SlideShare a Scribd company logo
1 of 7
Download to read offline
1
Final​ ​Report
Madeline​ ​Boyce
December​ ​12,​ ​2017
Abstract:​​ ​​ ​The​ ​purpose​ ​of​ ​this​ ​project​ ​was​ ​to​ ​observe​ ​and​ ​create​ ​an​ ​Hertzsprung-Russell
diagram​ ​of​ ​the​ ​M103​ ​star​ ​cluster.​ ​​ ​Isochrones​ ​were​ ​fitted​ ​to​ ​the​ ​H-R​ ​diagrams​ ​to
determine​ ​the​ ​age​ ​of​ ​the​ ​cluster,​ ​which​ ​was​ ​found​ ​to​ ​be​ ​25​ ​million​ ​years​ ​old.​ ​​ ​Most​ ​of​ ​the
stars​ ​in​ ​M103​ ​are​ ​massive,​ ​hot​ ​burning​ ​blue​ ​stars,​ ​with​ ​very​ ​few​ ​cooler​ ​red​ ​stars.
Motivation:​​ ​A​ ​Hertzsprung-Russell​ ​(H-R)​ ​diagram​ ​is​ ​a​ ​very​ ​important​ ​part​ ​of​ ​astronomy.​ ​​ ​The
magnitudes​ ​and​ ​color​ ​of​ ​the​ ​stars​ ​can​ ​be​ ​read​ ​directly​ ​from​ ​the​ ​diagram,​ ​while​ ​the​ ​luminosity,
temperature,​ ​and​ ​mass​ ​can​ ​be​ ​determined​ ​relative​ ​to​ ​the​ ​other​ ​stars​ ​(stars​ ​near​ ​the​ ​top​ ​of​ ​the
diagram​ ​are​ ​more​ ​luminous​ ​and​ ​massive​ ​than​ ​stars​ ​near​ ​the​ ​bottom​ ​and​ ​stars​ ​near​ ​the​ ​right​ ​of​ ​the
diagram​ ​are​ ​cooler​ ​than​ ​those​ ​on​ ​the​ ​left).​ ​​ ​The​ ​age​ ​of​ ​the​ ​cluster​ ​of​ ​stars​ ​can​ ​also​ ​be​ ​determined
by​ ​fitting​ ​isochrones​ ​to​ ​the​ ​H-R​ ​diagram.​ ​​ ​To​ ​make​ ​the​ ​H-R​ ​diagram,​ ​the​ ​M103​ ​cluster​ ​was
observed.​ ​​ ​Fluxes​ ​in​ ​three​ ​different​ ​filters​ ​(V,​ ​R,​ ​and​ ​I)​ ​were​ ​measured​ ​and​ ​turned​ ​into
magnitudes,​ ​from​ ​which​ ​color​ ​could​ ​also​ ​be​ ​calculated.​ ​​ ​A​ ​standard​ ​star​ ​was​ ​used​ ​to​ ​calibrate
these​ ​magnitudes.​ ​​ ​The​ ​V​ ​magnitude​ ​was​ ​then​ ​plotted​ ​against​ ​color​ ​to​ ​make​ ​the​ ​H-R​ ​diagram​ ​and
isochrones​ ​were​ ​fitted​ ​to​ ​determine​ ​the​ ​age.
Observing​ ​Run​ ​Details:
Date Location Conditions Equipment Field​ ​of
View
Pixel
Scale
Seeing
FWHM
Oct.
17,
2017
Smith
College,
Northampton,
MA
Clear,​ ​45℉ Telescope:
Meade​ ​LX200
ACF​ ​16-inch​ ​f/10
Camera:
SBIG​ ​STXL6303
CCD
24.4’​ ​by
15.5’
0.46”​ ​by
0.46”
Mean​ ​of​ ​8.28
pixels
2
Image Number​ ​of​ ​Exposures Exposure​ ​Times Filters
SA​ ​113342 3/3/3 60/60/60 V/R/I
M103 10/10/10 60/60/60 V/R/I
Bias 10 ------- -------
Dark 10 60 -------
Flat 5/5/5 10/1/1 V/R/I
Data​ ​Reduction:​​ ​The​ ​table​ ​above​ ​lists​ ​three​ ​kinds​ ​of​ ​calibration​ ​images:​ ​bias,​ ​dark,​ ​and​ ​flat.
The​ ​bias​ ​is​ ​an​ ​image​ ​taken​ ​with​ ​the​ ​shutter​ ​closed​ ​and​ ​with​ ​zero​ ​exposure​ ​time​ ​that​ ​measures​ ​a
background​ ​voltage​ ​in​ ​each​ ​pixel.​ ​​ ​The​ ​bias​ ​is​ ​present​ ​in​ ​every​ ​image​ ​taken​ ​with​ ​the​ ​CCD.​ ​​ ​A
master​ ​bias​ ​was​ ​found​ ​by​ ​finding​ ​the​ ​median​ ​value​ ​of​ ​each​ ​pixel​ ​in​ ​the​ ​10​ ​exposures.​ ​​ ​This
master​ ​bias​ ​was​ ​then​ ​subtracted​ ​from​ ​every​ ​image​ ​of​ ​M103​ ​and​ ​SA​ ​113342.​ ​​ ​The​ ​dark​ ​is​ ​an
image​ ​that​ ​measures​ ​a​ ​background​ ​current​ ​flowing​ ​through​ ​each​ ​pixel​ ​due​ ​to​ ​the​ ​temperature​ ​of
the​ ​environment​ ​and​ ​detector​ ​itself.​ ​​ ​The​ ​dark​ ​also​ ​depends​ ​on​ ​the​ ​exposure​ ​time.​ ​​ ​The​ ​dark
should​ ​be​ ​taken​ ​with​ ​the​ ​same​ ​exposure​ ​time​ ​as​ ​the​ ​images​ ​of​ ​the​ ​target,​ ​as​ ​well​ ​as​ ​in​ ​the​ ​same
environmental​ ​conditions.​ ​A​ ​master​ ​dark​ ​was​ ​found​ ​by​ ​finding​ ​the​ ​median​ ​value​ ​of​ ​each​ ​pixel​ ​in
the​ ​10​ ​exposures,​ ​the​ ​same​ ​was​ ​as​ ​with​ ​the​ ​master​ ​dark.​ ​​ ​The​ ​master​ ​bias​ ​was​ ​then​ ​subtracted
from​ ​the​ ​master​ ​dark.​ ​​ ​The​ ​flat​ ​image​ ​is​ ​an​ ​image​ ​taken​ ​of​ ​a​ ​blank​ ​white​ ​surface​ ​in​ ​each​ ​of​ ​the
filters​ ​used​ ​in​ ​the​ ​images​ ​of​ ​the​ ​target​ ​and​ ​measures​ ​the​ ​sensitivity​ ​of​ ​each​ ​pixel​ ​in​ ​the​ ​detector.
Five​ ​exposures​ ​were​ ​taken​ ​in​ ​each​ ​of​ ​the​ ​three​ ​filters.​ ​​ ​All​ ​other​ ​images​ ​were​ ​taken​ ​with​ ​the​ ​same
exposure​ ​time​ ​for​ ​each​ ​filter.​ ​​ ​The​ ​flat​ ​however,​ ​did​ ​not​ ​have​ ​the​ ​same​ ​exposure​ ​time​ ​for​ ​each
filter.​ ​​ ​This​ ​is​ ​because​ ​the​ ​R​ ​and​ ​I​ ​filters​ ​are​ ​more​ ​sensitive​ ​than​ ​the​ ​V​ ​filter,​ ​and​ ​therefore
saturated​ ​the​ ​detector​ ​at​ ​longer​ ​exposure​ ​times.​ ​​ ​It​ ​was​ ​necessary​ ​to​ ​have​ ​unsaturated​ ​pixels,​ ​but
not​ ​necessary​ ​to​ ​have​ ​the​ ​same​ ​exposure​ ​time​ ​for​ ​each​ ​filter.​ ​​ ​A​ ​master​ ​flat​ ​was​ ​found​ ​for​ ​each
filter​ ​in​ ​the​ ​same​ ​was​ ​as​ ​the​ ​master​ ​bias​ ​and​ ​dark.​ ​​ ​The​ ​master​ ​bias​ ​and​ ​master​ ​dark​ ​were​ ​then
subtracted​ ​from​ ​the​ ​three​ ​master​ ​flats.​ ​​ ​Each​ ​V​ ​filter​ ​image​ ​of​ ​the​ ​target​ ​was​ ​then​ ​divided​ ​by​ ​the
V​ ​filter​ ​master​ ​flat​ ​to​ ​normalize​ ​it.​ ​​ ​This​ ​was​ ​done​ ​for​ ​the​ ​R​ ​and​ ​I​ ​filters​ ​as​ ​well.​ ​​ ​The​ ​now
reduced​ ​images​ ​of​ ​the​ ​target​ ​were​ ​aligned​ ​and​ ​stacked​ ​into​ ​one​ ​image​ ​for​ ​each​ ​filter.
Photometry:​​ ​The​ ​blanks​ ​in​ ​the​ ​photometry​ ​code​ ​were​ ​filled​ ​in​ ​and​ ​the​ ​code​ ​was​ ​run​ ​to​ ​test​ ​that
it​ ​worked.​ ​​ ​When​ ​a​ ​reasonable​ ​number​ ​of​ ​stars​ ​were​ ​found,​ ​I​ ​decided​ ​not​ ​to​ ​change​ ​any​ ​of​ ​the
parameters​ ​that​ ​had​ ​been​ ​set​ ​in​ ​the​ ​code.​ ​​ ​​This​ ​meant​ ​leaving​ ​the​ ​aperture​ ​size​ ​at​ ​10​ ​pixels,​ ​the
star​ ​finding​ ​threshold​ ​at​ ​10​ ​sigma,​ ​and​ ​the​ ​sky​ ​annulus​ ​size​ ​at​ ​5​ ​pixels,​ ​with​ ​a​ ​buffer​ ​of​ ​10​ ​pixels
in​ ​between​ ​the​ ​aperture​ ​radius​ ​and​ ​beginning​ ​of​ ​the​ ​annulus.​ ​​ ​In​ ​a​ ​previous​ ​class,​ ​it​ ​was​ ​found
that​ ​an​ ​aperture​ ​with​ ​a​ ​radius​ ​of​ ​10​ ​pixels​ ​was​ ​adequate​ ​to​ ​measure​ ​the​ ​flux​ ​of​ ​the​ ​stars.​ ​​ ​This
3
was​ ​found​ ​by​ ​looking​ ​at​ ​a​ ​radial​ ​profile​ ​of​ ​several​ ​of​ ​the​ ​(non​ ​saturated)​ ​stars​ ​and​ ​seeing​ ​that​ ​the
radial​ ​profile​ ​seemed​ ​to​ ​level​ ​off​ ​to​ ​the​ ​background​ ​value​ ​at​ ​a​ ​radius​ ​of​ ​10​ ​pixels.​ ​​ ​The​ ​annulus
and​ ​buffer​ ​needed​ ​to​ ​be​ ​enough​ ​to​ ​measure​ ​a​ ​ring​ ​of​ ​background​ ​around​ ​each​ ​star​ ​without​ ​for​ ​the
most​ ​part​ ​​ ​measuring​ ​the​ ​star​ ​itself​ ​or​ ​neighboring​ ​stars.​ ​​ ​5​ ​pixels​ ​and​ ​10​ ​pixels​ ​respectively
seemed​ ​to​ ​provide​ ​a​ ​reasonable​ ​number​ ​of​ ​stars.​ ​​ ​758​ ​stars​ ​were​ ​found.​ ​​ ​The​ ​magnitude​ ​of​ ​each
of​ ​these​ ​stars​ ​in​ ​each​ ​filter​ ​was​ ​found​ ​from​ ​the​ ​equation
− .5log(f)m = 2
These​ ​magnitudes​ ​were​ ​the​ ​measured​ ​magnitudes,​ ​but​ ​not​ ​the​ ​actual​ ​magnitudes.​ ​​ ​These
measured​ ​magnitudes​ ​were​ ​calibrated​ ​with​ ​standard​ ​star​ ​SA​ ​113342.​ ​​ ​The​ ​Landolt​ ​catalog​ ​lists
V,​ ​V-R,​ ​and​ ​V-I​ ​magnitudes​ ​to​ ​SA​ ​113342.​ ​​ ​The​ ​R​ ​and​ ​I​ ​magnitudes​ ​respectively​ ​were​ ​found
from​ ​subtracting​ ​the​ ​V-R​ ​and​ ​V-I​ ​magnitudes​ ​from​ ​the​ ​V​ ​magnitude.​ ​​ ​These​ ​magnitudes​ ​should
theoretically​ ​be​ ​the​ ​same​ ​as​ ​those​ ​calculated​ ​by​ ​using​ ​the​ ​measured​ ​fluxes​ ​of​ ​the​ ​standard​ ​star,
however​ ​this​ ​is​ ​not​ ​true.​ ​​ ​They​ ​are​ ​off​ ​by​ ​some​ ​amount​ ​called​ ​the​ ​zero​ ​point.​ ​​ ​The​ ​zero​ ​point​ ​was
found​ ​by​ ​using​ ​the​ ​magnitude​ ​equation
− .5log(f) ero pointm = 2 + z
ero point .5log(f)z = m + 2
This​ ​zero​ ​point​ ​was​ ​added​ ​to​ ​the​ ​calculated​ ​magnitudes​ ​in​ ​each​ ​respective​ ​filter​ ​to​ ​find​ ​the​ ​actual
magnitude​ ​of​ ​the​ ​stars​ ​in​ ​the​ ​cluster.
Table​ ​of​ ​Results:
Filter Zero​ ​Point Sensitivity​ ​reached​ ​with
S/N=10​ ​(magnitude​ ​of
faintest​ ​star​ ​found)
V 20.3359414536 21.9316218692
R 20.3606562998 17.65279583
I 19.2775257582 17.6938546354
A​ ​signal​ ​to​ ​noise​ ​ratio​ ​of​ ​10​ ​sigma​ ​was​ ​used​ ​instead​ ​of​ ​a​ ​ration​ ​of​ ​5​ ​sigma​ ​because​ ​5​ ​sigma
allows​ ​too​ ​many​ ​very​ ​faint​ ​stars​ ​and​ ​adds​ ​more​ ​noise.
4
Figures:
Top​ ​left-​ ​figure​ ​1 Top​ ​right-​ ​figure​ ​2
Bottom​ ​left-​ ​figure​ ​3 Bottom​ ​right-​ ​figure​ ​4
5
Analysis​ ​of​ ​H-R​ ​Diagram:​​ ​There​ ​are​ ​three​ ​distinct​ ​main​ ​sequences​ ​in​ ​the​ ​H-R​ ​diagrams​ ​of
M103,​ ​most​ ​prominent​ ​in​ ​the​ ​V-R​ ​color.​ ​​ ​It​ ​is​ ​also​ ​very​ ​prominent​ ​in​ ​the​ ​V-I​ ​color​ ​diagram
found​ ​on​ ​Webda.​ ​​ ​The​ ​most​ ​massive​ ​stars​ ​are​ ​in​ ​the​ ​top​ ​left​ ​corner​ ​of​ ​the​ ​H-R​ ​diagram,​ ​while​ ​the
largest​ ​stars​ ​are​ ​in​ ​the​ ​top​ ​right.​ ​​ ​Mass​ ​increases​ ​as​ ​a​ ​diagonal​ ​line​ ​from​ ​the​ ​bottom​ ​right​ ​to​ ​the
top​ ​left​ ​and​ ​size​ ​increases​ ​as​ ​a​ ​diagonal​ ​line​ ​from​ ​the​ ​bottom​ ​left​ ​to​ ​the​ ​top​ ​right.​ ​​ ​Most​ ​of​ ​these
stars​ ​are​ ​smaller​ ​in​ ​size​ ​but​ ​more​ ​massive.​ ​​ ​Redness​ ​increases​ ​along​ ​the​ ​x​ ​axis,​ ​so​ ​the​ ​fact​ ​that
most​ ​stars​ ​are​ ​on​ ​the​ ​left​ ​side​ ​show​ ​that​ ​their​ ​colors​ ​are​ ​more​ ​blue​ ​than​ ​red.​ ​​ ​Blue​ ​stars​ ​burn
hotter​ ​than​ ​red​ ​stars,​ ​so​ ​this​ ​is​ ​also​ ​an​ ​estimate​ ​of​ ​their​ ​temperature.​ ​​ ​In​ ​the​ ​colored​ ​picture
attached​ ​at​ ​the​ ​end,​ ​it​ ​can​ ​be​ ​seen​ ​that​ ​most​ ​of​ ​the​ ​stars​ ​have​ ​a​ ​blue​ ​color​ ​to​ ​them,​ ​while​ ​a​ ​few
stars​ ​are​ ​bright​ ​red.​ ​​ ​These​ ​stars​ ​probably​ ​represent​ ​the​ ​few​ ​stars​ ​that​ ​are​ ​on​ ​the​ ​very​ ​right​ ​of​ ​the
H-R​ ​diagram.​ ​​ ​However,​ ​some​ ​of​ ​the​ ​stars​ ​on​ ​the​ ​H-R​ ​diagram​ ​do​ ​not​ ​seem​ ​to​ ​follow​ ​the​ ​main
sequence​ ​(bottom​ ​right​ ​stars​ ​seen​ ​in​ ​figures​ ​1​ ​and​ ​2).​ ​​ ​These​ ​stars​ ​are​ ​likely​ ​to​ ​not​ ​be​ ​part​ ​of​ ​the
cluster,​ ​but​ ​foreground​ ​or​ ​background​ ​stars​ ​that​ ​were​ ​captured​ ​in​ ​the​ ​image​ ​along​ ​with​ ​the​ ​target
cluster​ ​stars.
Isochrone​ ​Fitting:​​ ​The​ ​cluster​ ​was​ ​found​ ​to​ ​be​ ​25​ ​million​ ​years​ ​old.​ ​​ ​This​ ​makes​ ​sense,​ ​since​ ​it
is​ ​an​ ​open​ ​cluster​ ​in​ ​the​ ​plane​ ​of​ ​the​ ​galaxy,​ ​which​ ​tend​ ​to​ ​be​ ​fairly​ ​young​ ​in​ ​the​ ​scale​ ​of​ ​the
universe.​ ​​ ​The​ ​metallicity​ ​did​ ​not​ ​seem​ ​to​ ​have​ ​a​ ​great​ ​effect​ ​on​ ​the​ ​different​ ​isochrones​ ​that
were​ ​fit​ ​to​ ​the​ ​H-R​ ​diagram.​ ​​ ​At​ ​first​ ​a​ ​25​ ​million​ ​year​ ​old​ ​isochrone​ ​had​ ​the​ ​same​ ​general​ ​shape
of​ ​the​ ​H-R​ ​diagrams,​ ​but​ ​were​ ​not​ ​lining​ ​up​ ​quite​ ​right.​ ​​ ​The​ ​difference​ ​in​ ​distance​ ​had​ ​to​ ​be
accounted​ ​for​ ​by​ ​adding​ ​a​ ​distance​ ​modulus​ ​to​ ​the​ ​magnitudes​ ​of​ ​the​ ​isochrone.​ ​​ ​This​ ​distance
modulus​ ​was​ ​found​ ​from​ ​Webda​ ​to​ ​be​ ​12.9​ ​magnitudes.​ ​​ ​The​ ​isochrones​ ​then​ ​matched​ ​the​ ​data
points​ ​in​ ​the​ ​y​ ​direction,​ ​but​ ​were​ ​still​ ​off​ ​in​ ​the​ ​x​ ​direction.​ ​​ ​This​ ​was​ ​due​ ​to​ ​dust​ ​extinction.​ ​​ ​An
excess​ ​color​ ​factor​ ​had​ ​to​ ​be​ ​added​ ​to​ ​the​ ​colors​ ​for​ ​each​ ​plot.​ ​​ ​The​ ​values​ ​of​ ​these​ ​were​ ​found
by​ ​eye​ ​to​ ​be:
Color V-R V-I R-I
Excess​ ​Color​ ​Factor 0.4​ ​magnitudes -0.4​ ​magnitudes -0.8​ ​magnitudes
A​ ​plot​ ​of​ ​a​ ​V​ ​vs​ ​V-I​ ​H-R​ ​diagram​ ​with​ ​a​ ​25​ ​million​ ​year​ ​old
isochrone​ ​fit​ ​found​ ​from​ ​Webda
6
Sources​ ​of​ ​Error:​​ ​The​ ​main​ ​source​ ​of​ ​error​ ​came​ ​from​ ​the​ ​background​ ​of​ ​the​ ​images.​ ​​ ​The
background​ ​consisted​ ​of​ ​both​ ​the​ ​sky​ ​brightness​ ​and​ ​the​ ​read​ ​noise​ ​from​ ​the​ ​detector.​ ​​ ​This​ ​noise
is​ ​impossible​ ​to​ ​completely​ ​remove,​ ​however​ ​it​ ​is​ ​possible​ ​to​ ​increase​ ​the​ ​signal​ ​to​ ​noise​ ​ratio​ ​to
decrease​ ​the​ ​error.​ ​​ ​Poisson​ ​noise​ ​is​ ​also​ ​present​ ​in​ ​the​ ​data,​ ​however​ ​the​ ​poisson​ ​noise
dominates​ ​for​ ​only​ ​the​ ​brightest​ ​10%​ ​of​ ​stars.​ ​​ ​The​ ​other​ ​90%​ ​are​ ​dominated​ ​by​ ​the​ ​background
error.​ ​​ ​It​ ​was​ ​therefore​ ​reasonable​ ​to​ ​use​ ​the​ ​background​ ​error​ ​for​ ​the​ ​error​ ​bars​ ​in​ ​each​ ​H-R
diagram.​ ​​ ​There​ ​is,​ ​however,​ ​cell​ ​blocks​ ​in​ ​the​ ​calibration​ ​code​ ​that​ ​find​ ​both​ ​the​ ​background
error​ ​and​ ​the​ ​poisson​ ​error.​ ​​ ​The​ ​signal​ ​to​ ​noise​ ​ratio​ ​can​ ​be​ ​improved​ ​by​ ​taking​ ​images​ ​with
longer​ ​exposure​ ​times.​ ​​ ​It​ ​can​ ​also​ ​be​ ​improved​ ​by​ ​combining​ ​images​ ​by​ ​either​ ​averaging​ ​them
or​ ​by​ ​finding​ ​their​ ​median.​ ​​ ​In​ ​this​ ​case​ ​the​ ​noise​ ​is​ ​reduced​ ​by​ ​the​ ​square​ ​root​ ​of​ ​the​ ​number​ ​of
images​ ​combined.​ ​​ ​For​ ​example​ ​combining​ ​five​ ​images​ ​reduces​ ​the​ ​noise​ ​by​ ​ .​ ​​ ​Taking​ ​more√5
images​ ​with​ ​longer​ ​exposure​ ​times​ ​could​ ​improve​ ​the​ ​measurements​ ​taken​ ​in​ ​this​ ​project.
Comparison​ ​to​ ​Published​ ​Diagram:​​ ​A​ ​published​ ​H-R​ ​diagram​ ​mapping​ ​the​ ​V​ ​magnitude
against​ ​the​ ​V-I​ ​color​ ​was​ ​found​ ​on​ ​Webda​ ​(left).​ ​​ ​It​ ​does​ ​not​ ​exactly​ ​match​ ​the​ ​H-R​ ​diagram
created​ ​during​ ​this​ ​project​ ​(right),​ ​but​ ​they​ ​have​ ​similar​ ​features.​ ​​ ​Both​ ​have​ ​three​ ​distinct​ ​main
sequences​ ​and​ ​both​ ​have​ ​most​ ​of​ ​their​ ​stars​ ​grouped​ ​nearer​ ​the​ ​bottom​ ​of​ ​the​ ​sequences.​ ​​ ​Both
also​ ​have​ ​some​ ​outlying​ ​stars​ ​in​ ​similar​ ​positions​ ​on​ ​the​ ​diagram.
Conclusions:​​ ​M103​ ​is​ ​a​ ​fairly​ ​young​ ​open​ ​cluster​ ​in​ ​the​ ​plane​ ​of​ ​the​ ​Milky​ ​Way,​ ​with​ ​an​ ​age​ ​of
only​ ​25​ ​million​ ​years.​ ​​ ​This​ ​was​ ​found​ ​by​ ​fitting​ ​25​ ​million​ ​year​ ​old​ ​isochrones​ ​with​ ​a​ ​distance
modulus​ ​of​ ​12.9​ ​magnitudes​ ​and​ ​color​ ​excess​ ​corrections​ ​of​ ​0.4​ ​for​ ​V-R,​ ​-0.4​ ​for​ ​V-I,​ ​and​ ​-0.8
for​ ​R-I.​ ​​ ​M103​ ​has​ ​three​ ​distinct​ ​main​ ​sequences,​ ​most​ ​visible​ ​in​ ​the​ ​V-I​ ​color.​ ​​ ​A​ ​two​ ​color
diagram​ ​plotting​ ​R-I​ ​against​ ​V-R​ ​shows​ ​that​ ​most​ ​stars​ ​have​ ​the​ ​same​ ​metallicity,​ ​which
suggests​ ​that​ ​the​ ​three​ ​sequences​ ​were​ ​born​ ​from​ ​the​ ​same​ ​materials​ ​but​ ​at​ ​different​ ​times.​ ​​ ​The
7
outliers​ ​in​ ​this​ ​two​ ​color​ ​diagram​ ​show​ ​stars​ ​formed​ ​with​ ​a​ ​different​ ​metallicity,​ ​which​ ​suggests
that​ ​these​ ​stars​ ​are​ ​not​ ​part​ ​of​ ​the​ ​cluster.​ ​​ ​Most​ ​of​ ​the​ ​stars​ ​in​ ​M103​ ​are​ ​more​ ​blue​ ​than​ ​red,
which​ ​suggests​ ​that​ ​they​ ​burn​ ​at​ ​a​ ​higher​ ​temperature.​ ​​ ​The​ ​stars​ ​in​ ​the​ ​top​ ​left​ ​of​ ​the​ ​sequence
are​ ​the​ ​most​ ​massive​ ​in​ ​the​ ​cluster.​ ​​ ​There​ ​are​ ​not​ ​many​ ​stars​ ​in​ ​the​ ​top​ ​right​ ​corner​ ​of​ ​the​ ​HRD,
which​ ​means​ ​there​ ​are​ ​not​ ​many​ ​stars​ ​that​ ​are​ ​very​ ​large​ ​in​ ​size.​ ​​ ​This​ ​makes​ ​sense,​ ​since​ ​most​ ​of
the​ ​very​ ​large​ ​stars​ ​are​ ​very​ ​old​ ​stars​ ​that​ ​have​ ​left​ ​the​ ​main​ ​sequence​ ​to​ ​become​ ​giants,​ ​and
M103​ ​is​ ​too​ ​young​ ​of​ ​a​ ​cluster​ ​for​ ​this​ ​to​ ​have​ ​happened​ ​yet.
Color​ ​Images:
Color​ ​Image​ ​of​ ​M103​ ​(NGC​ ​581)​ ​taken​ ​in​ ​V,
R,​ ​and​ ​I​ ​filters​ ​on​ ​October​ ​17,​ ​2017​ ​at​ ​Smith
College,​ ​Northampton​ ​Ma
Color​ ​Image​ ​of​ ​Standard​ ​Star​ ​SA​ ​113342​ ​taken
in​ ​V,​ ​R,​ ​and​ ​I​ ​filters​ ​on​ ​October​ ​17,​ ​2017​ ​at
Smith​ ​College,​ ​Northampton​ ​MA
References:
http://www.cfht.hawaii.edu/ObsInfo/Standards/Landolt/
Mike​ ​Peterson,​ ​class​ ​TA
Webda
http://stev.oapd.inaf.it/cgi-bin/cmd_3.0
http://astro.unl.edu/classaction/outlines/stellarprops2/hr_diagram2.html

More Related Content

Similar to M103

INTRODUCTION One of the most useful and powerful plots in astrophysic.pdf
 INTRODUCTION One of the most useful and powerful plots in astrophysic.pdf INTRODUCTION One of the most useful and powerful plots in astrophysic.pdf
INTRODUCTION One of the most useful and powerful plots in astrophysic.pdfameancal
 
O.M. Lecian LHAASO Further references: part 2.
O.M. Lecian LHAASO Further references: part 2.O.M. Lecian LHAASO Further references: part 2.
O.M. Lecian LHAASO Further references: part 2.Orchidea Maria Lecian
 
shi_summer_2015
shi_summer_2015shi_summer_2015
shi_summer_2015Tiger Shi
 
New results from_an_old_friend_the_crab_nebula _and_its_pulsar
New results from_an_old_friend_the_crab_nebula _and_its_pulsarNew results from_an_old_friend_the_crab_nebula _and_its_pulsar
New results from_an_old_friend_the_crab_nebula _and_its_pulsarSérgio Sacani
 
Objectives Stars have a number of properties which, at first gl.docx
Objectives Stars have a number of properties which, at first gl.docxObjectives Stars have a number of properties which, at first gl.docx
Objectives Stars have a number of properties which, at first gl.docxhopeaustin33688
 
Chapter 10 Lecture
Chapter 10 LectureChapter 10 Lecture
Chapter 10 Lecturedlsupport
 
A dynamical signature_of_multiple_stellar_populations_in_47_tucanae
A dynamical signature_of_multiple_stellar_populations_in_47_tucanaeA dynamical signature_of_multiple_stellar_populations_in_47_tucanae
A dynamical signature_of_multiple_stellar_populations_in_47_tucanaeSérgio Sacani
 
Astonishing Astronomy 101 - Chapter 17
Astonishing Astronomy 101 - Chapter 17Astonishing Astronomy 101 - Chapter 17
Astonishing Astronomy 101 - Chapter 17Don R. Mueller, Ph.D.
 
Intro to astrophysics nis grade 11 by mr marty, visible brightness = apparent...
Intro to astrophysics nis grade 11 by mr marty, visible brightness = apparent...Intro to astrophysics nis grade 11 by mr marty, visible brightness = apparent...
Intro to astrophysics nis grade 11 by mr marty, visible brightness = apparent...Michael Marty
 
Detection of solar_like_oscillations_in_relies_of_the_milk_way_asteroseismolo...
Detection of solar_like_oscillations_in_relies_of_the_milk_way_asteroseismolo...Detection of solar_like_oscillations_in_relies_of_the_milk_way_asteroseismolo...
Detection of solar_like_oscillations_in_relies_of_the_milk_way_asteroseismolo...Sérgio Sacani
 
OD_Report___Copy_
OD_Report___Copy_OD_Report___Copy_
OD_Report___Copy_Nancy Xu
 
Curtain eruptions from_enceladus_south_polar_terrain
Curtain eruptions from_enceladus_south_polar_terrainCurtain eruptions from_enceladus_south_polar_terrain
Curtain eruptions from_enceladus_south_polar_terrainSérgio Sacani
 
Brief Overview of Activity Locate and analyze two news reports of.docx
Brief Overview of Activity Locate and analyze two news reports of.docxBrief Overview of Activity Locate and analyze two news reports of.docx
Brief Overview of Activity Locate and analyze two news reports of.docxchestnutkaitlyn
 
Minkowski’s foundations of spacetime physics and SDSS data motivate reassessm...
Minkowski’s foundations of spacetime physics and SDSS data motivate reassessm...Minkowski’s foundations of spacetime physics and SDSS data motivate reassessm...
Minkowski’s foundations of spacetime physics and SDSS data motivate reassessm...Alexander F. Mayer
 
Poster1 (dragged)
Poster1 (dragged)Poster1 (dragged)
Poster1 (dragged)Vivian Tang
 
Spiral Quasar Census
Spiral Quasar CensusSpiral Quasar Census
Spiral Quasar CensusVeekash Patel
 
The purpose of this lab is to explore basic properties of the Jovian.docx
The purpose of this lab is to explore basic properties of the Jovian.docxThe purpose of this lab is to explore basic properties of the Jovian.docx
The purpose of this lab is to explore basic properties of the Jovian.docxhelen23456789
 
P7 lesson part three
P7 lesson part threeP7 lesson part three
P7 lesson part threesamuelaylward
 
Gaussian Orbital Determination of 1943 Anteros
Gaussian Orbital Determination of 1943 AnterosGaussian Orbital Determination of 1943 Anteros
Gaussian Orbital Determination of 1943 AnterosMatthew Li
 

Similar to M103 (20)

INTRODUCTION One of the most useful and powerful plots in astrophysic.pdf
 INTRODUCTION One of the most useful and powerful plots in astrophysic.pdf INTRODUCTION One of the most useful and powerful plots in astrophysic.pdf
INTRODUCTION One of the most useful and powerful plots in astrophysic.pdf
 
O.M. Lecian LHAASO Further references: part 2.
O.M. Lecian LHAASO Further references: part 2.O.M. Lecian LHAASO Further references: part 2.
O.M. Lecian LHAASO Further references: part 2.
 
shi_summer_2015
shi_summer_2015shi_summer_2015
shi_summer_2015
 
poster09
poster09poster09
poster09
 
New results from_an_old_friend_the_crab_nebula _and_its_pulsar
New results from_an_old_friend_the_crab_nebula _and_its_pulsarNew results from_an_old_friend_the_crab_nebula _and_its_pulsar
New results from_an_old_friend_the_crab_nebula _and_its_pulsar
 
Objectives Stars have a number of properties which, at first gl.docx
Objectives Stars have a number of properties which, at first gl.docxObjectives Stars have a number of properties which, at first gl.docx
Objectives Stars have a number of properties which, at first gl.docx
 
Chapter 10 Lecture
Chapter 10 LectureChapter 10 Lecture
Chapter 10 Lecture
 
A dynamical signature_of_multiple_stellar_populations_in_47_tucanae
A dynamical signature_of_multiple_stellar_populations_in_47_tucanaeA dynamical signature_of_multiple_stellar_populations_in_47_tucanae
A dynamical signature_of_multiple_stellar_populations_in_47_tucanae
 
Astonishing Astronomy 101 - Chapter 17
Astonishing Astronomy 101 - Chapter 17Astonishing Astronomy 101 - Chapter 17
Astonishing Astronomy 101 - Chapter 17
 
Intro to astrophysics nis grade 11 by mr marty, visible brightness = apparent...
Intro to astrophysics nis grade 11 by mr marty, visible brightness = apparent...Intro to astrophysics nis grade 11 by mr marty, visible brightness = apparent...
Intro to astrophysics nis grade 11 by mr marty, visible brightness = apparent...
 
Detection of solar_like_oscillations_in_relies_of_the_milk_way_asteroseismolo...
Detection of solar_like_oscillations_in_relies_of_the_milk_way_asteroseismolo...Detection of solar_like_oscillations_in_relies_of_the_milk_way_asteroseismolo...
Detection of solar_like_oscillations_in_relies_of_the_milk_way_asteroseismolo...
 
OD_Report___Copy_
OD_Report___Copy_OD_Report___Copy_
OD_Report___Copy_
 
Curtain eruptions from_enceladus_south_polar_terrain
Curtain eruptions from_enceladus_south_polar_terrainCurtain eruptions from_enceladus_south_polar_terrain
Curtain eruptions from_enceladus_south_polar_terrain
 
Brief Overview of Activity Locate and analyze two news reports of.docx
Brief Overview of Activity Locate and analyze two news reports of.docxBrief Overview of Activity Locate and analyze two news reports of.docx
Brief Overview of Activity Locate and analyze two news reports of.docx
 
Minkowski’s foundations of spacetime physics and SDSS data motivate reassessm...
Minkowski’s foundations of spacetime physics and SDSS data motivate reassessm...Minkowski’s foundations of spacetime physics and SDSS data motivate reassessm...
Minkowski’s foundations of spacetime physics and SDSS data motivate reassessm...
 
Poster1 (dragged)
Poster1 (dragged)Poster1 (dragged)
Poster1 (dragged)
 
Spiral Quasar Census
Spiral Quasar CensusSpiral Quasar Census
Spiral Quasar Census
 
The purpose of this lab is to explore basic properties of the Jovian.docx
The purpose of this lab is to explore basic properties of the Jovian.docxThe purpose of this lab is to explore basic properties of the Jovian.docx
The purpose of this lab is to explore basic properties of the Jovian.docx
 
P7 lesson part three
P7 lesson part threeP7 lesson part three
P7 lesson part three
 
Gaussian Orbital Determination of 1943 Anteros
Gaussian Orbital Determination of 1943 AnterosGaussian Orbital Determination of 1943 Anteros
Gaussian Orbital Determination of 1943 Anteros
 

Recently uploaded

PARENTAL CARE IN FISHES.pptx for 5th sem
PARENTAL CARE IN FISHES.pptx for 5th semPARENTAL CARE IN FISHES.pptx for 5th sem
PARENTAL CARE IN FISHES.pptx for 5th semborkhotudu123
 
Taphonomy and Quality of the Fossil Record
Taphonomy and Quality of the  Fossil RecordTaphonomy and Quality of the  Fossil Record
Taphonomy and Quality of the Fossil RecordSangram Sahoo
 
Heat Units in plant physiology and the importance of Growing Degree days
Heat Units in plant physiology and the importance of Growing Degree daysHeat Units in plant physiology and the importance of Growing Degree days
Heat Units in plant physiology and the importance of Growing Degree daysBrahmesh Reddy B R
 
Terpineol and it's characterization pptx
Terpineol and it's characterization pptxTerpineol and it's characterization pptx
Terpineol and it's characterization pptxMuhammadRazzaq31
 
GBSN - Biochemistry (Unit 3) Metabolism
GBSN - Biochemistry (Unit 3) MetabolismGBSN - Biochemistry (Unit 3) Metabolism
GBSN - Biochemistry (Unit 3) MetabolismAreesha Ahmad
 
Polyethylene and its polymerization.pptx
Polyethylene and its polymerization.pptxPolyethylene and its polymerization.pptx
Polyethylene and its polymerization.pptxMuhammadRazzaq31
 
Adaptive Restore algorithm & importance Monte Carlo
Adaptive Restore algorithm & importance Monte CarloAdaptive Restore algorithm & importance Monte Carlo
Adaptive Restore algorithm & importance Monte CarloChristian Robert
 
Micropropagation of Madagascar periwinkle (Catharanthus roseus)
Micropropagation of Madagascar periwinkle (Catharanthus roseus)Micropropagation of Madagascar periwinkle (Catharanthus roseus)
Micropropagation of Madagascar periwinkle (Catharanthus roseus)adityawani683
 
Costs to heap leach gold ore tailings in Karamoja region of Uganda
Costs to heap leach gold ore tailings in Karamoja region of UgandaCosts to heap leach gold ore tailings in Karamoja region of Uganda
Costs to heap leach gold ore tailings in Karamoja region of UgandaTimothyOkuna
 
THE FUNDAMENTAL UNIT OF LIFE CLASS IX.ppt
THE FUNDAMENTAL UNIT OF LIFE CLASS IX.pptTHE FUNDAMENTAL UNIT OF LIFE CLASS IX.ppt
THE FUNDAMENTAL UNIT OF LIFE CLASS IX.pptsinghnarendra5386
 
An Overview of Active and Passive Targeting Strategies to Improve the Nano-Ca...
An Overview of Active and Passive Targeting Strategies to Improve the Nano-Ca...An Overview of Active and Passive Targeting Strategies to Improve the Nano-Ca...
An Overview of Active and Passive Targeting Strategies to Improve the Nano-Ca...NoorulainMehmood1
 
Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...
Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...
Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...Ansari Aashif Raza Mohd Imtiyaz
 
Precision Farming in Fruit Crops presentation
Precision Farming in Fruit Crops presentationPrecision Farming in Fruit Crops presentation
Precision Farming in Fruit Crops presentationscvns2828
 
PHOTOSYNTHETIC BACTERIA (OXYGENIC AND ANOXYGENIC)
PHOTOSYNTHETIC BACTERIA  (OXYGENIC AND ANOXYGENIC)PHOTOSYNTHETIC BACTERIA  (OXYGENIC AND ANOXYGENIC)
PHOTOSYNTHETIC BACTERIA (OXYGENIC AND ANOXYGENIC)kushbuR
 
Vital Signs of Animals Presentation By Aftab Ahmed Rahimoon
Vital Signs of Animals Presentation By Aftab Ahmed RahimoonVital Signs of Animals Presentation By Aftab Ahmed Rahimoon
Vital Signs of Animals Presentation By Aftab Ahmed Rahimoonintarciacompanies
 
Efficient spin-up of Earth System Models usingsequence acceleration
Efficient spin-up of Earth System Models usingsequence accelerationEfficient spin-up of Earth System Models usingsequence acceleration
Efficient spin-up of Earth System Models usingsequence accelerationSérgio Sacani
 
Nanoparticles for the Treatment of Alzheimer’s Disease_102718.pptx
Nanoparticles for the Treatment of Alzheimer’s Disease_102718.pptxNanoparticles for the Treatment of Alzheimer’s Disease_102718.pptx
Nanoparticles for the Treatment of Alzheimer’s Disease_102718.pptxssusera4ec7b
 
Technical english Technical english.pptx
Technical english Technical english.pptxTechnical english Technical english.pptx
Technical english Technical english.pptxyoussefboujtat3
 
Harry Coumnas Thinks That Human Teleportation is Possible in Quantum Mechanic...
Harry Coumnas Thinks That Human Teleportation is Possible in Quantum Mechanic...Harry Coumnas Thinks That Human Teleportation is Possible in Quantum Mechanic...
Harry Coumnas Thinks That Human Teleportation is Possible in Quantum Mechanic...kevin8smith
 
Warming the earth and the atmosphere.pptx
Warming the earth and the atmosphere.pptxWarming the earth and the atmosphere.pptx
Warming the earth and the atmosphere.pptxGlendelCaroz
 

Recently uploaded (20)

PARENTAL CARE IN FISHES.pptx for 5th sem
PARENTAL CARE IN FISHES.pptx for 5th semPARENTAL CARE IN FISHES.pptx for 5th sem
PARENTAL CARE IN FISHES.pptx for 5th sem
 
Taphonomy and Quality of the Fossil Record
Taphonomy and Quality of the  Fossil RecordTaphonomy and Quality of the  Fossil Record
Taphonomy and Quality of the Fossil Record
 
Heat Units in plant physiology and the importance of Growing Degree days
Heat Units in plant physiology and the importance of Growing Degree daysHeat Units in plant physiology and the importance of Growing Degree days
Heat Units in plant physiology and the importance of Growing Degree days
 
Terpineol and it's characterization pptx
Terpineol and it's characterization pptxTerpineol and it's characterization pptx
Terpineol and it's characterization pptx
 
GBSN - Biochemistry (Unit 3) Metabolism
GBSN - Biochemistry (Unit 3) MetabolismGBSN - Biochemistry (Unit 3) Metabolism
GBSN - Biochemistry (Unit 3) Metabolism
 
Polyethylene and its polymerization.pptx
Polyethylene and its polymerization.pptxPolyethylene and its polymerization.pptx
Polyethylene and its polymerization.pptx
 
Adaptive Restore algorithm & importance Monte Carlo
Adaptive Restore algorithm & importance Monte CarloAdaptive Restore algorithm & importance Monte Carlo
Adaptive Restore algorithm & importance Monte Carlo
 
Micropropagation of Madagascar periwinkle (Catharanthus roseus)
Micropropagation of Madagascar periwinkle (Catharanthus roseus)Micropropagation of Madagascar periwinkle (Catharanthus roseus)
Micropropagation of Madagascar periwinkle (Catharanthus roseus)
 
Costs to heap leach gold ore tailings in Karamoja region of Uganda
Costs to heap leach gold ore tailings in Karamoja region of UgandaCosts to heap leach gold ore tailings in Karamoja region of Uganda
Costs to heap leach gold ore tailings in Karamoja region of Uganda
 
THE FUNDAMENTAL UNIT OF LIFE CLASS IX.ppt
THE FUNDAMENTAL UNIT OF LIFE CLASS IX.pptTHE FUNDAMENTAL UNIT OF LIFE CLASS IX.ppt
THE FUNDAMENTAL UNIT OF LIFE CLASS IX.ppt
 
An Overview of Active and Passive Targeting Strategies to Improve the Nano-Ca...
An Overview of Active and Passive Targeting Strategies to Improve the Nano-Ca...An Overview of Active and Passive Targeting Strategies to Improve the Nano-Ca...
An Overview of Active and Passive Targeting Strategies to Improve the Nano-Ca...
 
Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...
Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...
Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...
 
Precision Farming in Fruit Crops presentation
Precision Farming in Fruit Crops presentationPrecision Farming in Fruit Crops presentation
Precision Farming in Fruit Crops presentation
 
PHOTOSYNTHETIC BACTERIA (OXYGENIC AND ANOXYGENIC)
PHOTOSYNTHETIC BACTERIA  (OXYGENIC AND ANOXYGENIC)PHOTOSYNTHETIC BACTERIA  (OXYGENIC AND ANOXYGENIC)
PHOTOSYNTHETIC BACTERIA (OXYGENIC AND ANOXYGENIC)
 
Vital Signs of Animals Presentation By Aftab Ahmed Rahimoon
Vital Signs of Animals Presentation By Aftab Ahmed RahimoonVital Signs of Animals Presentation By Aftab Ahmed Rahimoon
Vital Signs of Animals Presentation By Aftab Ahmed Rahimoon
 
Efficient spin-up of Earth System Models usingsequence acceleration
Efficient spin-up of Earth System Models usingsequence accelerationEfficient spin-up of Earth System Models usingsequence acceleration
Efficient spin-up of Earth System Models usingsequence acceleration
 
Nanoparticles for the Treatment of Alzheimer’s Disease_102718.pptx
Nanoparticles for the Treatment of Alzheimer’s Disease_102718.pptxNanoparticles for the Treatment of Alzheimer’s Disease_102718.pptx
Nanoparticles for the Treatment of Alzheimer’s Disease_102718.pptx
 
Technical english Technical english.pptx
Technical english Technical english.pptxTechnical english Technical english.pptx
Technical english Technical english.pptx
 
Harry Coumnas Thinks That Human Teleportation is Possible in Quantum Mechanic...
Harry Coumnas Thinks That Human Teleportation is Possible in Quantum Mechanic...Harry Coumnas Thinks That Human Teleportation is Possible in Quantum Mechanic...
Harry Coumnas Thinks That Human Teleportation is Possible in Quantum Mechanic...
 
Warming the earth and the atmosphere.pptx
Warming the earth and the atmosphere.pptxWarming the earth and the atmosphere.pptx
Warming the earth and the atmosphere.pptx
 

M103

  • 1. 1 Final​ ​Report Madeline​ ​Boyce December​ ​12,​ ​2017 Abstract:​​ ​​ ​The​ ​purpose​ ​of​ ​this​ ​project​ ​was​ ​to​ ​observe​ ​and​ ​create​ ​an​ ​Hertzsprung-Russell diagram​ ​of​ ​the​ ​M103​ ​star​ ​cluster.​ ​​ ​Isochrones​ ​were​ ​fitted​ ​to​ ​the​ ​H-R​ ​diagrams​ ​to determine​ ​the​ ​age​ ​of​ ​the​ ​cluster,​ ​which​ ​was​ ​found​ ​to​ ​be​ ​25​ ​million​ ​years​ ​old.​ ​​ ​Most​ ​of​ ​the stars​ ​in​ ​M103​ ​are​ ​massive,​ ​hot​ ​burning​ ​blue​ ​stars,​ ​with​ ​very​ ​few​ ​cooler​ ​red​ ​stars. Motivation:​​ ​A​ ​Hertzsprung-Russell​ ​(H-R)​ ​diagram​ ​is​ ​a​ ​very​ ​important​ ​part​ ​of​ ​astronomy.​ ​​ ​The magnitudes​ ​and​ ​color​ ​of​ ​the​ ​stars​ ​can​ ​be​ ​read​ ​directly​ ​from​ ​the​ ​diagram,​ ​while​ ​the​ ​luminosity, temperature,​ ​and​ ​mass​ ​can​ ​be​ ​determined​ ​relative​ ​to​ ​the​ ​other​ ​stars​ ​(stars​ ​near​ ​the​ ​top​ ​of​ ​the diagram​ ​are​ ​more​ ​luminous​ ​and​ ​massive​ ​than​ ​stars​ ​near​ ​the​ ​bottom​ ​and​ ​stars​ ​near​ ​the​ ​right​ ​of​ ​the diagram​ ​are​ ​cooler​ ​than​ ​those​ ​on​ ​the​ ​left).​ ​​ ​The​ ​age​ ​of​ ​the​ ​cluster​ ​of​ ​stars​ ​can​ ​also​ ​be​ ​determined by​ ​fitting​ ​isochrones​ ​to​ ​the​ ​H-R​ ​diagram.​ ​​ ​To​ ​make​ ​the​ ​H-R​ ​diagram,​ ​the​ ​M103​ ​cluster​ ​was observed.​ ​​ ​Fluxes​ ​in​ ​three​ ​different​ ​filters​ ​(V,​ ​R,​ ​and​ ​I)​ ​were​ ​measured​ ​and​ ​turned​ ​into magnitudes,​ ​from​ ​which​ ​color​ ​could​ ​also​ ​be​ ​calculated.​ ​​ ​A​ ​standard​ ​star​ ​was​ ​used​ ​to​ ​calibrate these​ ​magnitudes.​ ​​ ​The​ ​V​ ​magnitude​ ​was​ ​then​ ​plotted​ ​against​ ​color​ ​to​ ​make​ ​the​ ​H-R​ ​diagram​ ​and isochrones​ ​were​ ​fitted​ ​to​ ​determine​ ​the​ ​age. Observing​ ​Run​ ​Details: Date Location Conditions Equipment Field​ ​of View Pixel Scale Seeing FWHM Oct. 17, 2017 Smith College, Northampton, MA Clear,​ ​45℉ Telescope: Meade​ ​LX200 ACF​ ​16-inch​ ​f/10 Camera: SBIG​ ​STXL6303 CCD 24.4’​ ​by 15.5’ 0.46”​ ​by 0.46” Mean​ ​of​ ​8.28 pixels
  • 2. 2 Image Number​ ​of​ ​Exposures Exposure​ ​Times Filters SA​ ​113342 3/3/3 60/60/60 V/R/I M103 10/10/10 60/60/60 V/R/I Bias 10 ------- ------- Dark 10 60 ------- Flat 5/5/5 10/1/1 V/R/I Data​ ​Reduction:​​ ​The​ ​table​ ​above​ ​lists​ ​three​ ​kinds​ ​of​ ​calibration​ ​images:​ ​bias,​ ​dark,​ ​and​ ​flat. The​ ​bias​ ​is​ ​an​ ​image​ ​taken​ ​with​ ​the​ ​shutter​ ​closed​ ​and​ ​with​ ​zero​ ​exposure​ ​time​ ​that​ ​measures​ ​a background​ ​voltage​ ​in​ ​each​ ​pixel.​ ​​ ​The​ ​bias​ ​is​ ​present​ ​in​ ​every​ ​image​ ​taken​ ​with​ ​the​ ​CCD.​ ​​ ​A master​ ​bias​ ​was​ ​found​ ​by​ ​finding​ ​the​ ​median​ ​value​ ​of​ ​each​ ​pixel​ ​in​ ​the​ ​10​ ​exposures.​ ​​ ​This master​ ​bias​ ​was​ ​then​ ​subtracted​ ​from​ ​every​ ​image​ ​of​ ​M103​ ​and​ ​SA​ ​113342.​ ​​ ​The​ ​dark​ ​is​ ​an image​ ​that​ ​measures​ ​a​ ​background​ ​current​ ​flowing​ ​through​ ​each​ ​pixel​ ​due​ ​to​ ​the​ ​temperature​ ​of the​ ​environment​ ​and​ ​detector​ ​itself.​ ​​ ​The​ ​dark​ ​also​ ​depends​ ​on​ ​the​ ​exposure​ ​time.​ ​​ ​The​ ​dark should​ ​be​ ​taken​ ​with​ ​the​ ​same​ ​exposure​ ​time​ ​as​ ​the​ ​images​ ​of​ ​the​ ​target,​ ​as​ ​well​ ​as​ ​in​ ​the​ ​same environmental​ ​conditions.​ ​A​ ​master​ ​dark​ ​was​ ​found​ ​by​ ​finding​ ​the​ ​median​ ​value​ ​of​ ​each​ ​pixel​ ​in the​ ​10​ ​exposures,​ ​the​ ​same​ ​was​ ​as​ ​with​ ​the​ ​master​ ​dark.​ ​​ ​The​ ​master​ ​bias​ ​was​ ​then​ ​subtracted from​ ​the​ ​master​ ​dark.​ ​​ ​The​ ​flat​ ​image​ ​is​ ​an​ ​image​ ​taken​ ​of​ ​a​ ​blank​ ​white​ ​surface​ ​in​ ​each​ ​of​ ​the filters​ ​used​ ​in​ ​the​ ​images​ ​of​ ​the​ ​target​ ​and​ ​measures​ ​the​ ​sensitivity​ ​of​ ​each​ ​pixel​ ​in​ ​the​ ​detector. Five​ ​exposures​ ​were​ ​taken​ ​in​ ​each​ ​of​ ​the​ ​three​ ​filters.​ ​​ ​All​ ​other​ ​images​ ​were​ ​taken​ ​with​ ​the​ ​same exposure​ ​time​ ​for​ ​each​ ​filter.​ ​​ ​The​ ​flat​ ​however,​ ​did​ ​not​ ​have​ ​the​ ​same​ ​exposure​ ​time​ ​for​ ​each filter.​ ​​ ​This​ ​is​ ​because​ ​the​ ​R​ ​and​ ​I​ ​filters​ ​are​ ​more​ ​sensitive​ ​than​ ​the​ ​V​ ​filter,​ ​and​ ​therefore saturated​ ​the​ ​detector​ ​at​ ​longer​ ​exposure​ ​times.​ ​​ ​It​ ​was​ ​necessary​ ​to​ ​have​ ​unsaturated​ ​pixels,​ ​but not​ ​necessary​ ​to​ ​have​ ​the​ ​same​ ​exposure​ ​time​ ​for​ ​each​ ​filter.​ ​​ ​A​ ​master​ ​flat​ ​was​ ​found​ ​for​ ​each filter​ ​in​ ​the​ ​same​ ​was​ ​as​ ​the​ ​master​ ​bias​ ​and​ ​dark.​ ​​ ​The​ ​master​ ​bias​ ​and​ ​master​ ​dark​ ​were​ ​then subtracted​ ​from​ ​the​ ​three​ ​master​ ​flats.​ ​​ ​Each​ ​V​ ​filter​ ​image​ ​of​ ​the​ ​target​ ​was​ ​then​ ​divided​ ​by​ ​the V​ ​filter​ ​master​ ​flat​ ​to​ ​normalize​ ​it.​ ​​ ​This​ ​was​ ​done​ ​for​ ​the​ ​R​ ​and​ ​I​ ​filters​ ​as​ ​well.​ ​​ ​The​ ​now reduced​ ​images​ ​of​ ​the​ ​target​ ​were​ ​aligned​ ​and​ ​stacked​ ​into​ ​one​ ​image​ ​for​ ​each​ ​filter. Photometry:​​ ​The​ ​blanks​ ​in​ ​the​ ​photometry​ ​code​ ​were​ ​filled​ ​in​ ​and​ ​the​ ​code​ ​was​ ​run​ ​to​ ​test​ ​that it​ ​worked.​ ​​ ​When​ ​a​ ​reasonable​ ​number​ ​of​ ​stars​ ​were​ ​found,​ ​I​ ​decided​ ​not​ ​to​ ​change​ ​any​ ​of​ ​the parameters​ ​that​ ​had​ ​been​ ​set​ ​in​ ​the​ ​code.​ ​​ ​​This​ ​meant​ ​leaving​ ​the​ ​aperture​ ​size​ ​at​ ​10​ ​pixels,​ ​the star​ ​finding​ ​threshold​ ​at​ ​10​ ​sigma,​ ​and​ ​the​ ​sky​ ​annulus​ ​size​ ​at​ ​5​ ​pixels,​ ​with​ ​a​ ​buffer​ ​of​ ​10​ ​pixels in​ ​between​ ​the​ ​aperture​ ​radius​ ​and​ ​beginning​ ​of​ ​the​ ​annulus.​ ​​ ​In​ ​a​ ​previous​ ​class,​ ​it​ ​was​ ​found that​ ​an​ ​aperture​ ​with​ ​a​ ​radius​ ​of​ ​10​ ​pixels​ ​was​ ​adequate​ ​to​ ​measure​ ​the​ ​flux​ ​of​ ​the​ ​stars.​ ​​ ​This
  • 3. 3 was​ ​found​ ​by​ ​looking​ ​at​ ​a​ ​radial​ ​profile​ ​of​ ​several​ ​of​ ​the​ ​(non​ ​saturated)​ ​stars​ ​and​ ​seeing​ ​that​ ​the radial​ ​profile​ ​seemed​ ​to​ ​level​ ​off​ ​to​ ​the​ ​background​ ​value​ ​at​ ​a​ ​radius​ ​of​ ​10​ ​pixels.​ ​​ ​The​ ​annulus and​ ​buffer​ ​needed​ ​to​ ​be​ ​enough​ ​to​ ​measure​ ​a​ ​ring​ ​of​ ​background​ ​around​ ​each​ ​star​ ​without​ ​for​ ​the most​ ​part​ ​​ ​measuring​ ​the​ ​star​ ​itself​ ​or​ ​neighboring​ ​stars.​ ​​ ​5​ ​pixels​ ​and​ ​10​ ​pixels​ ​respectively seemed​ ​to​ ​provide​ ​a​ ​reasonable​ ​number​ ​of​ ​stars.​ ​​ ​758​ ​stars​ ​were​ ​found.​ ​​ ​The​ ​magnitude​ ​of​ ​each of​ ​these​ ​stars​ ​in​ ​each​ ​filter​ ​was​ ​found​ ​from​ ​the​ ​equation − .5log(f)m = 2 These​ ​magnitudes​ ​were​ ​the​ ​measured​ ​magnitudes,​ ​but​ ​not​ ​the​ ​actual​ ​magnitudes.​ ​​ ​These measured​ ​magnitudes​ ​were​ ​calibrated​ ​with​ ​standard​ ​star​ ​SA​ ​113342.​ ​​ ​The​ ​Landolt​ ​catalog​ ​lists V,​ ​V-R,​ ​and​ ​V-I​ ​magnitudes​ ​to​ ​SA​ ​113342.​ ​​ ​The​ ​R​ ​and​ ​I​ ​magnitudes​ ​respectively​ ​were​ ​found from​ ​subtracting​ ​the​ ​V-R​ ​and​ ​V-I​ ​magnitudes​ ​from​ ​the​ ​V​ ​magnitude.​ ​​ ​These​ ​magnitudes​ ​should theoretically​ ​be​ ​the​ ​same​ ​as​ ​those​ ​calculated​ ​by​ ​using​ ​the​ ​measured​ ​fluxes​ ​of​ ​the​ ​standard​ ​star, however​ ​this​ ​is​ ​not​ ​true.​ ​​ ​They​ ​are​ ​off​ ​by​ ​some​ ​amount​ ​called​ ​the​ ​zero​ ​point.​ ​​ ​The​ ​zero​ ​point​ ​was found​ ​by​ ​using​ ​the​ ​magnitude​ ​equation − .5log(f) ero pointm = 2 + z ero point .5log(f)z = m + 2 This​ ​zero​ ​point​ ​was​ ​added​ ​to​ ​the​ ​calculated​ ​magnitudes​ ​in​ ​each​ ​respective​ ​filter​ ​to​ ​find​ ​the​ ​actual magnitude​ ​of​ ​the​ ​stars​ ​in​ ​the​ ​cluster. Table​ ​of​ ​Results: Filter Zero​ ​Point Sensitivity​ ​reached​ ​with S/N=10​ ​(magnitude​ ​of faintest​ ​star​ ​found) V 20.3359414536 21.9316218692 R 20.3606562998 17.65279583 I 19.2775257582 17.6938546354 A​ ​signal​ ​to​ ​noise​ ​ratio​ ​of​ ​10​ ​sigma​ ​was​ ​used​ ​instead​ ​of​ ​a​ ​ration​ ​of​ ​5​ ​sigma​ ​because​ ​5​ ​sigma allows​ ​too​ ​many​ ​very​ ​faint​ ​stars​ ​and​ ​adds​ ​more​ ​noise.
  • 4. 4 Figures: Top​ ​left-​ ​figure​ ​1 Top​ ​right-​ ​figure​ ​2 Bottom​ ​left-​ ​figure​ ​3 Bottom​ ​right-​ ​figure​ ​4
  • 5. 5 Analysis​ ​of​ ​H-R​ ​Diagram:​​ ​There​ ​are​ ​three​ ​distinct​ ​main​ ​sequences​ ​in​ ​the​ ​H-R​ ​diagrams​ ​of M103,​ ​most​ ​prominent​ ​in​ ​the​ ​V-R​ ​color.​ ​​ ​It​ ​is​ ​also​ ​very​ ​prominent​ ​in​ ​the​ ​V-I​ ​color​ ​diagram found​ ​on​ ​Webda.​ ​​ ​The​ ​most​ ​massive​ ​stars​ ​are​ ​in​ ​the​ ​top​ ​left​ ​corner​ ​of​ ​the​ ​H-R​ ​diagram,​ ​while​ ​the largest​ ​stars​ ​are​ ​in​ ​the​ ​top​ ​right.​ ​​ ​Mass​ ​increases​ ​as​ ​a​ ​diagonal​ ​line​ ​from​ ​the​ ​bottom​ ​right​ ​to​ ​the top​ ​left​ ​and​ ​size​ ​increases​ ​as​ ​a​ ​diagonal​ ​line​ ​from​ ​the​ ​bottom​ ​left​ ​to​ ​the​ ​top​ ​right.​ ​​ ​Most​ ​of​ ​these stars​ ​are​ ​smaller​ ​in​ ​size​ ​but​ ​more​ ​massive.​ ​​ ​Redness​ ​increases​ ​along​ ​the​ ​x​ ​axis,​ ​so​ ​the​ ​fact​ ​that most​ ​stars​ ​are​ ​on​ ​the​ ​left​ ​side​ ​show​ ​that​ ​their​ ​colors​ ​are​ ​more​ ​blue​ ​than​ ​red.​ ​​ ​Blue​ ​stars​ ​burn hotter​ ​than​ ​red​ ​stars,​ ​so​ ​this​ ​is​ ​also​ ​an​ ​estimate​ ​of​ ​their​ ​temperature.​ ​​ ​In​ ​the​ ​colored​ ​picture attached​ ​at​ ​the​ ​end,​ ​it​ ​can​ ​be​ ​seen​ ​that​ ​most​ ​of​ ​the​ ​stars​ ​have​ ​a​ ​blue​ ​color​ ​to​ ​them,​ ​while​ ​a​ ​few stars​ ​are​ ​bright​ ​red.​ ​​ ​These​ ​stars​ ​probably​ ​represent​ ​the​ ​few​ ​stars​ ​that​ ​are​ ​on​ ​the​ ​very​ ​right​ ​of​ ​the H-R​ ​diagram.​ ​​ ​However,​ ​some​ ​of​ ​the​ ​stars​ ​on​ ​the​ ​H-R​ ​diagram​ ​do​ ​not​ ​seem​ ​to​ ​follow​ ​the​ ​main sequence​ ​(bottom​ ​right​ ​stars​ ​seen​ ​in​ ​figures​ ​1​ ​and​ ​2).​ ​​ ​These​ ​stars​ ​are​ ​likely​ ​to​ ​not​ ​be​ ​part​ ​of​ ​the cluster,​ ​but​ ​foreground​ ​or​ ​background​ ​stars​ ​that​ ​were​ ​captured​ ​in​ ​the​ ​image​ ​along​ ​with​ ​the​ ​target cluster​ ​stars. Isochrone​ ​Fitting:​​ ​The​ ​cluster​ ​was​ ​found​ ​to​ ​be​ ​25​ ​million​ ​years​ ​old.​ ​​ ​This​ ​makes​ ​sense,​ ​since​ ​it is​ ​an​ ​open​ ​cluster​ ​in​ ​the​ ​plane​ ​of​ ​the​ ​galaxy,​ ​which​ ​tend​ ​to​ ​be​ ​fairly​ ​young​ ​in​ ​the​ ​scale​ ​of​ ​the universe.​ ​​ ​The​ ​metallicity​ ​did​ ​not​ ​seem​ ​to​ ​have​ ​a​ ​great​ ​effect​ ​on​ ​the​ ​different​ ​isochrones​ ​that were​ ​fit​ ​to​ ​the​ ​H-R​ ​diagram.​ ​​ ​At​ ​first​ ​a​ ​25​ ​million​ ​year​ ​old​ ​isochrone​ ​had​ ​the​ ​same​ ​general​ ​shape of​ ​the​ ​H-R​ ​diagrams,​ ​but​ ​were​ ​not​ ​lining​ ​up​ ​quite​ ​right.​ ​​ ​The​ ​difference​ ​in​ ​distance​ ​had​ ​to​ ​be accounted​ ​for​ ​by​ ​adding​ ​a​ ​distance​ ​modulus​ ​to​ ​the​ ​magnitudes​ ​of​ ​the​ ​isochrone.​ ​​ ​This​ ​distance modulus​ ​was​ ​found​ ​from​ ​Webda​ ​to​ ​be​ ​12.9​ ​magnitudes.​ ​​ ​The​ ​isochrones​ ​then​ ​matched​ ​the​ ​data points​ ​in​ ​the​ ​y​ ​direction,​ ​but​ ​were​ ​still​ ​off​ ​in​ ​the​ ​x​ ​direction.​ ​​ ​This​ ​was​ ​due​ ​to​ ​dust​ ​extinction.​ ​​ ​An excess​ ​color​ ​factor​ ​had​ ​to​ ​be​ ​added​ ​to​ ​the​ ​colors​ ​for​ ​each​ ​plot.​ ​​ ​The​ ​values​ ​of​ ​these​ ​were​ ​found by​ ​eye​ ​to​ ​be: Color V-R V-I R-I Excess​ ​Color​ ​Factor 0.4​ ​magnitudes -0.4​ ​magnitudes -0.8​ ​magnitudes A​ ​plot​ ​of​ ​a​ ​V​ ​vs​ ​V-I​ ​H-R​ ​diagram​ ​with​ ​a​ ​25​ ​million​ ​year​ ​old isochrone​ ​fit​ ​found​ ​from​ ​Webda
  • 6. 6 Sources​ ​of​ ​Error:​​ ​The​ ​main​ ​source​ ​of​ ​error​ ​came​ ​from​ ​the​ ​background​ ​of​ ​the​ ​images.​ ​​ ​The background​ ​consisted​ ​of​ ​both​ ​the​ ​sky​ ​brightness​ ​and​ ​the​ ​read​ ​noise​ ​from​ ​the​ ​detector.​ ​​ ​This​ ​noise is​ ​impossible​ ​to​ ​completely​ ​remove,​ ​however​ ​it​ ​is​ ​possible​ ​to​ ​increase​ ​the​ ​signal​ ​to​ ​noise​ ​ratio​ ​to decrease​ ​the​ ​error.​ ​​ ​Poisson​ ​noise​ ​is​ ​also​ ​present​ ​in​ ​the​ ​data,​ ​however​ ​the​ ​poisson​ ​noise dominates​ ​for​ ​only​ ​the​ ​brightest​ ​10%​ ​of​ ​stars.​ ​​ ​The​ ​other​ ​90%​ ​are​ ​dominated​ ​by​ ​the​ ​background error.​ ​​ ​It​ ​was​ ​therefore​ ​reasonable​ ​to​ ​use​ ​the​ ​background​ ​error​ ​for​ ​the​ ​error​ ​bars​ ​in​ ​each​ ​H-R diagram.​ ​​ ​There​ ​is,​ ​however,​ ​cell​ ​blocks​ ​in​ ​the​ ​calibration​ ​code​ ​that​ ​find​ ​both​ ​the​ ​background error​ ​and​ ​the​ ​poisson​ ​error.​ ​​ ​The​ ​signal​ ​to​ ​noise​ ​ratio​ ​can​ ​be​ ​improved​ ​by​ ​taking​ ​images​ ​with longer​ ​exposure​ ​times.​ ​​ ​It​ ​can​ ​also​ ​be​ ​improved​ ​by​ ​combining​ ​images​ ​by​ ​either​ ​averaging​ ​them or​ ​by​ ​finding​ ​their​ ​median.​ ​​ ​In​ ​this​ ​case​ ​the​ ​noise​ ​is​ ​reduced​ ​by​ ​the​ ​square​ ​root​ ​of​ ​the​ ​number​ ​of images​ ​combined.​ ​​ ​For​ ​example​ ​combining​ ​five​ ​images​ ​reduces​ ​the​ ​noise​ ​by​ ​ .​ ​​ ​Taking​ ​more√5 images​ ​with​ ​longer​ ​exposure​ ​times​ ​could​ ​improve​ ​the​ ​measurements​ ​taken​ ​in​ ​this​ ​project. Comparison​ ​to​ ​Published​ ​Diagram:​​ ​A​ ​published​ ​H-R​ ​diagram​ ​mapping​ ​the​ ​V​ ​magnitude against​ ​the​ ​V-I​ ​color​ ​was​ ​found​ ​on​ ​Webda​ ​(left).​ ​​ ​It​ ​does​ ​not​ ​exactly​ ​match​ ​the​ ​H-R​ ​diagram created​ ​during​ ​this​ ​project​ ​(right),​ ​but​ ​they​ ​have​ ​similar​ ​features.​ ​​ ​Both​ ​have​ ​three​ ​distinct​ ​main sequences​ ​and​ ​both​ ​have​ ​most​ ​of​ ​their​ ​stars​ ​grouped​ ​nearer​ ​the​ ​bottom​ ​of​ ​the​ ​sequences.​ ​​ ​Both also​ ​have​ ​some​ ​outlying​ ​stars​ ​in​ ​similar​ ​positions​ ​on​ ​the​ ​diagram. Conclusions:​​ ​M103​ ​is​ ​a​ ​fairly​ ​young​ ​open​ ​cluster​ ​in​ ​the​ ​plane​ ​of​ ​the​ ​Milky​ ​Way,​ ​with​ ​an​ ​age​ ​of only​ ​25​ ​million​ ​years.​ ​​ ​This​ ​was​ ​found​ ​by​ ​fitting​ ​25​ ​million​ ​year​ ​old​ ​isochrones​ ​with​ ​a​ ​distance modulus​ ​of​ ​12.9​ ​magnitudes​ ​and​ ​color​ ​excess​ ​corrections​ ​of​ ​0.4​ ​for​ ​V-R,​ ​-0.4​ ​for​ ​V-I,​ ​and​ ​-0.8 for​ ​R-I.​ ​​ ​M103​ ​has​ ​three​ ​distinct​ ​main​ ​sequences,​ ​most​ ​visible​ ​in​ ​the​ ​V-I​ ​color.​ ​​ ​A​ ​two​ ​color diagram​ ​plotting​ ​R-I​ ​against​ ​V-R​ ​shows​ ​that​ ​most​ ​stars​ ​have​ ​the​ ​same​ ​metallicity,​ ​which suggests​ ​that​ ​the​ ​three​ ​sequences​ ​were​ ​born​ ​from​ ​the​ ​same​ ​materials​ ​but​ ​at​ ​different​ ​times.​ ​​ ​The
  • 7. 7 outliers​ ​in​ ​this​ ​two​ ​color​ ​diagram​ ​show​ ​stars​ ​formed​ ​with​ ​a​ ​different​ ​metallicity,​ ​which​ ​suggests that​ ​these​ ​stars​ ​are​ ​not​ ​part​ ​of​ ​the​ ​cluster.​ ​​ ​Most​ ​of​ ​the​ ​stars​ ​in​ ​M103​ ​are​ ​more​ ​blue​ ​than​ ​red, which​ ​suggests​ ​that​ ​they​ ​burn​ ​at​ ​a​ ​higher​ ​temperature.​ ​​ ​The​ ​stars​ ​in​ ​the​ ​top​ ​left​ ​of​ ​the​ ​sequence are​ ​the​ ​most​ ​massive​ ​in​ ​the​ ​cluster.​ ​​ ​There​ ​are​ ​not​ ​many​ ​stars​ ​in​ ​the​ ​top​ ​right​ ​corner​ ​of​ ​the​ ​HRD, which​ ​means​ ​there​ ​are​ ​not​ ​many​ ​stars​ ​that​ ​are​ ​very​ ​large​ ​in​ ​size.​ ​​ ​This​ ​makes​ ​sense,​ ​since​ ​most​ ​of the​ ​very​ ​large​ ​stars​ ​are​ ​very​ ​old​ ​stars​ ​that​ ​have​ ​left​ ​the​ ​main​ ​sequence​ ​to​ ​become​ ​giants,​ ​and M103​ ​is​ ​too​ ​young​ ​of​ ​a​ ​cluster​ ​for​ ​this​ ​to​ ​have​ ​happened​ ​yet. Color​ ​Images: Color​ ​Image​ ​of​ ​M103​ ​(NGC​ ​581)​ ​taken​ ​in​ ​V, R,​ ​and​ ​I​ ​filters​ ​on​ ​October​ ​17,​ ​2017​ ​at​ ​Smith College,​ ​Northampton​ ​Ma Color​ ​Image​ ​of​ ​Standard​ ​Star​ ​SA​ ​113342​ ​taken in​ ​V,​ ​R,​ ​and​ ​I​ ​filters​ ​on​ ​October​ ​17,​ ​2017​ ​at Smith​ ​College,​ ​Northampton​ ​MA References: http://www.cfht.hawaii.edu/ObsInfo/Standards/Landolt/ Mike​ ​Peterson,​ ​class​ ​TA Webda http://stev.oapd.inaf.it/cgi-bin/cmd_3.0 http://astro.unl.edu/classaction/outlines/stellarprops2/hr_diagram2.html