. Table 1.4. Parameters of Mohr-Coulomb model in dynamic analyses of Limon CFGD (H=43 and 82 m) Note: (σm) – medium stress (effective) in kPa Fig. A. Curves of reduction of the shear modulus G/Gmax and initial coefficient of damping ξ,% of soils of the dam and its foundation Fig. 1.9. Zones of Limon CFGD (H=43 and 82 m) with the shear and tension stress state of soils under action of SMC of the Mar-Chile Earthquake accelerogram with Amax=0.57g Numbers and names of zones of dam materials and foundation soils Material or soils Dry density and void ratio Dynamic modulus of elasticity Edyn ,, MPa Shear modulus Gmax (MPa) Initial coefficient of damping ξ, % Reduction of parameters Gmax and ξ γdr, t/m3 n 1-st stage dam (H=43 m) 1, 3. Foundation Alluvium 2,15 0,2 1300 Gmax=35(σm)0,5 5 see Fig. A 2. Diaphragm Concrete 2,25 0 1600 G= Edyn / [2(1+ν)] 3 -- 4. Plint slab Concrete 2,5 0 20000 G= Edyn / [2(1+ν)] 2 -- 5. Embankment zone Gravels and pebbles 2,2 0,15 2000 Gmax=40(σm)0,5 5 see Fig. A 6. Transition zone Gravels 2,15 0,2 1000 Gmax=22(σm)0,5 4 see Fig. A 7. Transition zone Sand 2,15 0,2 700 Gmax=20(σm)0,5 4 see Fig. A 8. Concrete face Concrete 2, 5 0 20000 G= Edyn / [2(1+ν)] 5 -- 2-nd stage dam (H=82 m) 9. Embankment zone Gravels 2,2 0,15 2000 Gmax=40(σm)0,5 5 see Fig. A 10. Embankment zone Gravels 2,2 0,15 2000 Gmax=40(σm)0,5 5 see Fig. A 11. Transition zone Gravels 2,15 0,2 1000 Gmax=22(σm)0,5 4 see Fig. A 12. Transition zone Sand 2,1 0,25 700 Gmax=20(σm)0,5 4 see Fig. A 13. Concrete face Concrete 2,5 0 20000 G= Edyn / [2(1+ν)] 5 - 14. Downstream zone with 2 berms Pebbles 2,15 0,2 1500 G=Edyn /[2(1+ν)] 5 see Fig. A
  • 9. The dam zones with the shear stress state of soils are painted in orange and zones with the tension stress state of soils are painted in blue (Figure 1.9). Under action of the Mar-Chile Earthquake the dam would suffer elasto-plastic deformations with large plastic displacements in the wide zone of the downstream slope (Figure 1.10). The large plastic (residual) deformations modified the dynamic stress-strain state of the dam and its foundation (Figures 1.10-1.11). The horizontal and vertical displacement in the dam after the Mar-Chile Earthquake in the upper part of the downstream slope are, respectively, 2.0 and 1.0 m; in the upper berm - 2.2 and 1.1 m; in the lower berm - 2.5 and 1.3 m and at the toe of the slope - 6.0 m and zero (Fig. 1.10). The intensity of shear deformations (Figure 1.11) is concentrated in the narrow zone in the lower part of the downstream slope of the dam. Fig. 1.10. Horizontal (a) and vertical (b) displacements in Limon dam (82m) after Mar-Chile Earthquake Fig. 1.11. Intensity of the shear deformations in Limon dam (82m) after the Mar-Chile Earthquake Fig. 1.12. The time history of the residual horizontal (a) and vertical (b) displacements of the crest of Limon dam (82 m) during the Mar-Chile Earthquake
  • 10. The time history of the residual horizontal (a) and vertical (b) displacements of the dam crest during the Mar-Chile Earthquake is shown in Figure 1.12. The maximum horizontal and vertical displacements of the dam crest during the Mar-Chile Earthquake are, respectively, 1.5 and 1.1 m Main conclusions 1. Horizontal and vertical displacements after the Mar-Chile Earthquake of the downstream slope (between the dam crest and lower berm) are, respectively, 2.0-2.5 and 1.0-1.3 m. The maximum horizontal and vertical displacements of the dam crest during the Mar-Chile Earthquake are, respectively, 1.5 and 1.1 m and after the Earthquake - 0.4 and 0.3 m. These displacements about two times lower than those in the previous variant 1 of the dam with the downstream slope of (V/H=1/1.7) and the under-laying rockfill without berms. 2. In comparison with the previous variant 1 of Limon dam (H=82 m) with the downstream slope of (V/H=1/1.7) and the under-laying rockfill without berms this variant 2 of Limon dam (H=82m) with additional gravel zone with two berms on downstream slope is much more stable and safe under action of very strong MCE of the Mar-Chile Earthquake. Therefore, this variant 2 of Limon dam can be adopted in the following detailed final design of 82 m high CFRD Limon.
  • 11. Annex A. Analysis of stresses & deformations in the concrete face of CFRD (H=82m) Fig. A1. Horizontal (a) & vertical (b) displacements of concrete face after filling of the reservoir up to maximum elevation (CFRD of the 2nd stage, H=82 m) Fig. A2. Longitudinal forces (a) & bending moments (b) in the concrete face after filling of the reservoir up to maximum elevation (CFRD of the 2nd stage, H=82 m) LEGEND: A – Point on perimetral joint; B – Intermedial point; C - Point on the crest of dam of the 1st stage; D - Point on perimetral joint; B – Intermedial point; C - Point on the crest of dam of the 2nd stage. Displacements in points of concrete face: Forces N & bending moments M in points of concrete face: A) Ux=0,14 m; Uz=- 0,16 m A) N=- 80 t (compressión); M=- 6 tm B) Ux=0,16 m; Uz=- 0,18 m B) N=- 40 t (compressión); M=- 2 tm C) Ux=0,14 m; Uz=- 0,14 m C) N=- 50 t (compressión); M= 0 tm D) Ux=0,08 m; Uz=- 0,10 m D) N=- 50 t (compressión); M=- 2 tm E) Ux=0,06 m; Uz=- 0,04 m E) N=- 50 t (compressión); M=- 4 tm Deflections of concrete face: in point B (maximum) - 24 cm; in point C - 19 cm; in point D -13 cm
  • 12. Results of analysis of the concrete face The results of analysis of the concrete face are presented in Figures A1 & A2 (CFRD of the 2nd stage, H=82 m with the following contents: The displacements, bending moments and longitudinal forces (axial) in the concrete face are presented for action of Maximum Credible Eartquake (MCE) of Mar-Chile after filling of the reservoir up to maximum elevation (CFRD of the 2nd stage, H=82 m). It’s shown that the greatest influences on the concrete face is axial compression, being of lesser bending moment value, therefore, the concrete face will be in compression state. With the dimensions of concrete face and adopted forces and moments it can determine the bearing capacity and reinforcement of thick 0.55 and 0.42 m concrete face based on the diagram of interaction force-bending. Keep in mind that this reinforcement is also recommended to absorb stresses due to shrinkage and thermal changes in concrete face. The general observations on behavior of concrete face Since, from the pattern of deformations, the behavior of the concrete face acts as a rigid wall to the vibrations in the transverse direction of the valley, differs considerably from the rockfill and transition zone materials, the transverse response across the valley of rockfill dam, may be limited by the relatively rigid concrete face. This may lead to tension stresses in the plane of the concrete face, seismic forces transferred from rockfil to the concrete face are limited by the frictional forces between the transition zone of rockfill and concrete face. Like all the water load is supported by the concrete face, these frictional forces are relatively high and therefore stresses in the plane of concrete face can be significant enough to cause local deformations or shears of concrete face slabs along its longitudinal joints. The deformations of the dam can cause mainly the crack opening in concrete slabs and the sliding along the surface of crack and suffer the oscilation movements. La principal ventaja de las presas de enrocado con pantalla de concreto, reside en su resistencia a la erosión en el caso de que el agua se filtre por una pantalla fisurada. Si la zona de materiales bajo la pantalla tiene una granulometría correcta, el coeficiente de permeabilidad será del orden de 10-3 cm/s y entonces ésta será estable, es decir que no alcanzará la erosión. Esto elimina el riesgo de que se desarrollen importantes fugas bajo la pantalla fisurada. The main advantage of rockfill dam with concrete face is its high resistance to erosion in case of water seepage through a cracked concrete face. If the zone of materials under the concrete face has a proper particle sizes the permeability coefficient will be around 10-3 cm/s and then zone will be stable against its erosion. This eliminates the risk of major leakages developed under the cracked concrete face.