SlideShare a Scribd company logo
ĐẠI HỌC QUỐC GIA HÀ NỘI
TRƢỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN
----------------------------
Vũ Thị Ngần
HIỆU ỨNG PHA TẠP VÀ ĐỘ HẠT
TRONG PHỔ HÓA TỔNG TRỞ CỦA HỆ LaNi5-xGex
LUẬN VĂN THẠC SĨ KHOA HỌC
Hà Nội – Năm 2013
ĐẠI HỌC QUỐC GIA HÀ NỘI
TRƢỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN
----------------------------
Vũ Thị Ngần
HIỆU ỨNG PHA TẠP VÀ ĐỘ HẠT
TRONG PHỔ HÓA TỔNG TRỞ CỦA HỆ LaNi5-xGex
Chuyên ngành: Vật Lý Nhiệt
Mã số:
LUẬN VĂN THẠC SĨ KHOA HỌC
NGƢỜI HƢỚNG DẪN KHOA HỌC:
GS. TS. LƢU TUẤN TÀI
Hà Nội – Năm 2013
Luận văn thạc sĩ khoa học Vũ Thị Ngần
i
LỜI CẢM ƠN
Trƣớc hết, Tôi xin chân thành bày tỏ lòng biết ơn sâu sắc tới GS. TS. Lƣu
Tuấn Tài – ngƣời Thầy – nhà khoa học trực tiếp hƣớng dẫn giúp đỡ Tôi hoàn thành
khóa luận này. Trong quá trình thực hiện luận văn, Thầy đã tận tình chỉ bảo, gợi mở
kiến thức để em đạt đƣợc kết quả nhƣ ngày hôm nay.
Tôi xin chân thành cám ơn tập thể các Thầy, Cô công tác tại bộ môn Vật Lý
Nhiệt đã cung cấp những kiến thức bổ ích làm tiền đề giúp Tôi thực hiện luận văn
này.
Cuối cùng, Tôi xin gửi lời cảm ơn tới gia đình và bạn bè thân thiết đã luôn
luôn động viên, cổ vũ Tôi trong suốt thời gian qua.
Hà Nội, ngày 5 tháng 12 năm 2013
Học viên
Vũ Thị Ngần
Luận văn thạc sĩ khoa học Vũ Thị Ngần
ii
MỤC LỤC
LỜI CẢM ƠN ..............................................................................................................1
MỤC LỤC.................................................................................................................. ii
DANH MỤC CÁC CHỮ VIẾT TẮT VÀ KÍ HIỆU................................................. iv
DANH MỤC CÁC HÌNH TRONG LUẬN VĂN ......................................................v
DANH MỤC CÁC BẢNG TRONG LUẬN VĂN................................................... vi
MỞ ĐẦU.....................................................................................................................1
Chƣơng I : TỔNG QUAN VỀ VẬT LIỆU RT5..........................................................3
1.1 Cấu trúc vật liệu RT5 .....................................................................................3
1.2 Vai trò của các nguyên tố trong hợp kim ......................................................3
1.3 Tính chất từ của vật liệu ................................................................................5
1.4 Quá trình hấp phụ , hấp thụ và giải hấp thụ của Hydro của vật liệu LaNi5 và
ứng dụng làm cực âm trong pin Ni-MH ..................................................................6
1.4.1 Khả năng hấp thụ và hấp phụ Hydro của các hợp chất RT5 ...................6
1.4.2 Quá trình hấp thụ và giải hấp thụ của LaNi5 ..........................................7
1.4.3 Sự hấp thụ Hydro trong các hệ điện hóa.................................................9
1.5 Tính chất điện hóa của hợp chất RT5 làm cực âm trong pin Ni-MH ..........10
1.5.1 Xác định tính chất bằng phƣơng pháp đo phóng nạp ...........................10
1.5.2 Các tính chất điện hóa của RT5.............................................................11
1.6 Ảnh hƣởng của kích thƣớc hạt lên dung lƣợng pin.....................................12
1.7 Khái niệm về pin nạp lại..............................................................................14
1.7.1 Các phản ứng chính ..............................................................................14
1.7.2 Sự quá nạp và sự quá phóng .................................................................15
1.7.3 Sự tự phóng...........................................................................................17
1.7.4 Thời gian sống ......................................................................................18
CHƢƠNG II: PHƢƠNG PHÁP THỰC NGHIỆM ..................................................20
2.1 Chế tạo mẫu bằng phƣơng pháp nóng chảy hồ quang..................................20
2.1.1 Chuẩn bị kim loại ban đầu.........................................................................20
2.1.2 Quy trình chế tạo mẫu bằng phƣơng pháp nóng chảy hồ quang..............20
Luận văn thạc sĩ khoa học Vũ Thị Ngần
iii
2.1.3 Phƣơng pháp và thiết bị nghiền cơ...........................................................22
2.2 Phân tích cấu trúc bằng phƣơng pháp đo nhiễu xạ tia X.............................25
2.3 Xác định kích thƣớc hạt bằng kính hiển vi điện tử quét (SEM)...................26
2.4 Nghiên cứu tính chất từ bằng từ kế mẫu rung ................................................28
2.5 Các phép đo điện hóa..................................................................................28
2.5.1 Hệ đo điện hóa..........................................................................................28
2.5.2 Chế tạo điện cực âm .................................................................................29
2.5.3 Đo chu kì phóng nạp ................................................................................30
2.5.4 Phƣơng pháp đo phổ tổng trở EIS............................................................31
CHƢƠNG III: KẾT QUẢ VÀ THẢO LUẬN..........................................................36
3.1 Kết quả phân tích nhiễu xạ tia X ................................................................36
3.2 Kết quả phép đo từ......................................................................................38
3.3 Đặc trƣng phóng nạp của vật liệu...............................................................41
3.4. Kết quả đo phổ tổng trờ ..............................................................................43
3.4.1 Phổ tổng trở của các mẫu nghiền thô ......................................................44
3.4.2 Sự phụ thuộc của điện trở chuyển điện tích Rct và điện dung lớp điện tích
kép Cdl vào hàm lƣợng thay thế Ni.....................................................................45
3.4.3 Ảnh hƣởng của thời gian nghiền lên phổ tổng trở ..................................46
KẾT LUẬN...............................................................................................................49
TÀI LIỆU THAM KHẢO.........................................................................................50
Luận văn thạc sĩ khoa học Vũ Thị Ngần
iv
DANH MỤC CÁC CHỮ VIẾT TẮT VÀ KÍ HIỆU
1. Các chữ viết tắt
Ni-MH: Niken – Hyđrua kim loại
V/SCE: Vôn so với thế điện cực calomen bão hòa
SEM: Kính hiển vi điện tử quét
EIS: Phổ tổng trở điện hóa
VSM : Từ kế mẫu rung
2. Các kí hiệu
Cdl: Điện dung lớp điện tích kép
Rp: Điện trở phân cực
Rct: Điện trở chuyển điện tích
Q: Điện lƣợng trong quá trình phóng nạp
Luận văn thạc sĩ khoa học Vũ Thị Ngần
v
DANH MỤC CÁC HÌNH TRONG LUẬN VĂN
Trang
Hình 1.1: Sơ đồ mạng tinh thể của hệ hợp chất LaNi5 3
Hình 0.1 : Sự thay đổi thể tích ô mạng phụ thuộc nồng các
nguyên tố thay thế
5
Hình 1.3: Sự phụ thuộc của 2
ln HP vào 1
T
8
Hình 1.4: Sơ đồ mô tả một biên pha của một kim loại hấp thụ
Hydro
9
Hình 1.5: Cấu tạo lớp điện tích kép 11
Hình 1.6: Đồ thị phóng (D) nạp (C) của LaNi5 với các chu kì
khác nhau
12
Hình 1.7 : Mô hình biểu diễn quá trình phóng nạp xảy ra trong
pin Ni – MH
15
Hình 2.1 : Cấu tạo buồng nấu và hệ thống nấu luyện hồ quang 21
Hình 2.2 : Hình ảnh hệ thống nấu luyện hồ quang 22
Hình 2.3: Máy nghiền hành tinh Retsch -PM 400/2 22
Hình 2.4: Hình ảnh chuyển động của cối và bi trong quá trình
nghiền
23
Hình 2.5: Cối nghiền và bi nghiền của máy Retsch -PM 400/2 24
Hình 2.6: Sơ đồ nguyên lý và ảnh thiết bị nhiễu xạ tia X 25
Hình 2.7 : Sơ đồ cấu tạo và nguyên lý phóng đại ảnh của SEM 27
Hình 2.8 : Hệ 3 điện cực trong phép đo điện hóa của pin Ni-MH 28
Hình 2.9 : Sơ đồ nguyên lý của thiết bị đo phóng nạp Battery
tester
30
Hình 2.10: Hệ đo chu kỳ phóng nạp Battery tester 30
Hình 2.11: Mạch điện tƣơng đƣơng của bình điện phân 31
Hình 2.12: Tổng trở trên mặt phẳng phức 32
Luận văn thạc sĩ khoa học Vũ Thị Ngần
vi
Hình 2.13: Tổng trở của quá trình điện cực nhiều giai đoạn 33
Hình 2.14: Tổng trở khi có sự hấp phụ đặc biệt (a) và khi có sự
thụ động (b)
33
Hình 2.15: Phổ tổng trở Nyquist của điện cực LaNi5 tại E = -1,2
V/SCE
34
Hình 2.16: Sơ đồ mạch tƣơng đƣơng của điện cực gốc LaNi5 34
Hình 3.1 : Giản đồ nhiễu xạ tia X của mẫu LaNi4.5Ge0.5,
LaNi4.7Ge0.3
36
Hình 3.2 : Đƣờng cong từ hóa của mẫu LaNi4.6Ge0.4 38
Hình 3.3 : Đƣờng cong từ hóa của mẫu LaNi4.8Ge0.2 39
Hình 3.4 : Đƣờng cong từ nhiệt của mẫu LaNi4.8Ge0.2 40
Hình 3.5 : Đƣờng cong từ nhiệt của mẫu LaNi4.6Ge0.4 41
Hình 3.6 : Đƣờng cong phóng nạp của các mẫu LaNi4.6Ge0.4 và
LaNi4.8Ge0.2
42
Hình 3.7 : Đƣờng cong phóng nạp của mẫu LaNi5 43
Hình 3.8 : Đƣờng cong Nyquist của mẫu LaNi5-xGex tại thế
phân cực E = -1,1 V
44
Hình 3.9: Sự phụ thuộc Rct và Cdl vào hàm lƣợng thay thế Ge
cho Ni
45
Hình 3.10: Đƣờng cong Nyquist của mẫu LaNi4.6Ge0.4 với thời
gian nghiền
46
Hình 3.11: Sự phụ thuộc của Rct và Cdl của LaNi4.6Ge0.4 theo thời
gian nghiền
47
Luận văn thạc sĩ khoa học Vũ Thị Ngần
vii
DANH MỤC CÁC BẢNG TRONG LUẬN VĂN
Trang
Bảng 1.1: Giới hạn hàm lƣợng các nguyên tố thay thế
trong LaNi5-xMx
4
Bảng 3.1: Các thông số mạng tinh thể 37
Bảng 3.2 : Độ cảm từ χ của các mẫu 40
Luận văn thạc sĩ khoa học Vũ Thị Ngần
1
MỞ ĐẦU
Pin là một thiết bị lƣu trữ năng lƣợng dƣới dạng hóa học. Từ khi đƣợc sáng
chế lần đầu tiên năm 1800 ( pin Volta) bởi Alessandro Volta, pin đã trở thành
nguồn năng lƣợng thông dụng cho nhiều đồ vật trong gia đình cũng nhƣ cho các
ứng dụng công nghiệp. Có 2 loại pin: pin sơ cấp ( chỉ dùng 1 lần) và pin nạp lại (
đƣợc thiết kế để nạp lại nhiều lần). Do có dung lƣợng lớn và nội trở nhỏ nên hiện
nay pin nạp Ni-MH là lựa chọn phổ biến cho các thiết bị tiêu hao năng lƣợng trung
bình nhƣ: điện thoại di động, đồng hồ đeo tay, máy ảnh số...
Kỹ thuật pin Ni-MH đƣợc Ovonic Battery, một chi nhánh của ECD Ovonics
có trụ sở tại Michigan phát triển. Các pin Ni-MH bắt đầu đƣợc bán ra công chúng
năm 1983. Ni-MH là 1 kiểu pin sạc sử dụng hỗn hợp hấp thu Hydro cho anot,
không gây ô nhiễm môi trƣờng. Kim loại trong pin Ni-MH thực chất là hỗn hợp liên
kim loại. Nhiều hợp chất đƣợc nghiên cứu cho ứng dụng này nhƣng hợp chất
thƣờng đƣợc sử dụng hiện nay là RT5 ( với R – là đất hiếm, B – là Ni, Mn, Co, Al,
Fe). Hợp chất LaNi5 đã đƣợc sử dụng để làm cực âm trong pin nạp lại Ni – MH do
nó có thể hấp thụ và giải hấp thụ một lƣợng lớn hydro ở điều kiện áp suất và nhiệt
độ phòng mà không làm hỏng cấu trúc mạng. Tuy nhiên thời gian sống và các quá
trình điện hóa của LaNi5 là kém ổn định. Dung lƣợng riêng, tốc độ phóng nạp, thời
gian sống của pin phụ thuộc rất nhiều vào vật liệu làm điện cực âm gốc LaNi5. Các
nghiên cứu cho thấy, khi thay thế một phần Ni bằng các nguyên tố kim loại M
chuyển tiếp nhƣ : Co, Mn, Fe, Al, Cu thì tính chất điện hóa của vật liệu làm điện
cực thay đổi đáng kể. Dung lƣợng, thời gian sống và mật độ dòng của pin đƣợc cải
thiện rõ rệt.
Các nguyên tố nhƣ : Co, Mn, Al, Fe, Cu đƣợc dùng để thay thế cho một phần
Ni chủ yếu là các nguyên tố 3d và có tính hấp thụ lớn. Hydro đƣợc tích tụ trong
mạng tinh thể vật liệu ở dạng bền vững, nên nó trở thành một dạng bình chứa và dự
trữ năng lƣợng. Các nghiên cứu cho thấy, trong quá trình Hydro hóa, các nguyên tố
Luận văn thạc sĩ khoa học Vũ Thị Ngần
2
3d này bị giải phóng ra khỏi bề mặt điện cực dƣới dạng các vi hạt, dẫn đến làm tăng
khả năng hấp thụ Hydro [9]. Tuy nhiên, khi thay thế một phần Ni bằng các nguyên
tố bán dẫn nhƣ Si, Ge thì tính chất của vật liệu cũng thay đổi đáng kể. Điều này
chứng tỏ còn có cơ chế khác cải thiện các đặc trƣng của pin. Mặt khác, khi thực
hiện phóng nạp trong quá trình Hydro hóa, các hạt làm điện cực có kích thƣớc
50µm thƣờng bị vỡ ra. Đây là nguyên nhân làm thay đổi vật liệu đồng thời làm
giảm thời gian sống của pin. T.Sakai và cộng sự [10] đã nghiên cứu và chỉ ra rằng :
khi kích thƣớc hạt vật liệu làm điện cực là 5µm thì các hạt sẽ không bị vỡ trong khi
phóng nạp. Vật liệu có kích thƣớc hạt nhỏ, bề mặt tiếp xúc sẽ lớn, quãng đƣờng
khuếch tán của Hydro ngắn. Điều đó sẽ làm tăng tốc độ phóng nạp, dung lƣợng
riêng, và độ bền của pin Ni-MH.
Trong khóa luận này, tôi đã sử dụng Ge để thay thế một phần Ni nhằm
nghiên cứu hiệu ứng pha tạp và khảo sát cấu trúc tinh thể, tính chất từ, đặc trƣng
phóng nạp và ảnh hƣởng của độ hạt lên phổ tổng trở của vật liệu LaNi5-xGex.Từ đó ,
rút ra kết luận ảnh hƣởng của nguyên tố Ge tới các đặc trƣng của pin Ni-MH.
Nội dung của khóa luận này bao gồm :
 Chƣơng I : TỔNG QUAN VỀ VẬT LIỆU RT5
 Chƣơng II : PHƢƠNG PHÁP THỰC NGHIỆM
 Chƣơng III : KẾT QUẢ VÀ THẢO LUẬN
 Kết Luận
 Tài liệu tham khảo
Luận văn thạc sĩ khoa học Vũ Thị Ngần
3
Chƣơng I : TỔNG QUAN VỀ VẬT LIỆU RT5
1.1 Cấu trúc vật liệu RT5
Lanthanum 1a
NickelI 2c
NickelII 3g
Hình 1.1: Sơ đồ mạng tinh thể của hệ hợp chất LaNi5
Hệ hợp chất RT5 ( với R là nguyên tố đất hiếm, T là các nguyên tố chuyển
tiếp nhƣ Co, Ni, Cu, Fe) có cấu trúc tinh thể lục giác xếp chặt kiểu CaCu5 thuộc
nhóm không gian P6/mmm. Cấu trúc này có thể coi là sự sắp xếp xen kẽ của hai lớp
nguyên tố khác nhau. Lớp thứ nhất gồm 2 loại nguyên tố : nguyên tố đất hiếm nằm
tại vị trí giữa và các đỉnh của mặt lục giác (vị trí 1a) và các nguyên tố chuyển tiếp
nằm tại các vị trí 2c. Lớp thứ 2 chỉ gồm các nguyên tố chuyển tiếp nằm ở đỉnh của
hình lục giác lệch so với lớp thứ nhất 30o
, vị trí 3g [3] .Hình 1.1 là cấu trúc tinh thể
tiêu biểu LaNi5.
1.2 Vai trò của các nguyên tố trong hợp kim
Quá trình hấp thụ Hydro bão hòa có thể làm cho thể tích mạng tinh thể hợp
kim LaNi5 tăng lên đến 25%. Chính sự giãn nở này là một trong những nguyên nhân
gây phá hủy vật liệu. Do đó ảnh hƣởng lớn tới việc ứng dụng hợp kim LaNi5.Vì thế
Luận văn thạc sĩ khoa học Vũ Thị Ngần
4
ngƣời ta nghiên cứu thay thế La và Ni bởi một nguyên tố khác nhằm khắc phục các
nhƣợc điểm nhƣ: khắc phục sự giãn nở, tăng dung lƣợng hấp thụ, nâng cao tốc độ
phóng nạp…
Những nghiên cứu trƣớc đây cho thấy, khi thay thế một lƣợng La bằng
nguyên tố đất hiếm khác hay Ni bằng các nguyên tố nhóm 3d sẽ tạo thành hợp chất
có dạng La1-xRxNi5 hoặc LaNi5-xMx. Khi đó, cấu trúc tinh thể của hệ cũng không
thay đổi. Do tính chất của các nguyên tố đất hiếm tƣơng tự nhau nên dung dịch rắn
La1-xRxNi5 tồn tại với mọi nồng độ trong khi sự thay thế M cho Ni trong LaNi5-xMx
lại có giới hạn. Tỷ lệ thay thế phụ thuộc vào bán kính nguyên tử, cấu trúc lớp vỏ
điện tử của các nguyên tố kim loại chuyển tiếp và quy trình chế tạo.
Bảng 0.1 Giới hạn hàm lượng các nguyên tố thay thế trong LaNi5-xMx [12]
Nguyên tố
(M trong LaNi5-xMx)
Giới hạn thay thế
x trong LaNi5-xMx
Si 0,6
Fe 1,2
Al 1,3
Mn 2,2
Cu, Co, Pt 5
Khả năng hấp thụ của LaNi5 chủ yếu phụ thuộc vào mạng tinh thể và bản
thân nguyên tố thay thế Ni.
Những nghiên cứu trƣớc đây cho thấy sự thay thế các nguyên tử Ni bằng Al
và Si trong hợp chất LaNi5-xMx chỉ có thể xảy ra ở vị trí 3g. Nhƣng với các nguyên
tố khác nhƣ Co, Mn, Fe lại có thể xảy ra ở vị trí 2c, mặt z=1/2 có mật độ nguyên tử
thấp. Nhƣ vậy, mỗi nguyên tố thay thế có giới hạn khác nhau và ảnh hƣởng đến
hằng số mạng ô cơ sở của hợp kim ở các mức độ khác nhau (hình 1.2).
Luận văn thạc sĩ khoa học Vũ Thị Ngần
5
0 1 2 3 4 5
82
84
86
88
90
92
94
96
La1-x
Mx
Ni5
LaNi5-x
Mx
Co
Cu
Yb
Ce
Si
Fe
Al
Mn
Volume(A
3
)
xM
Hình 0.1 : Sự thay đổi thể tích ô mạng
phụ thuộc nồng độ các nguyên tố thay thế
1.3 Tính chất từ của vật liệu
Tính chất từ của các mẫu đƣợc xác định bằng phép đo đƣờng cong từ hóa
theo từ trƣờng và đƣờng cong từ nhiệt trên hệ từ kế mẫu rung (VMS). Các phép đo
này đƣợc thực hiện trên mẫu khối mới chế tạo, mẫu sau khi nghiền và mẫu sau khi
phóng nạp để so sánh.
Các kết quả nghiên cứu trƣớc đây cho thấy, LaNi5 là vật liệu thuận từ. Các
hợp kim đã chế tạo với nhiều kim loại và á kim thay thế với các thành phần khác
nhau đều cho đặc trƣng thuận từ tại nhiệt độ phòng . Tuy nhiên, độ cảm từ χ của các
mẫu là thay đổi tùy theo nguyên tố và tỷ lệ thay thế. Tất cả các mẫu đều trở thành
sắt từ ngay sau khi hydro hóa hay trải qua chu kì phóng nạp đầu tiên.
Hiện tƣợng thay đổi từ trƣớc và sau khi hydro hóa là do trong suốt quá trình
hydro hóa các nguyên tử Ni và các nguyên tử Co, Fe, Mn.. bị giải phóng ra tại các
bề mặt vật liệu. Từ giản đồ Rơnghen của một số mẫu cũng xác định đƣợc sự có mặt
của các nguyên tử Ni, Co là các vật liệu sắt từ. Đặc trƣng sắt từ cũng nhƣ nhiệt đô
Curie của vật liệu đều do các nguyên tử này gây ra. Khi giải phóng ra khỏi bề mặt,
các nguyên tố 3d có thể ở trạng thái vô định hình hoặc ở dạng từng đám vi hạt. Điều
này đƣợc xác nhận khi chúng ta tiến hành đo 2 lần đƣờng cong từ nhiệt trên tất cả
các mẫu hydro hóa. Lần thứ nhất, từ độ của mẫu vừa mới hydro hóa đƣợc đo theo
chiều tăng của nhiệt độ từ 300K đến 700K. Sau đó ta tiến hành đo trên mẫu đó lần 2
từ 700K đến 300K. Kết quả đo đƣợc mình họa trên hình đƣờng cong từ nhiệt phía
trên. Có thể nhận thấy rằng, đƣờng cong từ nhiệt phía dƣới đều có đỉnh dị thƣờng và
Luận văn thạc sĩ khoa học Vũ Thị Ngần
6
khó có thể xác định đƣợc nhiệt độ Curie của mẫu. Đƣờng cong phía trên cho ta đặc
trƣng từ phụ thuộc nhiệt độ của vật liệu sắt từ quen thuộc. Đối với mẫu LaNi5 ,
nhiệt độ Curie rất gần với giá trị tuyệt đối Curie của kim loại Ni. Nhiệt độ Curie
của mẫu hydro hóa có chứa các nguyên tố 3d thêm vào nhƣ Fe, Co lớn hơn so với
mẫu chỉ chứa Ni. Điều này chứng tỏ, ngoài Ni thì các kim loại tự do Co, Fe cũng bị
giải phóng ra bề mặt mẫu.
Đỉnh dị thƣờng trên đƣờng cong từ nhiệt của lần đo đầu tiên có thể đƣợc giải
thích nhƣ sau : các đám nguyên tử Ni ( Co, Fe, Mn) bị giải phóng ra dƣới dạng các
đám vi hạt hoặc ở trạng thái vô định hình sau khi bị hydro hóa. Do đó, đƣờng cong
có dạng đặc trƣng của loại vật liệu vô định hình. Khi nhiệt độ tăng thì từ độ giảm.
Cho tới khi đạt giá trị cực tiểu với nhiệt độ giới hạn nào đó thì từ độ của mẫu lại
tăng nhanh. Điểm nhiệt độ giới hạn này có thể coi là nhiệt độ tái kết tinh của đám vi
hạt Ni ( hoặc Co, Fe, Mn) trở thành tinh thể hoàn hảo. Các lần đo tiếp theo ta đƣợc
đặc trƣng của vật liệu sắt từ ở dạng khối là hoàn toàn phù hợp.
Tóm lại, bằng phƣơng pháp đo từ chúng ta có thể hiểu đƣợc các quá trình
phản ứng xảy ra trong điện cực. Các phân tích và so sánh tỉ mỉ cho thấy phƣơng
pháp đo từ khá đơn giản nhƣng cho ta các thông tin định lƣợng về các quá trình vi
mô xảy ra trong vật liệu làm điện cực âm.
1.4 Quá trình hấp phụ , hấp thụ và giải hấp thụ của Hydro của vật liệu
LaNi5 và ứng dụng làm cực âm trong pin Ni-MH
1.4.1 Khả năng hấp thụ và hấp phụ Hydro của các hợp chất RT5
Các nguyên tố chuyển tiếp Al, Fe, Ni, Co... có khả năng hấp thụ một lƣợng
hydro trên bề mặt. Do các nguyên tố chuyển nhóm thuộc phân lớp 3d có lớp điện tử
3d có khả năng liên kết yếu với hydro nên các nguyên tử hydro có thể bám vào bề
mặt kim loại chuyển tiếp. Cƣờng độ và tốc độ bám phụ thuộc vào các yếu tố nhƣ:
bản chất kim loại chuyển tiếp, diện tích bề mặt tiếp xúc, nhiệt độ phản ứng và áp
suất của hydro.
Các hiện tƣợng về hiệu ứng bề mặt của hợp chất liên kim loại đã đƣợc
nghiên cứu. Hiện nay, ngƣời ta đã tìm ra một số cơ chế chứng tỏ thành phần trên bề
mặt khác với thành phần bên trong khối hợp kim. Do năng lƣợng của bề mặt kim
loại đất hiếm nhỏ hơn năng lƣợng bề mặt kim loại 3d nên nồng độ cân bằng trên bề
mặt kim loại đất hiếm lớn hơn bên trong khối. Đặc tính khác biệt trên bề mặt là hiện
tƣợng phổ biến xảy ra khi các nguyên tố cấu thành hợp kim có tính chất đủ khác
Luận văn thạc sĩ khoa học Vũ Thị Ngần
7
nhau. Trong quá trình Hydro hóa luôn luôn tồn tại oxy (hoặc nƣớc) nhƣ là tạp chất
của hydro hoặc tồn tại trong môi trƣờng phản ứng. Đây là lý do hình thành các oxit
và hydroxit đất hiếm. Thành phần bề mặt và bên trong khối vật liệu khác nhau, kết
hợp với khả năng oxy hóa của các kim loại đất hiếm dẫn đến bề mặt các hợp chất
liên kim loại sẽ giàu nguyên tố 3d. Do đó, ta có thể khảo sát quá trình hấp phụ
hydro của hợp chất liên kim loại trên bề mặt vật liệu thông qua nguyên tố 3d.
Xét các hiện tƣợng ảnh hƣởng đến bề mặt cho thấy sự hấp thụ hydro của các
hợp kim đƣợc chiếm ƣu thế bởi các kim loại chuyển tiếp trên bề mặt. Các nguyên tử
hydro sẽ bị hấp phụ mạnh tại bề mặt vật liệu và khuếch tán vào trong tinh thể. Sự
hấp thụ hydro là quá trình các nguyên tử hydro xâm nhập vào mạng tinh thể theo cơ
chế điền kẽ và tạo ra các hợp chất hydro hóa. Các nghiên cứu đã chỉ ra rằng hầu hết
các hợp chất RT đều phản ứng với hydro để tạo thành hợp chất hydro hóa.
1.4.2 Quá trình hấp thụ và giải hấp thụ của LaNi5
Quá trình hấp thụ hydro đƣợc nghiên cứu bằng đƣờng đẳng nhiệt của áp suất
cân bằng nhƣ một hàm của nồng độ x trong các hợp chất hydro hóa. Tuy nhiên, gần
đây quá trình động học của nó đƣợc nghiên cứu đơn giản hơn. Khi quá trình hydro
hóa xảy ra có 2 pha phân biệt thì biến thiên Entanpi ΔH và biến thiên năng lƣợng tự
do ΔF có thể thu đƣợc từ sự phụ thuộc vào nhiệt độ của áp suất cân bằng. Phản ứng
giữa Hydro hóa giữa hợp chất LaNi5 và H2 đƣợc biểu diến nhƣ sau:
RT5 + mH2 = RT5H2m
Trong nhiệt động học, phƣơng trình Vanhoff đƣợc biểu diễn :
2
ln H
F H
P
R RT
 
  
Với R là hằng số khí lý tƣởng. Giá trị ΔH và ΔF là các đại lƣợng nhiệt động
ứng với 1 mol khí Hydro. Nếu xét trong khoảng nhiệt độ là đủ nhỏ thì có thể coi quá
trình là đẳng nhiệt. Do đó, ΔH và ΔF sẽ không phụ thuộc vào nhiệt độ. Bằng cách
vẽ đồ thị sự phụ thuộc của 2
ln HP vào nghịch đảo của của nhiệt độ
1
T
ta sẽ thu đƣợc
một đƣờng thẳng bậc nhất. Dựa vào đồ thị ta tìm đƣợc giá trị ΔS và ΔH . Ứng với
Luận văn thạc sĩ khoa học Vũ Thị Ngần
8
độ dốc đƣờng thẳng ΔH có thể mang giá trị âm hoặc dƣơng và nhận các giá trị khác
nhau.
Quá trình Hydro hóa xảy ra theo 2 giai đoạn:
 Giai đoạn I: quá trình phân hủy Hydro thành nguyên tử. Quá trình này tiêu
tốn năng lƣợng (ΔH > 0).
 Giai đoạn II: quá trình Hydro hóa. Quá trình này tỏa năng lƣợng (ΔH < 0).
Nhƣ vậy, tùy vào quá trình nào chiếm ƣu thế hơn mà ΔH nhận giá trị dƣơng
hay âm. Nhƣng đối với biến thiên Entropy ΔS thì lại khác, giá trị của nó không phụ
thuộc vào hợp chất liên kim loại. Các nghiên cứu cho thấy Entropy trong quá trình
Hydro hóa chủ yếu là do đóng góp của Entropy khí Hydro (ΔSkhí=130J/mol H2).
Phản ứng Hydro hóa là phản ứng tỏa nhiệt (Δ<0) nên rất dễ xảy ra vì nó có
ƣu thế về mặt năng lƣợng. Đồ thị sự phụ thuộc của 2
ln HP vào
1
T
có dạng nhƣ sau :
2.2 2.4 2.6 2.8 3.0 3.2
0
10
20
30
40
50
LnPH2
10
3
/T(K
-1
)
Hình 1.3: Sự phụ thuộc của 2
ln HP vào
1
T
Luận văn thạc sĩ khoa học Vũ Thị Ngần
9
1.4.3 Sự hấp thụ Hydro trong các hệ điện hóa
Do đặc trƣng biên pha điện cực chất - điện ly, nên có nhiều yếu tố ảnh hƣởng
tới sự hấp thụ Hydro. Một vùng biên pha sẽ đƣợc hình thành ở lớp điện tích kép tại
bề mặt tiếp xúc của điện cực và chất điện ly. Trong trƣờng hợp phức tạp, vùng biên
pha hình thành ở nhiều lớp tiếp xúc. Điều này liên quan tới quá trình tham gia của
các nguyên tố.
Vùng biên pha là một hệ mở có một số quá trình liên tiếp xảy ra. Quá trình
nào xảy ra chậm nhất sẽ quyết định tốc độ của toàn bộ quá trình. Các quá trình này
bao gồm: vận chuyển sản phẩm phản ứng tới bề mặt điện cực, hấp thụ trên bề mặt
điện cực, chuyển điện tích, nhả hấp thụ, vận chuyển các sản phẩm phản ứng ra khỏi
bề mặt điện cực. Trong một pin các quá trình tƣơng tự xảy ra. Tuy nhiên, các điện
tử chuyển ra mặt ngoài, nơi có dòng điện sinh ra.
Trên điện cực, trong suốt quá trình phóng của pin Ni-MH, các quá trình liên
quan xuất hiện trong một môi trƣờng nhiều pha: rắn, lỏng, khí. Do hợp chất làm
điện cực âm có khả năng hấp thụ Hydro nên các điện cực thƣờng là hệ đa pha. Sự
vận chuyển qua biên pha là các quá trình nhiệt động liên tiếp ( hình 1.3).
Hình 1.4: Sơ đồ mô tả một biên pha của một kim loại hấp thụ Hydro:
(a) mặt phẳng hấp thụ, (b) mặt chuyển điện tích, (l) mạng
Luận văn thạc sĩ khoa học Vũ Thị Ngần
10
Nguyên tắc chính của biên pha trong chuyển dời điện hóa của hydro tạo ra
bên trong điện cực đƣợc thảo luận gần đây và đặc trƣng trung gian của biên pha
đƣợc nhấn mạnh. Các kết quả thảo luận cho thấy rằng: biên pha là nhân tố cơ bản và
các tính chất của nó đƣợc xác định bằng sự tiếp xúc bởi các pha, bên trong điện cực
cũng nhƣ chất điện li. Quy tắc biên pha có thể thay đổi dẫn tới việc kìm hãm hay
đẩy mạnh chuyển dời điện tích và chuyển dời phân tử. Khái niệm này chƣa rõ ràng
đầy đủ và đƣợc đƣa ra trong thảo luận về sự hấp thụ Hydro từ pha khí. Trong đó
cho thấy rằng, các đám nhỏ kim loại hấp thụ nhiều Hydro qua một cơ chế không
hiệu quả vì kích thƣớc đám hạt tăng lên. Biên pha có thể thay đổi khi pin hoạt động,
điều đó ảnh hƣởng tới quá trình điện hóa của pin.
1.5 Tính chất điện hóa của hợp chất RT5 làm cực âm trong pin Ni-MH
1.5.1 Xác định tính chất bằng phƣơng pháp đo phóng nạp
Bằng phƣơng pháp đo phóng nạp chúng ta có thể xác định đƣợc đặc trƣng
điện hóa của hợp chất RT5. Đƣờng cong phóng nạp biểu diễn sự biến thiên của thế
điện cực theo điện lƣợng Q trong quá trình phóng nạp. Các mẫu có đƣờng cong E-Q
của quá trình phóng (Edis) và quá trình nạp (Ec) .
Các phản ứng điện hóa bao gồm sự dịch chuyển điện tích tại bề mặt ranh giới
của điện cực và dung dịch điện ly. Chúng là các loại phản ƣng bao gồm các quá
trình không đồng nhất. Động lực học của phản ứng không đồng nhất đƣợc quy định
bởi một chuỗi các bƣớc liên quan tới quá trình chuyển pha dung dịch và quá trình
chuyển pha điện tích tại bề mặt phân cách.
Nhƣ đã nói ở trên, khi những quá trình này xảy ra không liên tiếp thì toàn bộ
quá trình bị điều khiển bởi quá trình có tốc độ chậm nhất. Trong trạng thái không
bền hoặc trong những điều kiện tạm thời, tốc độ quá trình riêng lẻ sẽ phụ thuộc vào
thời gian.
Quá trình điện hóa bắt đầu xảy ra khi cho điện cực vào dung dịch. Lúc này,
bề mặt điện cực xuất hiện một lớp chuyển tiếp giữa dung dịch và điện cực đƣợc gọi
là lớp điện tích kép. Cấu tạo lớp điện tích kép đƣợc biểu diễn nhƣ hình 1.5 dƣới
Luận văn thạc sĩ khoa học Vũ Thị Ngần
11
đây. Ngƣời ta chia lớp điện tích kép làm ba vùng. Vùng trong cùng là vùng giáp với
điện cực, chứa các ion hấp thụ đặc biệt. Mặt lõi của vùng này gọi là mặt Helmholtz
trong. Vùng tiếp theo là vùng chứa các ion Hydrat không hấp thụ. Vùng ngoài cùng
đƣợc gọi là vùng khuếch tán. Trong vùng này, mật độ các ion chịu ảnh hƣởng của
sự phân cực điện trƣờng và sự thăng giáng nhiệt độ. Vì vậy, ta có thể coi lớp điện
tích kép là một tụ phẳng gồm 3 tụ mắc nối tiếp.
Hình 1.5: Cấu tạo lớp điện tích kép
Điểm khác nhau cơ bản so với tụ điện là trên ranh giới phân chia điện cực –
chất điện ly của hệ điện hóa xảy ra quá trình điện hóa và quá trình tích điện của lớp
điện tích kép.
1.5.2 Các tính chất điện hóa của RT5
Ở một số chu kì phóng nạp ban đầu, hầu hết vật liệu làm điện cực âm trong
pin Ni-MH có sự thay đổi mạnh và kém ổn định. Chỉ sau vài chu kì, quá trình
phóng nạp của điện cực mới trở nên ổn định và bền vững hơn. Kết luận cho thấy,
vật liệu sau khi chế tạo phải đƣợc huấn luyện với một chu kì xác định trƣớc khi chế
tạo thành sản phẩm đƣa vào sử dụng nhằm tăng cƣờng tính hoạt hóa và ổn định chế
độ làm việc.
Qua những nghiên cứu trƣớc đây, từ đƣờng cong phóng nạp với số chu kì
phóng nạp khác nhau của các mẫu vật liệu đã chế tạo có thể thấy đƣờng cong phóng
Dung
dịch
1 2 3

M
Điện cực
Luận văn thạc sĩ khoa học Vũ Thị Ngần
12
nạp của LaNi5 kém ổn định. Quá trình không thể lặp lại, thậm chí chỉ trong vòng 10
chu kì phóng nạp.
Các mẫu với thành phần pha tạp nhƣ Co, Ge, Ga, Si... có chất lƣợng chu kì
phóng nạp tốt hơn. Các nguyên tố pha vào trong mỗi mẫu làm cho quá trình phóng
nạp nhanh chóng ổn định hơn. Chỉ sau vài chu kì phóng nạp ban đầu, vật liệu đã trở
nên ổn định và bền vững hơn, có thể làm việc nhƣ một điện cực của pin.
Hình 1.6: Đồ thị phóng (D) nạp (C) của LaNi5 với các chu kì khác nhau
Các mẫu với thành phần pha tạp nhƣ Co, Ge, Ga, Si... có chất lƣợng chu kì
phóng nạp tốt hơn. Các nguyên tố pha vào trong mỗi mẫu làm cho quá trình phóng
nạp nhanh chóng ổn định hơn. Chỉ sau vài chu kì phóng nạp ban đầu, vật liệu đã trở
nên ổn định và bền vững hơn, có thể làm việc nhƣ một điện cực của pin.
Đƣờng cong phóng điện của các mẫu pha tạp có độ giảm rất chậm cho thấy
lƣợng điện tích Q phóng trong quá trình làm việc gần nhƣ không đổi. Điều đó có
nghĩa là chất lƣợng của mẫu khá tốt.
1.6 Ảnh hƣởng của kích thƣớc hạt lên dung lƣợng pin
Các nghiên cứu cho thấy, khi sử dụng hợp kim LaNi5 để làm cực âm trong
pin nạp lại thì khả năng hoạt hóa và tính chất điện hóa của nó không mạnh. Vì thế,
Luận văn thạc sĩ khoa học Vũ Thị Ngần
13
ngƣời ta pha tạp vật liệu để tăng hiệu suất hoạt hóa của điện cực. Những nghiên cứu
về pha tạp vật liệu đã thu đƣợc những thành công đáng kể. Tuy nhiên, một số
nghiên cứu gần đây cho thấy việc giảm kích thƣớc hạt cũng ảnh hƣởng tới tính chất
vật liệu LaNi5 và các vật liệu pha tạp trƣớc đây thƣờng có kích thƣớc cỡ vài chục
micromet. Việc giảm kích thƣớc vật liệu xuống cỡ nanomet là điều mà các nhà khoa
học hiện nay đang quan tâm.
Trong quá trình phóng nạp của pin, quá trình hấp thụ và giải hấp thụ Hydro
gây nên ứng suất trong vật liệu làm cho các hạt bị vỡ ra. Các hạt này tiếp xúc với
dung dịch điện li và bị oxy hóa. Do đó, thời gian sống và các tính chất của pin sẽ
giảm và không ổn định. Sakai và cộng sự đã nghiên cứu và chỉ ra rằng khi kích
thƣớc hạt giảm xuống 5µm thì các hạt sẽ không bị vỡ trong quá trình phóng nạp.
Giảm đƣợc kích thƣớc hạt sẽ giải quyết đƣợc các vấn đề trên. M. Jurczyk [7] và các
cộng sự đã nghiên cứu chế tạo các vật liệu TiFe, Mg2Ni, LaNi5 với kích thƣớc
nanomet bằng phƣơng pháp nghiền cơ học. Sau đó, họ sử dụng các vật liệu trên làm
điện cực âm của pin Ni-MH thì thấy các tính chất của vật liệu đƣợc cải thiện đáng
kể và thời gian sống của pin tăng lên. Khi kích thƣớc hạt nhỏ thì Hydro dễ khuếch
tán vào vật liệu hơn. Quá trình hấp thụ và giải hấp thụ Hydro xảy ra dễ dàng hơn
dẫn đến mật độ dòng phóng nạp của điện cực tăng lên. Z. Chen [11], Vũ Xuân
Thăng và các cộng sự [1] chế tạo đƣợc các vật liệu RT5 bằng phƣơng pháp nghiền
cơ học với kích thƣớc hạt trung bình 50 nm. Kết quả cho thấy thời gian sống của pin
cũng nhƣ dung lƣợng của pin tăng so với vật liệu khối thông thƣờng.
Boonstra và cộng sự [2] cho thấy quá trình hoạt hóa của điện cực LaNi5
nhanh hơn khi giảm kích thƣớc hạt. Họ giải thích rằng do diện tích tiếp xúc tăng lên
khi kích thƣớc hạt nhỏ làm cho mật độ dòng điện tại bề mặt LaNi5 giảm. Điều đó
dẫn đến quá trình nạp và phóng điện xảy ra hiệu quả hơn, lƣợng hydro hấp thụ và
giải hấp thụ cao hơn. Mặt khác khi giảm kích thƣớc hạt, bề mặt riêng lớn làm tăng
quá trình oxy hóa bởi dung dịch điện ly dẫn đến giảm tuổi thọ điện cực.
Heikonen và cộng sự [4] nghiên cứu ảnh hƣởng của kích thƣớc hạt đến quá
trình phóng điện của hệ Ni-MH bằng mô hình toán học. Mô hình cho thấy kích
Luận văn thạc sĩ khoa học Vũ Thị Ngần
14
thƣớc hạt ảnh hƣởng đến hiệu suất điện cực. Khi tăng tốc độ phóng điện, ảnh hƣởng
này càng quan trọng. Họ cho rằng để có điện cực với diện tích bề mặt có hoạt tính
lớn, hiệu suất cao nên sử dụng các hạt có kích thƣớc không đồng đều. Đƣờng mô
phỏng Ragone với các hạt có kích cỡ khác nhau cho thấy mật độ năng lƣợng tăng
nhẹ do sự giảm kích thƣớc hạt. Hạt nhỏ hơn làm giảm thời gian hydro di chuyển tới
bề mặt điện cực. Do đó, mật độ công suất của điện cực tăng khi giảm kích thƣớc hạt
vật liệu.
Ise [5] lại thấy rằng các hạt có kích thƣớc nhỏ rất thích hợp để nâng cao hiệu
suất điện cực MH. Tuy nhiên, khi kích thƣớc hạt quá nhỏ lại làm giảm dung lƣợng
và tuổi thọ của điện cực.
Nhƣ vậy, kích thƣớc hạt ảnh hƣởng đến thời gian khuếch tán Hydro và dung
lƣợng pin. Do đó, kích thƣớc hạt là một thông số quan trọng cho việc chế tạo điện
cực hiệu suất cao cho pin Ni- MH. Các nghiên cứu trƣớc đây cho thấy, quá trình
hấp thụ và giải hấp thụ Hydro diễn ra trong quá trình phóng nạp đã làm nứt vỡ các
hạt vật liệu, làm giảm tiếp xúc điện. Điều đó dẫn đến các điện cực làm việc không
ổn định và giảm thời gian sống. Khi kích thƣớc hạt giảm xuống cỡ nanomet thì các
đặc tính của vật liệu đƣợc cải thiện do hoạt tính của hạt vật liệu tăng lên.Tuy nhiên,
nếu kích thƣớc hạt quá nhỏ lại làm giảm tuổi thọ điện cực. Vì thế, việc nghiên cứu
xác định kích thƣớc hạt phù hợp cho từng mục đích sử dụng là rất cần thiết.
1.7 Khái niệm về pin nạp lại
1.7.1 Các phản ứng chính
Pin Ni-MH là một hệ gồm một điện cực làm bằng Ni(OH)2 và một điện cực
làm bằng vật liệu RT5 đã đƣợc hydro hóa. Các điện cực này đƣợc làm thành các bản
mỏng để tăng diện tích tiếp xúc và đƣợc cách điện với nhau bởi màng cách điện.
Toàn bộ hệ đƣợc ngâm trong dung dịch KOH 6M. Khi đó, với vai trò cung cấp ion
dẫn trong dung dịch, trên 2 điện cực sẽ xảy ra các quá trình phóng nạp điện tƣơng
ứng. Các phản ứng xảy ra nhƣ sau :
Ở điện cực dƣơng : Ni(OH)2 +OH-
<=> NiOOH + H2O+ e-
(1.1)
Luận văn thạc sĩ khoa học Vũ Thị Ngần
15
Ở điện cực âm : M + H2O <=> MHab + OH-
(1.2)
Toàn bộ quá trình : Ni(OH)2 + M <=> NiOOH + MHab (1.3)
Trong đó M là hợp kim chƣa hấp thụ Hydro, MHab là hợp kim đã hấp thụ
Hydro
Hình 1.7 : mô hình biểu diễn quá trình phóng nạp
xảy ra trong pin Ni – MH [8]
Trong suốt quá trình nạp điện, Ni ở trạng thái Ni2+
bị oxy hóa thành Ni3+
,
H2O bị khử thành H2. Các nguyên tử H2 mới sinh ra đã bị hấp thụ bởi điện cực RT5
để tạo thành hợp chất hydrit. Khi quá trình phóng điện diễn ra thì các phản ứng điện
hóa diễn ra theo chiều ngƣợc lại. Nhƣ vậy, tổng của quá trình này tƣơng ứng với
việc trao đổi ion OH-
giữa các điện cực mà không làm phân hủy chất điện phân.
Trong quá trình nạp thì hydro đƣợc vận chuyển từ cực dƣơng sang cực âm và
ngƣợc lại trong quá trình phóng . Tức là chất phản ứng tại hai điện cực đều là nƣớc.
Điều này giải thích tại sao acquy Ni-MH lại thân thiện với môi trƣờng. Chất điện ly
không tham gia phản ứng, tức là không có sự tăng hay giảm chất điện ly. Phản ứng
xảy ra hoàn toàn ở bề mặt điện cực âm và dƣơng. Ngoài các phản ứng trên còn có
các phản ứng phụ do quá phóng và quá nạp gây ra.
1.7.2 Sự quá nạp và sự quá phóng
Đối với acquy thì điện cực âm luôn đƣợc thiết kế có dung lƣợng lớn hơn điện
cực dƣơng để đảm bảo an toàn. Do vậy, sự quá nạp và quá phóng chỉ có thể xảy ra
Luận văn thạc sĩ khoa học Vũ Thị Ngần
16
trên cực dƣơng. Sự quá nạp xảy ra tại điện cực Ni, khi đó các ion OH-
bị oxy hóa
thành O2. Quá trình nạp điện sau đó không làm tăng dung lƣợng mà chỉ để giải
phóng O2 theo phƣơng trình phản ứng :
2 24 4 2OH e H O O 
   (1.4)
Khí O2 sinh ra làm tăng áp suất riêng phần của nó trong bình kín. Sau đó, O2
đƣợc chuyển đến điện cực âm và bị khử thành OH-
tại lớp chuyển tiếp giữa điện cực
MH và chất điện phân theo phản ứng :
2 2 4 4O H O OH e 
   (1.5)
Điều này làm tiêu hao lƣợng Hydro ở cực âm và gây hao hụt điện năng trong
quá trình nạp. Trong trạng thái ổn định, lƣợng O2 giải phóng tại điện cực Ni bằng
lƣợng O2 tái hợp tại điện cực âm dẫn tới toàn bộ năng lƣợng điện cung cấp cho pin
trong thời gian quá nạp bị chuyển hoàn toàn thành năng lƣợng nhiệt làm cho hệ
nóng lên. Sự hình thành nhiệt trong pin đƣợc mô tả bởi công thức:
W
T S
i
nF
 
 
     
  (1.6)
Trong đó : i : là dòng điện chạy qua pin.
n : số e-
trong phản ứng chuyển hóa điện tích hoàn toàn.
T : nhiệt độ.
F : hằng số Faraday.
σ : điện trở nội của pin.
Sự tỏa nhiệt của pin khi có dòng điện chạy qua là do các yếu tố :
 Các phản ứng điện hóa dẫn đến sự thay đổi Entropy.
 Yếu tố tổng Σ|η| bao gồm các thành phần quá thế khác nhau và các phản ƣng
điện hóa khác nhau.
 Điện trở nội của pin σ.
Nếu quá trình kéo dài thì nhiệt độ sẽ tăng lên. Điều đó ảnh hƣởng không tốt
tới các tính chất khác của điện cực nhƣ ăn mòn giảm độ bền nhiệt động , mất tính
hấp thụ thuận nghịch hydro của hợp chất LaNi5 và có thể gây cháy nổ acquy.
Luận văn thạc sĩ khoa học Vũ Thị Ngần
17
Sự quá phóng xảy ra tại điện cực dƣơng, H2O bị khử thành H2 tại điện cực Ni
theo phƣơng trình:
2 22 2 2H O e OH H 
   (1.7)
Sau đó, khí H2 lại chuyển thành H2O tại điện cực MH theo phƣơng trình:
2 22 2 2OH H H O e 
   (1.8)
Trong hai trƣờng hợp : sự chuyển thành H2 ở điện cực MH xảy ra trực tiếp,
hoặc ion H+
bị oxy hóa gián tiếp là không rõ ràng. Sự quá phóng cũng gây hại tƣơng
tự nhƣ sự quá nạp. Nó làm cho thế điện cực dƣơng giảm mạnh về điện cực âm, cấu
trúc hợp kim LaNi5 bị thay đổi và mất hẳn tính hấp thụ thuận nghịch hydro.
1.7.3 Sự tự phóng
Sự tự phóng là quá trình mất điện tích trong điều kiện mạch hở. Điều này có
ảnh hƣởng rất quan trọng tới tính chất của pin. Tốc độ tự phóng ở nhiệt độ phòng
vào khoảng 1% dung lƣợng pin trong một ngày. Có nhiều cơ chế góp phần vào tốc
độ tự phóng. Trong đó có cơ chế do bản chất điện hóa gây ra. Ngoài ra những cơ
chế khác có tác dụng trong pin Ni-MH xảy ra chủ yếu theo pha khí bị chia thành
các quá trình bắt đầu bởi điện cực Ni hay bởi điện cực MH. Đây là một trong những
cơ chế quan trọng ảnh hƣởng đến tốc độ tự phóng.
Khi cực dƣơng bị oxy hóa , Ni3+
không bền trong môi trƣờng nƣớc. Kết quả
là NiOOH bị phân hủy theo phƣơng trình phản ứng sau:
2 2( )NiOOH H O e Ni OH OH 
    (1.9)
2 24 2 4OH O H O e 
   (1.10)
Những điện tích đƣợc giải phóng bởi ion OH-
đƣợc chuyển tới điện cực Ni
tại bề mặt tiếp xúc điện cực âm dung dịch điện ly. Mặc dù Ni3+
không bền nhƣng
điện tích có thể đƣợc giữ lại trong điện cực Ni. Nguyên nhân là do động lực của quá
trình giải phóng oxy tƣơng đối yếu. Quá trình này xảy ra hoàn toàn trƣớc khi dung
dịch mất nên quá trình tự phóng của pin xảy ra đáng kể. Oxy đƣợc chuyển tới điện
cực MH. Ở đây, oxy lại bị chuyển trở lại thành các ion OH-
theo phản ứng:
2 22 4 4O H O e OH 
   (1.11)
Luận văn thạc sĩ khoa học Vũ Thị Ngần
18
22MH OH M H O e 
   
Nhƣ vậy, điện tích đƣợc lƣu trữ ở cả hai điện cực Ni và MH đƣợc giải
phóng qua một pha khí, cụ thể là khí oxy. Dung lƣợng ở cả hai điện cực đều bị suy
giảm trong quá trình tự phóng với việc hình thành oxy và khử oxy.
Những cơ chế khác góp phần vào sự tự phóng trong pin Ni-MH liên quan
đến quy trình chế tạo điện cực Ni và kích thƣớc điện cực MH không đƣợc đề cập ở
đây.
1.7.4 Thời gian sống
Pin Ni-MH có ƣu điểm là mật độ năng lƣợng lớn . Từ đó dung lƣợng pin
cũng lớn hơn tới 30-40% so với pin Ni-Cd. Các pin Ni-MH ngày nay thƣờng có
dung lƣợng từ 1.800 mAh tới 2.500 mAh. Tuổi thọ của dòng pin này hiện cũng đã
lên tới 1.000 lần sạc lại. Nhƣng pin Ni-MH có lƣợng tự suy hao năng lƣợng lớn
(khoảng 30%/tháng). Mặt khác, sau khoảng 300 lần sạc là dung lƣợng đã bắt đầu
giảm dần. Thời gian sống của pin Ni – MH phụ thuộc vào một số yếu tố nhƣ sau :
 Nhiệt độ của quá trình nạp và quá nạp. Pin Ni – MH đƣợc sử dụng ở
nhiệt độ phòng sẽ có số chu kì phóng nạp nhiều nhất. Còn ở nhiệt độ
lớn hơn hay nhỏ hơn nhiệt độ phòng đều ảnh hƣởng tới những đặc
tính của pin. Ở nhiệt độ cao hơn nữa, khí đƣợc sinh ra quá nhiều sẽ
phá vỡ van an toàn thoát ra ngoài. Mặt khác, nhiệt độ cao còn làm cho
lớp vật liệu các điện và các vật liệu khác giảm chất lƣợng. Với nhiệt
độ thấp hơn, khí oxy sinh ra không kịp tái hợp làm cho pin trở nên
quá nhạy trong quá trình phóng. Áp suất khí tăng một cách nhanh
chóng.
 Độ sâu của quá trình phóng. Số chu kì phóng nạp của pin sẽ cao hơn
rất nhiều nếu chúng đƣợc sử dụng hết năng lƣợng rồi mới bắt đầu nạp
lại.
 Dòng điện nạp và dòng điện phóng. Sử dụng pin với dòng điện quá
lớn thì pin có thể nhanh hỏng.
(1.12
)
Luận văn thạc sĩ khoa học Vũ Thị Ngần
19
 Phƣơng pháp điều khiển quá trình nạp. Quá trình này phải luôn đƣợc
khống chế sao cho tốc độ sinh khí oxy sinh ra luôn nhỏ hơn tốc độ tái
hợp.
 Trạng thái tích trữ năng lƣợng và độ dài tích trữ. Đồng thời hiểu rõ
đƣợc quá trình quá nạp và quá phóng.
Luận văn thạc sĩ khoa học Vũ Thị Ngần
20
CHƢƠNG II: PHƢƠNG PHÁP THỰC NGHIỆM
2.1 Chế tạo mẫu bằng phƣơng pháp nóng chảy hồ quang
2.1.1 Chuẩn bị kim loại ban đầu
Để chế tạo các hợp kim RT ngƣời ta sử dụng các kim loại T có độ sạch đến
5N ( 99,999%) và các kim loại đất hiếm có độ sạch 3N8 (99,8%).Thành phần các
phối liệu ban đầu đƣợc xác định dựa trên giá trị nguyên tử gam và nồng độ các kim
loại thành phần. Để chế tạo mẫu RxTy khối lƣợng là m g thì tỉ lệ của từng kim loại
đƣợc tính toán theo phƣơng trình sau:
  myMxM  TR (2.1)
Với MR, MT là nguyên tử gam của các kim loại R,T.
Hệ số tỉ lệ α:
R T
m
xM yM
 

(2.1)
Khi đó thành phần khối lƣợng của từng kim loại chế tạo mẫu sẽ là:
RR .xMm  (2.3)
TT .yMm  (2.4)
Đối với hợp chất có nhiều nguyên tố hơn thì việc xác định khối lƣợng mỗi
nguyên tố cũng đƣợc tiến hành tƣơng tự. Trong luận văn này, hợp chất cần điều chế
là LaNi5-xGex. Do dễ bị bay hơi khi nóng chảy nên kim loại đất hiếm thƣờng đƣợc
tính và cân dƣ thêm 2%. Các phối liệu ban đầu đƣợc làm sạch bề mặt trƣớc khi cân
theo tỉ lệ trên. Các kim loại chuyển tiếp đƣợc làm sạch bằng axit loãng, còn các kim
loại đất hiếm chủ yếu đƣợc làm sạch bằng phƣơng pháp cơ học nhƣ mài, đánh bóng.
2.1.2 Quy trình chế tạo mẫu bằng phƣơng pháp nóng chảy hồ quang
Lò nấu luyện hồ quang chân không đƣợc sử dụng để chế tạo hợp kim dễ bị
oxy hóa hoặc khó nóng chảy, tinh chế kim loại. Ƣu điểm là cấu tạo không quá phức
tạp,thao tác đơn giản, thể tích nhỏ, thời gian nấu nhanh, mẫu có độ tinh khiết
cao….
Luận văn thạc sĩ khoa học Vũ Thị Ngần
21
Hình 2.1 : Cấu tạo buồng nấu và hệ thống nấu luyện hồ quang
Quy trình tiến hành nấu mẫu: Lantan là kim loại dễ bị oxy hóa nên đòi hỏi
môi trƣờng nấu luyện phải có độ sạch cao. Trƣớc khi nấu, buồng mẫu đƣợc hút
chân không. Khi độ chân không trong buồng nấu đạt 10-5
Torr thì thổi khí Ar nhiều
lần để lƣợng dƣ oxy trong bình là nhỏ nhất. Khi bắt đầu nấu, áp suất khí Ar trong
bình lớn hơn 1atm. Lƣợng oxy còn lại trong buồng chứa đƣợc khử bằng cách đốt
nóng chảy khối Titan. Đóng điện khơi mào hồ quang, điều chỉnh cƣờng độ dòng
điện và khoảng cách điện cực để đạt nhiệt độ nung thích hợp. Duy trì tia hồ quang
hƣớng vào mẫu đến khi các thành phần hợp kim nóng chảy hòa tan vào nhau. Sau
khi các kim loại hòa tan vào nhau, dòng điện nuôi hồ quang đƣợc duy trì 50A trong
vòng 5 phút. Trong quá trình nấu, mẫu đƣợc đảo nhiều lần. Sau đó khối hợp kim
đƣợc nấu luyện 3 lần nữa để đảm bảo độ đồng đều về thành phần. Sau khi nấu xong,
để nguội mẫu theo lò rồi mới lấy ra nhằm tránh hiện tƣợng oxy hóa.
Luận văn thạc sĩ khoa học Vũ Thị Ngần
22
Hình 2.2 : Hình ảnh hệ thống nấu luyện hồ quang
2.1.3 Phƣơng pháp và thiết bị nghiền cơ
Có nhiều loại thiết bị nghiền đƣợc sử dụng trong nghiên cứu nhƣ: máy
nghiền chà xát, máy nghiền hành tinh, máy nghiền năng lƣợng cao…Máy nghiền
hành tinh đƣợc sử dụng rất rộng rãi.
Hợp kim LaNi5-xGex sau khi đƣợc chế tạo ở dạng khối đƣợc nghiền thô bằng
cối mã não trong 30 phút để trở thành dạng bột có kích thƣớc cỡ 50 µm. Bột vật liệu
đƣợc đƣa vào nghiền trong máy nghiền hành tinh Retsh của Đức trong môi trƣờng
cồn tinh khiết.
Hình 2.3: Máy nghiền hành tinh Retsch -PM 400/2.( ITIMS)
Luận văn thạc sĩ khoa học Vũ Thị Ngần
23
Nguyên tắc làm việc của máy nghiền hành tinh: khi hoạt động cối nghiền
của máy chuyển động giống nhƣ chuyển động của các hành tinh. Những cối này
đƣợc sắp xếp trên một đĩa nâng quay tròn và một hệ thống cơ học đặc biệt làm cho
chúng có thể chuyển động tròn quanh trục của chính nó. Trong cối chứa vật liệu cần
nghiền và bi nghiền. Chuyển động tròn của cối quanh trục và chuyển động của đĩa
nâng quay tròn sinh ra lực ly tâm. Khi cối và đĩa nâng chuyển động theo những
hƣớng ngƣợc nhau làm cho những viên bi chuyển động lên xuống va đập với thành
cối và vật liệu nghiền.
Tốc độ nghiền
Tốc độ nghiền phụ thuộc rất nhiều vào thiết kế máy và tốc độ quay tối đa của
máy. Ví dụ, trong máy nghiền truyền thống việc tăng tốc độ quay sẽ làm tăng tốc độ
chuyển động của bi. Ở một tốc độ tới hạn, những viên bi sẽ nén vào bên trong cối,
không có bất kì lực nào tác động để làm bi chuyển động lên xuống. Đƣờng kính của
đĩa nâng quay tròn , tỷ lệ tốc độ quay giữa cối nghiền và đĩa nâng quay tròn là yếu
tố quyết định đối với năng lƣợng đầu vào và do đó quyết định quá trình giảm kích
thƣớc. Tỷ lệ tốc độ quay càng cao, năng lƣợng đƣợc tạo ra càng lớn.
Hình 2.4: Hình ảnh chuyển động của cối và bi trong quá trình nghiền
Luận văn thạc sĩ khoa học Vũ Thị Ngần
24
Cối nghiền và bi nghiền
Máy nghiền hành tinh Retsch PM 400/2 có 2 cối nghiền. Cối và bi nghiền có
thể chế tạo từ nhiều loại vật liệu khác nhau nhƣ mã não, silicon, nitrit, gốm,
ziconi...Cối nghiền có kích thƣớc từ 12- 500ml. Tƣơng ứng với nó vật liệu ban đầu
cũng phải có kích thƣớc cực đại từ 1- 10 mm.
Hình 2.5: Cối nghiền và bi nghiền của máy Retsch -PM 400/2
Tác dụng nghiền của máy đƣợc mô tả nhƣ sau : bi quay tròn theo cối đến độ
cao rơi xuống đập nhỏ vật liệu. Bi lăn trên mặt cối có tác dụng nghiền và trộn.
Môi trƣờng nghiền
Môi trƣờng bao quanh vật liệu nghiền có thể là khí, lỏng hoặc nhiệt độ cao.
Tùy thuộc vào bản chất vật liệu để chọn môi trƣờng nghiền thích hợp. Nếu vật liệu
nghiền là các oxit thì có thể nghiền ngay trong không khí thậm chí là không khí
nóng để làm giòn vật liệu và dễ nghiền. Các vật liệu dễ bị oxy hóa cần phải nghiền
trong môi trƣờng bảo vệ, khí trơ hoặc các dung môi hữu cơ. Tuy nhiên nếu nghiền
trong môi trƣờng lỏng thì năng lƣợng của máy sẽ bị giảm xuống.
Thời gian nghiền
Thời gian nghiền là yếu tố quan trọng nhất ảnh hƣởng đến kích thƣớc hạt.
Lựa chọn thời gian nghiền phù hợp sẽ thu đƣợc hiệu quả cao. Thời gian nghiền phụ
thuộc vào chủng loại, công suất máy nghiền, bi và cối nghiền, môi trƣờng nghiền và
Luận văn thạc sĩ khoa học Vũ Thị Ngần
25
kích thƣớc ban đầu của vật liệu. Không nên nghiền quá lâu vì một số vật liệu ban
đầu là tinh thể sau khi nghiền sẽ trở thành bột vô định hình.
Khi nghiền với bi có khối lƣợng lớn và tốc độ cao thì thời gian nghiền liên
tục không nên quá 1 giờ. Thời gian để nguội từ 0,5 đến 1 giờ. Để giảm thời gian có
thể chọn bi nghiền có tỷ trọng lớn hơn. Trƣờng hợp sử dụng cối để trộn mẫu với tốc
độ chậm có thể cho máy hoạt động liên tục mà không làm nóng máy.
2.2 Phân tích cấu trúc bằng phƣơng pháp đo nhiễu xạ tia X
Mẫu LaNi5-xGex đƣợc phân tích nhiễu xạ tia X trƣớc khi đƣa vào nghiền
trong máy nghiền hành tinh và sau khi nghiền để xác định cấu trúc và độ đơn pha.
Thiết bị đo nhiễu xạ là Siemens X-ray diffraction D8 của Khoa hoá thuộc trƣờng
Đại học Khoa học Tự Nhiên, Đại học Quốc gia Hà Nội.
Hình 2.6: Sơ đồ nguyên lý và ảnh thiết bị nhiễu xạ tia X
Trong tất cả các phép đo nhiễu xạ, ống tia X đƣợc dùng có anot là Cu. Tia X
phát ra các bức xạ có bƣớc sóng lần lƣợt là: K1=1.544390 Ao
, K2 = 1.540563 Ao
,
K = 1.39217 Ao
. Các hiện tƣợng nhiễu xạ do Kβ gây ra chồng lên các hiện tƣợng
nhiễu xạ của Kα và làm các ảnh nhiễu xa trở nên phức tạp. Ngƣời ta sử dụng tấm lọc
Ni để loại bỏ các tia Kβ nhằm thu đƣợc ảnh nhiễu xạ đơn sắc. Khi đó:
K(2 K1 + K2 )/3 = 1.54 A0
(2.5)
Luận văn thạc sĩ khoa học Vũ Thị Ngần
26
Xác định cấu trúc tinh thể
Giản đồ nhiễu xạ Rơnghen của mẫu bột có sự tƣơng đồng với giản đồ nhiễu
xạ của hợp kim LaNi5 mà ta đã biết. Các thông số mạng của LaNi5 đƣợc tính theo
công thức :
 
2
2
2
22
2
3
41
c
l
a
khkh
dhkl



(2.6)
Trong đó : h, k, l là các chỉ số Miller
a, b, c là các hằng số mạng
dhkl là khoảng cách giữa 2 mặt của mạng tinh thể.
Từ công thức trên ta có thể tính đƣợc các hằng số mạng a, c khi biết giá trị
dhkl ứng với mỗi đỉnh nhiễu xạ. dhkl đƣợc tính theo công thức nhiễu xạ Bragg :
hklhkld  sin2
(2.7)
hkl
hkld


sin2

(2.8)
Với : θhkl là góc giữa tia X và hƣớng vuông góc với mặt phẳng mẫu.
λ là bƣớc sóng tia tới.
Hằng số mạng tinh thể a, c là giá trị trung bình thống kê của toàn bộ các
phép tính ứng với các đỉnh nhiễu xạ. Thể tích của 1 ô tinh thể lục giác xếp chặt
đƣợc tính nhƣ sau :
02
120sincaVhex 
(2.9)
2.3 Xác định kích thƣớc hạt bằng kính hiển vi điện tử quét (SEM)
Kính hiển vi điện tử quét có thể tạo ra ảnh với độ phân giải cao của bề mặt
mẫu bằng cách sử dụng chùm điện tử hẹp quét trên bề mặt mẫu. Việc tạo ảnh của
mẫu thông qua việc ghi nhận và phân tích các bức xạ phát ra từ tƣơng tác chùm điện
tử với bề mặt mẫu. Độ phóng đại của SEM lớn đến 100.000 lần và độ phân giải cỡ
vài nanomet. Điện tử đƣợc phát ra từ súng phóng điện tử và đƣợc tăng tốc. Do sự
hạn chế của thấu kính từ thế tăng tốc của SEM chỉ từ 10-50kV.
Luận văn thạc sĩ khoa học Vũ Thị Ngần
27
Sau khi tăng tốc, các điện tử hội tụ thành chùm điện tử hẹp cỡ vài nanomet.
Chùm điện tử quét lên bề mặt mẫu nhờ các cuộn quét tĩnh điện. Chùm điện tử ban
đầu khi tƣơng tác với bề mặt mẫu sẽ xuất hiện các điện tử bị bật ngƣợc trở lại. Các
điện tử này đƣợc gọi là điện tử tán xạ ngƣợc, có năng lƣợng cao. Điện tử tán xạ
ngƣợc đƣợc dùng để ghi nhận ảnh nhiễu xạ điện tử tán xạ ngƣợc giúp cho việc phân
tích cấu trúc tinh thể.
Hình 2.7 : Sơ đồ cấu tạo và nguyên lý phóng đại ảnh của SEM
Điện tử đƣợc phát ra từ súng phóng điện tử và đƣợc tăng tốc. Do sự hạn chế
của thấu kính từ thế tăng tốc của SEM chỉ từ 10-50kV. Sau khi tăng tốc, các điện tử
hội tụ thành chùm điện tử hẹp cỡ vài nanomet. Chùm điện tử quét lên bề mặt mẫu
nhờ các cuộn quét tĩnh điện. Chùm điện tử ban đầu khi tƣơng tác với bề mặt mẫu sẽ
xuất hiện các điện tử bị bật ngƣợc trở lại. Các điện tử này đƣợc gọi là điện tử tán xạ
ngƣợc, có năng lƣợng cao. Điện tử tán xạ ngƣợc đƣợc dùng để ghi nhận ảnh nhiễu
xạ điện tử tán xạ ngƣợc giúp cho việc phân tích cấu trúc tinh thể.
Từ ảnh SEM kích thƣớc hạt trung bình có thể tính theo phƣơng pháp đơn
giản nhƣ sau: trƣớc hết chọn một số hạt và đánh dấu thứ tự cho chúng; sau đó kẻ
những đƣờng thẳng song song cách đều trên ảnh; khoảng cách giữa những đƣờng
này đƣợc ấn định tùy thuộc vào độ lớn của hạt. Số đƣờng cắt qua hạt càng nhiều thì
Luận văn thạc sĩ khoa học Vũ Thị Ngần
28
phép đo càng chính xác. Kích thƣớc trung bình d của hạt đƣợc xác định theo công
thức :
1
n
i
i
l
d
n



(2.10)
Trong đó : l là độ dài các đoạn thẳng
n là tổng số đoạn cắt
2.4 Nghiên cứu tính chất từ bằng từ kế mẫu rung
Thiết bị từ kế mẫu rung ( VSM) là một thiết bị rất hiện đại, dùng để xác định
từ độ hoạt động của mẫu hoạt động theo nguyên lý cảm ứng điện từ. Mẫu đƣợc rung
với tần số xác định trong vùng từ trƣờng đồng nhất. Từ trƣờng sẽ từ hóa mẫu và khi
mẫu rung sẽ sinh ra hiệu điện thế cảm ứng trên cuộn dây đặt cạnh mẫu. Tín hiệu này
đƣợc thu nhận, khuếch đại và xử lý trên hệ thống máy tính sẽ cho ta biết giá trị từ
độ của mẫu. Đặc trƣng từ của vật liệu làm điện cực đƣợc xác định bằng phép đo
đƣờng cong từ hóa trên mẫu khối và mẫu bột sau khi nghiền ngoài không khí trong
dải từ trƣờng -1.3 T đến 1,3 T tại nhiệt độ phòng. Và nhiệt độ tại nhiệt độ phòng tới
700K tại từ trƣờng không đổi là 1Koe trên từ kế mẫu rung tại viện ITIMS – Đại học
BÁch Khoa Hà Nội.
2.5 Các phép đo điện hóa
2.5.1 Hệ đo điện hóa
Các phép đo điện hóa đều sử dụng hệ 3 điện cực: điện cực làm việc, điện cực
so sánh và điện cực đếm.
Hình 2.8 : Hệ 3 điện cực trong phép đo điện hóa của pin Ni-MH
Luận văn thạc sĩ khoa học Vũ Thị Ngần
29
 Điện cực làm việc WE : đƣợc chế tạo từ vật liệu cần nghiên cứu (LaNi5-
xGex).
 Điện cực so sánh CRE : là thiết bị đo điện cực pH, điện cực này có thể làm
việc với mọi giá trị pH khác nhau thông qua một cầu muối. Khi đƣợc nối với
một máy đo thế, điện cực CRE sẽ cho giá trị thế chuẩn so với giá trị thế của
điện cực làm việc.
 Điện cực đếm CE : đƣợc chế tạo từ kim loại trơ với dung dịch điện li là
platin.
Điện cực làm việc WE và điện cực đếm CE đƣợc nhúng hoàn toàn trong
dung dịch điện phân KOH 6M+ LiOH 1M. Điện cực so sánh CRE đƣợc nhúng
trong dung dịch muối bão hòa. Hai loại dung dịch này đƣợc nối với nhau bằng một
cầu muối. Cả 3 điện cực này đều đƣợc nối vào một thiết bị điều khiển điện thế gọi
là Bi-Potentiostat.
2.5.2 Chế tạo điện cực âm
Điện cực âm của pin Ni-MH đƣợc chế tạo từ 0,7g Ge và 0,298g Ni +
0,0938g Cu dạng bột ( nhằm tăng độ dẫn). Tiến hành chế tạo mẫu theo các bƣớc
nhƣ sau:
1. Cân mẫu bột nghiên cứu và bột Ni, Cu bằng cân điện tử với độ chính xác tới
10-4
gram
2. Trộn hỗn hợp vật liệu vừa cân với nhau rồi cho vào cối mã não nghiền trong
vòng 30 phút để trộn và làm đồng đều các bột thành phần.
3. Hỗn hợp mẫu đƣợc phết đều lên lƣới Ni hình tròn đƣờng kính 12mm và ép
mẫu bằng máy ép Carver với áp suất 8000kg/cm2 ở nhiệt độ phòng trong 1
phút.
4. Khối mẫu đã ép đƣợc hàn lạnh bằng keo bạc với dây dẫn và nối ra
ngoài.Dùng epoxy và chất đóng rắn để cố định điện cực và dây nối.
5. Sau đó mẫu đƣợc đƣa vào đo dung lƣợng.
Luận văn thạc sĩ khoa học Vũ Thị Ngần
30
2.5.3 Đo chu kì phóng nạp
Thiết bị Bi-Potentiostat 366A đƣợc dùng để thực hiện phép đo phóng nạp
của các điện cực trong pin điện hóa. Đây là thiết bị có thể điều chỉnh dòng và thế.
Trong luận văn này, tất cả các phép đo đƣợc chỉnh ở chế độ mode galvannostatic.
Với mode này, dòng đi qua 2 điện cực của pin đƣợc giữ nguyên trong khi đó điện
thế thay đổi theo thời gian hoặc theo dung lƣợng Q = I.t. Hai điện cực đƣợc sử dụng
trong quá trình đo phóng nạp là cực dƣơng Ni(OH)2 và cực âm làm từ vật liệu
nghiên cứu.
Các điện cực đƣợc nạp với dòng -50mA trong 8h, sau đó phóng với dòng
50mA. Khi thế giữa 2 điện cực giảm xuống còn -0,8V thì dừng phóng. Các dữ liệu
đƣợc truyền sang máy tính có phần mềm xử lý . Các kết quả đƣợc hiển thị bằng đồ
thị và các file dữ liệu.
Hình 2.9 : Sơ đồ nguyên lý của thiết bị đo phóng nạp Battery tester
Hình 2.10: Hệ đo chu kỳ phóng nạp Battery tester
Luận văn thạc sĩ khoa học Vũ Thị Ngần
31
2.5.4 Phƣơng pháp đo phổ tổng trở EIS
Hiệu suất của pin nạp lại Ni-MH đƣợc điều chỉnh chủ yếu bởi cơ chế động
học của quá trình chuyển điện tích trên bề mặt vật liệu cũng nhƣ chuyển khối lƣợng
Hyđrô vào trong khối của vật liệu điện cực âm MH. Phổ tổng trở là một phƣơng
pháp hiệu quả nghiên cứu các tính chất của vật liệu điện cực.
2.5.4.1 Nguyên lý chung
Với kĩ thuật này, chúng ta áp đặt một dao động nhỏ của điện thế hoặc của
dòng điện lên hệ thống nghiên cứu. Tín hiệu đáp ứng thƣờng có dạng sin và lệch
pha với dao động đặt vào. Đo sự lệch pha và tổng trở của hệ thống điều hòa sẽ giúp
phân tích sự đóng góp vai trò của khuếch tán, động học, lớp kép, phản ứng hóa học
...vào các quá trình của điện cực. Một trong những thuận tiện của EIS là có thể quan
sát đƣợc các quá trình với các thời gian khác nhau. Do đó, chúng ta có thể dự đoán
đƣợc nhiều quá trình liên quan đến một hệ riêng biệt.
Một bình điện phân có thể coi nhƣ một mạch điện bao gồm những thành
phần chủ yếu đó là : điện dung của lớp kép ( coi nhƣ một tụ điện Cd ), tổng trở của
quá trình Faraday Zf, điện trở chƣa đƣợc bù RΩ ( là điện trở dung dịch giữa điện cực
so sánh và điện cực nghiên cứu ).
Hình 2.11: Mạch điện tương đương của bình điện phân
Tổng trở Faraday Zf thƣờng đƣợc phân thành điện trở chuyển điện tích Rct
nối tiếp với tổng trở khuyếch tán ZW ( tổng trở Warbug ).
Nếu phản ứng chuyển điện tích dễ dàng thì Rct → 0 và ZW sẽ khống chế.
Còn khi phản ứng chuyển điện tích khó khăn thì Rct → ∞ và lúc đó Rct khống chế.
Để tính toán Rct, ZW, ZR ta sử dụng phƣơng pháp biên độ phức.
Luận văn thạc sĩ khoa học Vũ Thị Ngần
32
Điện trở chuyển điện tích: (2.11)
Tổng trở khuếch tán Warbug Zw: Rw = σω-1/2
(2.12)
trong đó: là hằng số Warbug
và ta có điện dung của tụ điện Warbug (2.13)
Biểu diễn tổng trở trên mặt phẳng phức (đồ thị Nyquist). Tổng trở bình điện
phân thể viết nhƣ sau:
(2.14)
Với và là phần thực và phần ảo của tổng trở.
Phân li phần thực và phần ảo ta đƣợc:
(2.15)
(2.16)
Khi ω → 0 thì : (2.17)
(2.18)
Đƣờng biểu diễn Z’ theo Z” sẽ là đƣờng thẳng với độ dốc bằng 1 và sẽ đƣợc
ngoại suy để cắt trục thực Z’ tại ( . Đƣờng thẳng này tƣơng ứng
với khống chế khuyếch tán và tổng trở Warbug, góc π/4
Hình 2.12: Tổng trở trên mặt phẳng phức
Luận văn thạc sĩ khoa học Vũ Thị Ngần
33
Khi ω → ∞ thì ở tần số cao phản ứng chỉ bị khống chế động học và Rct >> Z
Suy ra: (2.19)
(2.20)
Cuối cùng ta có: (2.21)
Phƣơng trình (2.21) chính là biểu thức của vòng tròn bán kính là và cắt
trục Z’ tại RΩ khi ω → ∞. Khi quá trình điện cực gồm nhiều giai đoạn thì ta có thể
thấy các nửa vòng tròn liên tiếp xuất hiện (hình 2.13).
Hình 2.13: Tổng trở của quá trình điện cực nhiều giai đoạn
Khi có sự hấp phụ còn thấy nửa vòng tròn ở phía dƣới Z’ khi ω → ∞, và khi
có sự thụ động còn thấy giá trị điện trở âm hình 2.22.
Hình 2.14: Tổng trở khi có sự hấp phụ đặc biệt (a) và khi có sự thụ động (b)
Luận văn thạc sĩ khoa học Vũ Thị Ngần
34
2.5.4.2 Phương pháp đo phổ tổng trở EIS nghiên cứu điện cực LaNi5
Theo mô hình tổng trở điện cực MH của Chunsheng Wang phản ứng hydrid
hóa bao gồm bƣớc chuyển điện tích, tiếp theo là quá trình vận chuyển Hydro hấp
thụ (Had) tới vị trí hấp thụ ở sát bề mặt, sau đó khuếch tán Hydro hấp thụ từ bề mặt
vào trong khối vật liệu. Khi nồng độ Hab trong khối vật liệu vƣợt quá độ tan của H
trong kim loại thì sẽ xảy ra hiện tƣợng chuyển pha.
M + H2O +e-
 MHad +OH-
(2.22)
MHad  MHab(bề mặt) (2.23)
MHab(bề mặt) MHab(khối,) (2.24)
MHab(khối,)  MHab(khối,) (2.25)
Phổ tổng trở có thể đƣợc biểu diễn theo 2 dạng: phổ Nyquist hoặc phổ Bode.
Phổ Nyquist của điện cực âm LaNi5 đƣợc thể hiện trên các hình 2.15.
0 5 10 15 20 25 30 35 40
0
2
4
6
8
10
12
-Z''()
Z'()
Hình 2.15: Phổ tổng trở Nyquist của điện cực LaNi5 tại E = -1,2 V/SCE
Ta thấy phổ Nyquist chỉ có hình nửa vòng cung. Vì vậy sơ đồ mạch tƣơng
đƣơng của điện cực gốc LaNi5 đƣợc biểu diễn nhƣ trên hình 2.16.
Hình 2.16: Sơ đồ mạch tương đương của điện cực gốc LaNi5
Luận văn thạc sĩ khoa học Vũ Thị Ngần
35
Trong đó : RS là điện trở dung dịch.
Rct là điện trở dịch chuyển điện tích.
Cdl là điện dung lớp điện kép.
Zdi là tổng trở khuếch tán.
Từ sơ đồ tƣơng đƣơng theo công thức :
1
ct dR C
  có thể tính đƣợc điện
dung của lớp điện tích kép ở mỗi thế điện cực, điện trở chuyển điện tích, sự phụ
thuộc của điện trở Z’ vào nồng độ của các chất phụ gia đƣa vào điện cực và tần số
quét. Từ đó có thể nghiên cứu về sự hấp thụ trên điện cực. Đây là cơ sở quan trọng
để nghiên cứu cơ chế quá trình điện cực.
Luận văn thạc sĩ khoa học Vũ Thị Ngần
36
CHƢƠNG III: KẾT QUẢ VÀ THẢO LUẬN
3.1 Kết quả phân tích nhiễu xạ tia X
Đặc trƣng tinh thể của các mẫu LaNi4.5Ge0.5, LaNi4.6Ge0.4, LaNi4.7Ge0.3,
LaNi4.8Ge0.2, LaNi4.9Ge0.1 đƣợc xác định và phân tích trên mẫu đại diện là
LaNi4.5Ge0.5 và LaNi4.7Ge0.3.
Hình 3.1 : Giản đồ nhiễu xạ tia X của mẫu LaNi4.5Ge0.5, LaNi4.7Ge0.3
Luận văn thạc sĩ khoa học Vũ Thị Ngần
37
Tất cả các mẫu đƣợc đo ở trạng thái mẫu bột ban đầu và mẫu bột sau 10 chu
kì phóng nạp. Từ giản đồ nhiễu xạ tia X của các mẫu ta có thể xác định đƣợc cấu
trúc tinh thể, hằng số mạng và độ đơn pha. Từ đó so sánh với mẫu LaNi5 chuẩn.
Từ hình vẽ 3.1 ta thấy, với mẫu bột chƣa phóng nạp thì giản đồ tia X xuất
hiện các đỉnh có độ sắc nét cao, không có các vạch phổ ứng với pha lạ. Điều này
chứng tỏ mẫu là hoàn toàn đơn pha. Trong mức độ chính xác của phép đo, cấu trúc
tinh thể của các mẫu là loại lục giác xếp chặt kiểu CaCu5.
Đối với mẫu bột đã phóng nạp 10 chu kì trong dung dịch điện phân (KOH
6M+LiOH 1M) thì khi phân tích phổ nhiễu xạ tia X ta thấy rằng các vạch đặc trƣng
trên giản đồ tia X vẫn sắc nét và có sự dịch chuyển chút ít. Nhƣ vậy, việc hydro
xâm nhập vào trong vật liệu không làm thay đổi cấu trúc tinh thể của mẫu. Các đỉnh
nhiễu xạ bị dịch chuyển có thể giải thích là do trong quá trình phóng nạp các
nguyên tử hydro đã điền kẽ vào các lỗ trống và sai hỏng mạng, làm thay đổi khoảng
cách giữa các nguyên tử.
Từ giản đồ tia X ta cũng tính đƣợc hằng số mạng của các mẫu. Các hằng số
mạng này đƣợc so sánh với hằng số mạng của mẫu LaNi5. Kết quả đƣợc thể hiện
trong bảng 3.1.
Bảng 3.1: Các thông số mạng tinh thể
TT Tên mẫu a0 ( A0
) a1( A0
) c0 ( A0
) c1 ( A0
)
1 LaNi5 5.01250 5.01510 3.98380 3.9840
2 LaNi4.7Ge0.3 5.02690 5.02697 3.99563 4.0003
3 LaNi4.5Ge0.5 5.02983 5.03057 4.01261 4.0164
Từ bảng 3.1 ta thấy tỷ lệ pha tạp Ge tăng lên thì các hằng số mạng cũng tăng
lên. Đó là do bán kính nguyên tử Ge (1,22 Ao
) nhỏ hơn bán kính nguyên tử Ni (1,24
Ao
) nên cả hai thông số a, c đều tăng khi nồng độ Ge thay thế cho Ni tăng lên.
Luận văn thạc sĩ khoa học Vũ Thị Ngần
38
3.2 Kết quả phép đo từ
Tính chất từ của các mẫu LaNi4.6Ge0.4 và LaNi4.8Ge0.2 đƣợc xác định bằng
phép đo đƣờng cong từ hóa theo từ trƣờng trong khoảng từ -1.3 T ÷ 1.3 T và đƣờng
cong từ nhiệt thực hiện trên hệ từ kế mẫu rung (VSM) tại trung tâm ITIMS.
Phép đo đƣờng cong từ hóa theo từ trƣờng đƣợc thực hiện trên các mẫu khối,
mẫu bột sau khi nghiền và mẫu bột sau 10 chu kì phóng nạp. Các đƣờng cong từ
hóa đƣợc thể hiện trên hình 3.2 ,3.3.
Hình 3.2: Đường cong từ hóa của mẫu LaNi4.6Ge0.4
Luận văn thạc sĩ khoa học Vũ Thị Ngần
39
Hình 3.3 : Đường cong từ hóa của mẫu LaNi4.8Ge0.2
Từ các hình vẽ trên ta thấy, đƣờng cong từ hóa của các mẫu bột sau khi
nghiền đặc trƣng siêu thuận từ giống với đƣờng cong từ hóa của các mẫu sau khi
phóng nạp. Nguyên nhân là sau khi nghiền các hạt Ni có kích thƣớc cỡ nanomet bị
giải phóng ra bề mặt do La bị oxy hóa bởi oxy và hơi nƣớc trong không khí khi
Luận văn thạc sĩ khoa học Vũ Thị Ngần
40
nghiền. Từ các đƣờng cong từ hóa của các mẫu ta có thể xác định đƣợc độ cảm từ χ
của mẫu. Kết quả đƣợc thể hiện trong bảng 3.2.
Bảng 3.2 : Độ cảm từ χ của các mẫu
TT Tên mẫu  (10-6
)
1 LaNi5 3.750
2 LaNi4.8Ge0.2 2.5442
4 LaNi4.6Ge0.4 1.7098
Ta nhận thấy rằng, khi hàm lƣợng Ge tăng thì độ cảm từ của hợp chất LaNi5-
xGex giảm. Bởi vì Ge là nguyên tố không có từ tính trong khi LaNi5 có tính thuận từ
nên khi Ge thay thế cho Ni đã làm giảm số nguyên tử từ dẫn tới độ cảm từ χ giảm.
Kết quả hoàn toàn phù hợp với các nghiên cứu trƣớc đây.
Đƣờng cong từ nhiệt của các mẫu LaNi4.6Ge0.4 và LaNi4.8Ge0.2 đƣợc thể hiện
trên hình 3.4, 3.5.
Hình 3.4 : Đường cong từ nhiệt của mẫu LaNi4.8Ge0.2
Luận văn thạc sĩ khoa học Vũ Thị Ngần
41
Hình 3.5 : Đường cong từ nhiệt của mẫu LaNi4.6Ge0.4
Từ hình vẽ chúng ta thấy rằng,ở lần đo đầu tiên theo chiều tăng của nhiệt độ,
đƣờng cong từ nhiệt xuất hiện các đỉnh dị thƣờng. Đó là do khi các nguyên tử giải
phóng khỏi bề mặt hạt vật liệu, chúng tồn tại dƣới dạng các đám vi hạt hoặc trạng
thái vô định hình. Khi nhiệt độ tăng thì mômen từ giảm. Sau đó, dƣới tác dụng của
nhiệt độ, các đám vô định hình Ni ( hoặc các đám vi hạt Ni) tăng nhanh kích thƣớc
thành tinh thể Ni dẫn đến mômen từ tăng đột ngột. Nhiệt độ tại đỉnh dị thƣờng có
thể coi là nhiệt độ tái kết tinh của đám vi hạt Ni thành tinh thể Ni. Ở lần đo về,
đƣờng cong từ nhiệt không thấy xuất hiện các đỉnh dị thƣờng. Nguyên nhân là do
lúc này các đám hạt Ni đã trở thành các tinh thể Ni và đƣờng cong từ hóa phụ thuộc
vào nhiệt độ có dạng nhƣ thông thƣờng.
3.3 Đặc trƣng phóng nạp của vật liệu
Trong phép đo phóng nạp dòng tĩnh, hệ đƣợc phân cực bằng dòng điện
không đổi 50mA. Điện thế đƣợc đo theo thời gian. Các đƣờng cong phóng nạp đƣợc
thể hiện trên hình 3.6.
Luận văn thạc sĩ khoa học Vũ Thị Ngần
42
Hình 3.6 : Đường cong phóng nạp
của các mẫu LaNi4.6Ge0.4 và LaNi4.8Ge0.2
Từ hình 3.6 ta thấy : đối với các mẫu, ở các chu kì đầu hiệu suất phóng nạp
còn nhỏ. Nhƣng ở các chu kì sau hiệu suất phóng nạp tăng dần. Đến chu kì thứ 7 -8
thì bắt đầu ổn định và đến chu kì thứ 10 thì hiệu suất có thể đạt tới 97 -99 %. Các
thế phóng điện giảm ít . Ở cuối giai đoạn, thế phóng điện cực còn khoảng -0.8V.
Luận văn thạc sĩ khoa học Vũ Thị Ngần
43
Thế ngắt mạch vẫn còn ở mức -1.040V. Nhƣ vậy, quá trình phóng điện nằm trong
khoảng cho phép. Điện cực làm việc theo các chu kì phóng nạp một cách thuận lợi.
Điều này phù hợp với chế độ làm việc lâu dài và không xảy ra hiện tƣợng phóng
quá. Quá trình nạp diễn ra tƣơng tự nhƣ quá trình phóng. Giá trị thế nạp tƣơng đối
thấp, không vƣợt quá -1250mV/VCE.
Hình 3.7 : Đường cong phóng nạp của mẫu LaNi5
So sánh với đƣờng cong phóng nạp của LaNi5, ta thấy rằng quá trình phóng
nạp của LaNi5 là kém ổn định. Quá trình không thể lặp lại, mặc dù chỉ trong 10 chu
kì phóng nạp. Các mẫu pha tạp Ge có chất lƣợng chu kì phóng nạp tốt hơn. Quá
trình phóng nạp nhanh chóng ổn định hơn. Chỉ trong vòng vài chu kì phóng nạp ban
đầu, vật liệu đã trở nên ổn định bền vững hơn và có thể làm việc giống nhƣ một
điện cực của pin.
3.4. Kết quả đo phổ tổng trờ
Phổ tổng trở là một phƣơng pháp hiệu quả nghiên cứu các tính chất của vật
liệu điện cực. Hiệu suất của pin nạp lại Ni-MH đƣợc điều chỉnh chủ yếu bởi cơ chế
động học của quá trình chuyển điện tích trên bề mặt vật liệu cũng nhƣ chuyển khối
lƣợng hyđrô vào trong khối của vật liệu điện cực âm MH.
Luận văn thạc sĩ khoa học Vũ Thị Ngần
44
Phép đo phổ tổng trở đƣợc thực hiện trên các mẫu với thế phân cực E = -1,1
(V/SCE) với điện áp xoay chiều hình sin có biên độ 5 mV và ở các tần số khác nhau
trong phạm vi từ 1 MHz tới 5 mHz. Các thí nghiệm đƣợc tiến hành trên hệ thống tự
động AUTOLAB đƣợc điều khiển và xử lý kết quả bằng phƣơng pháp mạch điện
tƣơng đƣơng và phần mềm FRA. Dƣới đây là các kết quả đo phổ tổng trở.
3.4.1 Phổ tổng trở của các mẫu nghiền thô
Các mẫu LaNi5-xGex ở dạng nghiền thô đƣợc đo tại thế phân cực E= -1,1V.
Đƣờng cong Nyquist của các mẫu LaNi5-xGex (x= 0.1 – 0.4) đƣợc thể hiện trên hình
3.8. Hình vẽ cho thấy đặc trƣng tổng trở của các mẫu LaNi5-xGex (x = 0.1; 0.2; 0.3
và 0.4) có dạng tƣơng tự nhƣ của mẫu LaNi5.
Hình 3.8 : Đường cong Nyquist của mẫu LaNi5-xGex
tại thế phân cực E = -1,1 V
Đƣờng cong Nyquist của các mẫu chỉ gồm một hình bán nguyệt và có bán
kính lớn dần lên khi nồng độ Ge tăng. Trong phổ tổng trở của điện cực âm MH, tại
tần số cao phổ tổng trở đƣợc xác định bởi điện trở dung dịch điện ly Rs còn tại tần
số rất thấp tổng trở đƣợc xác định bằng tổng điện trở dung dịch điện ly và điện trở
chuyển dời điện tích Rct. Cả hai giới hạn này đều dịch chuyển về phía pha bằng 0o
.
Bán kính của đƣờng cong bán nguyệt liên quan đến điện trở chuyển điện tích. Điều
Luận văn thạc sĩ khoa học Vũ Thị Ngần
45
này có nghĩa là khi bán kính đƣờng bán nguyệt nhỏ hơn thì quá trình chuyển điện
tích diễn ra dễ dàng hơn. Hình 3.8 cũng cho thấy rằng khi nồng độ Ge tăng lên thì
điện trở chuyển điện tích Rct cũng tăng lên.
3.4.2 Sự phụ thuộc của điện trở chuyển điện tích Rct và điện dung lớp điện
tích kép Cdl vào hàm lƣợng thay thế Ni
Chúng tôi đã sử dụng phần mềm FRA và phƣơng pháp mạch điện tƣơng
đƣơng để tính toán điện trở chuyển điện tích Rct và điện dung lớp kép Cdl của điện
cực. Từ đó thấy rõ hơn ảnh hƣởng lên phổ tổng trở của các điện cực LaNi5-xGex do
sự thay thế một phần Ni bằng nguyên tố Ge.
Hình 3.9: Sự phụ thuộc Rct và Cdl vào hàm lượng thay thế Ge cho Ni
Luận văn thạc sĩ khoa học Vũ Thị Ngần
46
Từ hình 3.9 ta thấy, với tất cả các mẫu ở cùng thế phân cực E= -1,1V, tỷ lệ
Ge thay thế cho Ni tăng lên thì Rct tăng và ngƣợc lại Cdl giảm. Chẳng hạn khi nồng
độ Ge là 0,1 thì Rct và Cdl lần lƣợt có giá trị là 28 (Ohm/g) và 41 (µF/g). Còn khi
nồng độ Ge tăng lên đến 0,4 thì Rct tăng tới 100 (Ohm/g) và Cdl giảm còn 18 (µF/g).
Kết quả đƣợc giải thích nhƣ sau: khi tăng nồng độ của Ge, càng nhiều ion
của lớp khuếch tán vào lớp điện tích kép. Sự thay đổi cấu trúc tinh thể này đã làm
cho quá trình chuyển điện tích trở nên khó khăn hơn. Ngoài ra, giá trị Cdl giảm cũng
cho thấy mật độ của các ion dẫn điện tại lớp kép giảm, dẫn đến khả năng trao đổi
điện tích tại biên pha và bề mặt điện cực giảm. Ge pha tạp làm cho trở kháng của
vật liệu tăng lên. Tuy nhiên, tuổi thọ và hiệu suất của pin cũng đƣợc tăng lên, đủ để
có thể sử dụng làm điện cực âm cho pin sạc Ni-MH. Mặt khác, do điện trở suất của
Ge (1 Ω.m) lớn hơn Ni (69,3 nΩ.m) nên khi pha tạp Ge vào vật liệu gốc LaNi5 đã
làm cho tổng trở của vật liệu tăng lên.
3.4.3 Ảnh hƣởng của thời gian nghiền lên phổ tổng trở
Đƣờng cong Nyquist của mẫu LaNi4.6Ge0.4 tƣơng ứng với các thời gian
nghiền ( t = 0 ; 5; 10; 15; 20h ) thu đƣợc nhƣ hình 3.10.
Hình 3.10: Đường cong Nyquist của mẫu LaNi4.6Ge0.4
với thời gian nghiền
Luận văn thạc sĩ khoa học Vũ Thị Ngần
47
Hình 3.10 cho thấy phổ tổng trở của mẫu trƣớc và sau khi nghiền có dạng
giống nhau, đồng thời có hình bán nguyệt. Nhƣ vậy, phổ tổng trở của LaNi4.6Ge0.4
giống với LaNi5. Điều đó cho thấy đặc tính dẫn của LaNi4.6Ge0.4 không thay đổi
trong suốt quá trình nghiền và giống với LaNi5 ở dạng bột nghiền thô 50 m. Thời
gian nghiền càng tăng thì giá trị của tổng trở càng giảm. Điều này sẽ làm quá trình
nạp nhanh ổn định hơn. Đồng thời quá trình phóng cũng xảy ra ổn định và kéo dài
hơn.
Hình 3.11: Sự phụ thuộc của Rct và Cdl
của LaNi4.6Ge0.4 theo thời gian nghiền
Luận văn thạc sĩ khoa học Vũ Thị Ngần
48
Để thấy rõ hơn ảnh hƣởng của kích thƣớc hạt lên phổ tổng trở của điện cực
vật liệu, chúng tôi tiếp tục sử dụng phƣơng pháp mạch điện tƣơng đƣơng kết hợp
với phần mềm FRA để tính các thông số Rct và Cdl. Kết quả đƣợc thể hiện trong
hình 3.11 ở trên.
Hình 3.11 cho thấy rằng, sau khi nghiền điện trở chuyển điện tích giảm đi
đồng thời điện dung lớp điện tích kép tăng lên so với trƣớc khi nghiền. Ví dụ, với
thời gian nghiền 5h điện trở chuyển điện tích có giá trị là 50 (Ohm/g). Sau khi
nghiền 20h Rct giảm xuống 20 (Ohm/g). Trong khi đó, với thời gian nghiền từ 5h –
20h, điện dung lớp điện tích kép đã tăng lên từ 19 – 95 (µF/g). Điều đó chứng tỏ sau
khi nghiền diện tích tiếp xúc của của các hạt lớn hơn nhiều so với khi chƣa nghiền.
Khi kích thƣớc hạt giảm làm cho khả năng hấp phụ hydro của khối vật liệu tăng lên
. Dẫn tới nồng độ hydro hấp thụ trên bề mặt vật liệu tăng, quá trình động học
khuyếch tán hydro cũng nhanh hơn ( do quãng đƣờng khuyếch tán ngắn hơn) . Các
quá trình điện hóa xảy ra dễ dàng hơn. Do đó, sau khi nghiền mẫu có khả năng dẫn
điện và chuyển điện tích dễ dàng hơn. Bên cạnh đó Cdl tăng lên chứng tỏ rằng sau
khi nghiền các hạt có bề mặt hoạt hóa tốt hơn. Mật độ của các ion dẫn tại lớp điện
tích kép lớn dẫn đến khả năng trao đổi điện tích tại biên pha dung dịch điện ly và bề
mặt điện cực đƣợc thực hiện dễ dàng. Hay nói cách khác quá trình phóng nạp của
điện cực sẽ xảy ra tốt hơn.
Điều này hoàn toàn phù hợp với các nghiên cứu trƣớc đây về tính chất điện
hóa của vật liệu điện cực âm dùng trong pin nạp lại Ni-MH .Khi thời gian nghiền
tăng thì kích thƣớc của vật liệu giảm làm cho dung lƣợng của pin tăng lên. Ngoài ra
khi kích thƣớc giảm các thông số khác của pin cũng đƣợc cải thiện.
Luận văn thạc sĩ khoa học Vũ Thị Ngần
49
KẾT LUẬN
Trong thời gian thực hiện luận văn này, chúng tôi đã thu đƣợc một số kết quả
nhƣ sau:
 Đã chế tạo thành công các mẫu : LaNi4.9Ge0.1, LaNi4.8Ge0.2, LaNi4.7Ge0.3,
LaNi4.6Ge0.4 .
 Các mẫu chế tạo đều thuận từ. Sau khi nghiền hoặc hydro hóa đều có từ tính.
 Rút ra kết luận rằng, việc thay thế Ge cho Ni làm giãn mạng tinh thể nhƣng
không làm thay đổi cấu trúc mạng tinh thể.
 Khi nồng độ thay thế Ge cho Ni tăng lên thì tổng trở của mẫu tăng lên. Điều
này dẫn đến dung lƣợng điện cực tăng đáng kể.
 Khi thời gian nghiền tăng lên, kích thƣớc hạt vật liệu giảm thì tổng trở của
mẫu LaNi4.6Ge0.4 giảm, điện dung lớp điện tích kép tăng lên. Do đó, trong
chu kì phóng nạp, vật liệu có độ ổn định cao hơn và thời gian sống của pin
đƣợc kéo dài hơn.
Các kết quả trên đã đóng góp cái nhìn tổng quan hơn về vật liệu làm điện cực
âm trong pin Ni-MH . Từ đó có thể thấy khả năng cải tiến dung lƣợng và thời gian
sống của pin.
Luận văn thạc sĩ khoa học Vũ Thị Ngần
50
TÀI LIỆU THAM KHẢO
Tiếng Việt
1. Vũ Xuân Thăng, Thân Đức Hiền, Lƣu Tuấn Tài, Nguyễn Phúc Dƣơng (2005), “
Ảnh hƣởng của kích thƣớc hạt lên tính chất của vật liệu làm điện cực âm trong pin
Ni – MH ”, Báo cáo Hội nghị vật lý toàn quốc lần thứ VI, 34(4).
Tiếng Anh
2. Boonstra A. H., G. J. M. Lippits and T. N. M. Bernards, (1989), “Degradation
processes in a LaNi5 electrode”, Journal of the Less Common Metals, Vol. 155, pp.
119 - 131.
3. Frand Kayzel (1997), “ Magnetic and thermodynamic properties of Rni5
compounds ” PhD. Thesis, Amterbam.
4. Heikonen J. M., Harry J. Ploehn and Ralph E. White, (1998), “The Effect of
Particle Size on the Discharge Performance of a Nickel-Metal Hydride Cell”,
Journal of The Electrochemical Society, Vol. 145, (6), pp.1840-1848.
5. Ise Tadashi, Tetsuyuki Murata, Yohei Hirota, Mitsuzo Nogami, Shinsuke
Nakahori, (2000), “The effect of particle size on the electrochemical properties of
hydrogen absorbing alloy electrodes”, Journal of Alloys and Compounds, Vol. 298,
pp 310–318.
6. L.X. Que, L.T. Tai, N.p Thuy, B.T. Hang, N.T. Nu, D.M. Thanh and P.V. Tuyen
(1999), “ Influence of some substitutes on the electrochemical properties of LaNi5” ,
In proceeding of the 3th
International Workshop on Materials Science
(IWOMS’99), Ha Noi.
7. M. Jurczyka, L. Smardzb, M. MakiWiecska, E. Jankowska, K. Smardz (2004),
Journal of Physics and Chemistry of Solids, 65, 545 -548.
8. P.H.L Notten, “ Rechargeable Nickel – Metal Hydride Batteries: a successful
new concep” , chapter 7 in NATO ASI Series E, Vol 281.
Luận văn thạc sĩ khoa học Vũ Thị Ngần
51
9. P. Dantzer, M. Pons, A.Guillot, and J.Y. Cai (1992), “ Hydriding Kinetics in
Intermetallic AB5 Hydrogen Storage Alloys ”, International Symposium on Metal –
Hydrogen System, Uppsala, Sweden.
10. T. Sakai, T. Hazama, H. Miyamura, N. Kuriyama, A. Kato, H. Ishikawa, J. Less
(1993), Common Met, 192, 173.
11. Z. Chen, Y. Su, M. Lu, D. Zhou, P. Huang (1998), Materials Research Bulletin,
Vol.33, No. 10, 1449.
12. Uong van Vy (2005), Research of charge- discharge properties on LaNi5 type
ingot electrodes, MSc thesis, ITIMS, Ha Noi.

More Related Content

What's hot

Nhiễu xạ tia X
Nhiễu xạ tia XNhiễu xạ tia X
Nhiễu xạ tia X
www. mientayvn.com
 
Giao trinh enzyme 7662
Giao trinh enzyme 7662Giao trinh enzyme 7662
Giao trinh enzyme 7662chuvantai Cvt
 
đạI cương về sắc ký
đạI cương về sắc kýđạI cương về sắc ký
đạI cương về sắc kýNhat Tam Nhat Tam
 
Công thức Máy điện 1 - Chương 3 - Máy điện một chiều
Công thức Máy điện 1 - Chương 3 - Máy điện một chiềuCông thức Máy điện 1 - Chương 3 - Máy điện một chiều
Công thức Máy điện 1 - Chương 3 - Máy điện một chiều
Man_Ebook
 
Cấu trúc và hoạt động của pin mặt trời
Cấu trúc và hoạt động của pin mặt trờiCấu trúc và hoạt động của pin mặt trời
Cấu trúc và hoạt động của pin mặt trời
www. mientayvn.com
 
Luận văn: Nghiên cứu chế tạo và khảo sát tính chất của vật liệu graphen oxit ...
Luận văn: Nghiên cứu chế tạo và khảo sát tính chất của vật liệu graphen oxit ...Luận văn: Nghiên cứu chế tạo và khảo sát tính chất của vật liệu graphen oxit ...
Luận văn: Nghiên cứu chế tạo và khảo sát tính chất của vật liệu graphen oxit ...
Viết thuê trọn gói ZALO 0934573149
 
Ky thuat an toan dien
Ky thuat an toan dienKy thuat an toan dien
Ky thuat an toan dien
tiendung pham
 
Internet an toàn cho trẻ em
Internet an toàn cho trẻ emInternet an toàn cho trẻ em
Internet an toàn cho trẻ em
phongnq
 
Giáo trình công nghệ protein
Giáo trình công nghệ proteinGiáo trình công nghệ protein
Giáo trình công nghệ protein
Tử Dương Xanh
 
14394582 seminar-dien-hoa
14394582 seminar-dien-hoa14394582 seminar-dien-hoa
14394582 seminar-dien-hoa
Canh Dong Xanh
 
Đề tài: Phân tích nguyên lý hoạt động của máy cán công nghiệp
Đề tài: Phân tích nguyên lý hoạt động của máy cán công nghiệpĐề tài: Phân tích nguyên lý hoạt động của máy cán công nghiệp
Đề tài: Phân tích nguyên lý hoạt động của máy cán công nghiệp
Dịch vụ viết bài trọn gói ZALO 0917193864
 
đề tài báo cáo thực tập nhà thuốc
đề tài báo cáo thực tập nhà thuốcđề tài báo cáo thực tập nhà thuốc
đề tài báo cáo thực tập nhà thuốc
anh hieu
 
Tác hại và lợi ích của Game Online(go)
Tác hại và lợi ích của Game Online(go)Tác hại và lợi ích của Game Online(go)
Tác hại và lợi ích của Game Online(go)Dũng Krb
 
Tính chất hấp phụ, xúc tác quang của vật liệu MIL-101(Cr), HAY
Tính chất hấp phụ, xúc tác quang của vật liệu MIL-101(Cr), HAYTính chất hấp phụ, xúc tác quang của vật liệu MIL-101(Cr), HAY
Tính chất hấp phụ, xúc tác quang của vật liệu MIL-101(Cr), HAY
Dịch vụ viết bài trọn gói ZALO 0917193864
 
Nhiễu xạ tia X bởi các tinh thể
Nhiễu xạ tia X bởi các tinh thểNhiễu xạ tia X bởi các tinh thể
Nhiễu xạ tia X bởi các tinh thểLeeEin
 
Khảo sát thực trạng kê đơn thuốc trong điều trị ngoại trú tại bệnh viện Đa Kh...
Khảo sát thực trạng kê đơn thuốc trong điều trị ngoại trú tại bệnh viện Đa Kh...Khảo sát thực trạng kê đơn thuốc trong điều trị ngoại trú tại bệnh viện Đa Kh...
Khảo sát thực trạng kê đơn thuốc trong điều trị ngoại trú tại bệnh viện Đa Kh...
Dịch vụ viết bài trọn gói ZALO 0917193864
 
Cau truc tinh the cua vat lieu ran
Cau truc tinh the cua vat lieu ranCau truc tinh the cua vat lieu ran
Cau truc tinh the cua vat lieu ran
Nguyen Thanh Tu Collection
 
Đề Cương Chi Tiết Môn Học Kỹ Thuật Phòng Thí Nghiệm
Đề Cương Chi Tiết Môn Học Kỹ Thuật Phòng Thí Nghiệm Đề Cương Chi Tiết Môn Học Kỹ Thuật Phòng Thí Nghiệm
Đề Cương Chi Tiết Môn Học Kỹ Thuật Phòng Thí Nghiệm
nataliej4
 
May quang pho
May quang phoMay quang pho
May quang phokimqui91
 

What's hot (20)

Nhiễu xạ tia X
Nhiễu xạ tia XNhiễu xạ tia X
Nhiễu xạ tia X
 
Giao trinh enzyme 7662
Giao trinh enzyme 7662Giao trinh enzyme 7662
Giao trinh enzyme 7662
 
đạI cương về sắc ký
đạI cương về sắc kýđạI cương về sắc ký
đạI cương về sắc ký
 
Công thức Máy điện 1 - Chương 3 - Máy điện một chiều
Công thức Máy điện 1 - Chương 3 - Máy điện một chiềuCông thức Máy điện 1 - Chương 3 - Máy điện một chiều
Công thức Máy điện 1 - Chương 3 - Máy điện một chiều
 
Cấu trúc và hoạt động của pin mặt trời
Cấu trúc và hoạt động của pin mặt trờiCấu trúc và hoạt động của pin mặt trời
Cấu trúc và hoạt động của pin mặt trời
 
Luận văn: Nghiên cứu chế tạo và khảo sát tính chất của vật liệu graphen oxit ...
Luận văn: Nghiên cứu chế tạo và khảo sát tính chất của vật liệu graphen oxit ...Luận văn: Nghiên cứu chế tạo và khảo sát tính chất của vật liệu graphen oxit ...
Luận văn: Nghiên cứu chế tạo và khảo sát tính chất của vật liệu graphen oxit ...
 
Ky thuat an toan dien
Ky thuat an toan dienKy thuat an toan dien
Ky thuat an toan dien
 
Internet an toàn cho trẻ em
Internet an toàn cho trẻ emInternet an toàn cho trẻ em
Internet an toàn cho trẻ em
 
Giáo trình công nghệ protein
Giáo trình công nghệ proteinGiáo trình công nghệ protein
Giáo trình công nghệ protein
 
14394582 seminar-dien-hoa
14394582 seminar-dien-hoa14394582 seminar-dien-hoa
14394582 seminar-dien-hoa
 
Phổ uv vis
Phổ uv  visPhổ uv  vis
Phổ uv vis
 
Đề tài: Phân tích nguyên lý hoạt động của máy cán công nghiệp
Đề tài: Phân tích nguyên lý hoạt động của máy cán công nghiệpĐề tài: Phân tích nguyên lý hoạt động của máy cán công nghiệp
Đề tài: Phân tích nguyên lý hoạt động của máy cán công nghiệp
 
đề tài báo cáo thực tập nhà thuốc
đề tài báo cáo thực tập nhà thuốcđề tài báo cáo thực tập nhà thuốc
đề tài báo cáo thực tập nhà thuốc
 
Tác hại và lợi ích của Game Online(go)
Tác hại và lợi ích của Game Online(go)Tác hại và lợi ích của Game Online(go)
Tác hại và lợi ích của Game Online(go)
 
Tính chất hấp phụ, xúc tác quang của vật liệu MIL-101(Cr), HAY
Tính chất hấp phụ, xúc tác quang của vật liệu MIL-101(Cr), HAYTính chất hấp phụ, xúc tác quang của vật liệu MIL-101(Cr), HAY
Tính chất hấp phụ, xúc tác quang của vật liệu MIL-101(Cr), HAY
 
Nhiễu xạ tia X bởi các tinh thể
Nhiễu xạ tia X bởi các tinh thểNhiễu xạ tia X bởi các tinh thể
Nhiễu xạ tia X bởi các tinh thể
 
Khảo sát thực trạng kê đơn thuốc trong điều trị ngoại trú tại bệnh viện Đa Kh...
Khảo sát thực trạng kê đơn thuốc trong điều trị ngoại trú tại bệnh viện Đa Kh...Khảo sát thực trạng kê đơn thuốc trong điều trị ngoại trú tại bệnh viện Đa Kh...
Khảo sát thực trạng kê đơn thuốc trong điều trị ngoại trú tại bệnh viện Đa Kh...
 
Cau truc tinh the cua vat lieu ran
Cau truc tinh the cua vat lieu ranCau truc tinh the cua vat lieu ran
Cau truc tinh the cua vat lieu ran
 
Đề Cương Chi Tiết Môn Học Kỹ Thuật Phòng Thí Nghiệm
Đề Cương Chi Tiết Môn Học Kỹ Thuật Phòng Thí Nghiệm Đề Cương Chi Tiết Môn Học Kỹ Thuật Phòng Thí Nghiệm
Đề Cương Chi Tiết Môn Học Kỹ Thuật Phòng Thí Nghiệm
 
May quang pho
May quang phoMay quang pho
May quang pho
 

Similar to Luận văn: Hiệu ứng pha tạp và độ hạt trong phổ hóa tổng trở, 9đ

NGHIÊN CỨU CHẾ TẠO THIẾT BỊ SIÊU ÂM ĐỂ TỔNG HỢP VẬT VẬT LIỆU NANO TIO2
NGHIÊN CỨU CHẾ TẠO THIẾT BỊ SIÊU ÂM ĐỂ TỔNG HỢP VẬT VẬT LIỆU NANO TIO2NGHIÊN CỨU CHẾ TẠO THIẾT BỊ SIÊU ÂM ĐỂ TỔNG HỢP VẬT VẬT LIỆU NANO TIO2
NGHIÊN CỨU CHẾ TẠO THIẾT BỊ SIÊU ÂM ĐỂ TỔNG HỢP VẬT VẬT LIỆU NANO TIO2
Ngoc Dao Duy
 
Luận án: Chế tạo thiết bị siêu âm công suất để tổng hợp vật liệu Tio2
Luận án: Chế tạo thiết bị siêu âm công suất để tổng hợp vật liệu Tio2Luận án: Chế tạo thiết bị siêu âm công suất để tổng hợp vật liệu Tio2
Luận án: Chế tạo thiết bị siêu âm công suất để tổng hợp vật liệu Tio2
Dịch vụ viết bài trọn gói ZALO 0917193864
 
Hiệu ứng giao thoa điện tử với việc tách thông tin cấu trúc phân tử oxy
Hiệu ứng giao thoa điện tử với việc tách thông tin cấu trúc phân tử oxyHiệu ứng giao thoa điện tử với việc tách thông tin cấu trúc phân tử oxy
Hiệu ứng giao thoa điện tử với việc tách thông tin cấu trúc phân tử oxy
Dịch Vụ Viết Bài Trọn Gói ZALO 0917193864
 
Vật lý đại cương
Vật lý đại cươngVật lý đại cương
Vật lý đại cương
www. mientayvn.com
 
File goc 771349
File goc 771349File goc 771349
File goc 771349
pham_hong_phuong
 
Luận án: Động lực học của hạt tải có cấu trúc nano, HAY
Luận án: Động lực học của hạt tải có cấu trúc nano, HAYLuận án: Động lực học của hạt tải có cấu trúc nano, HAY
Luận án: Động lực học của hạt tải có cấu trúc nano, HAY
Dịch vụ viết bài trọn gói ZALO: 0909232620
 
Luận án: Tính chất quang học của vật liệu TiO2 có cấu trúc nano
Luận án: Tính chất quang học của vật liệu TiO2 có cấu trúc nanoLuận án: Tính chất quang học của vật liệu TiO2 có cấu trúc nano
Luận án: Tính chất quang học của vật liệu TiO2 có cấu trúc nano
Dịch vụ viết bài trọn gói ZALO 0917193864
 
Mạch đo hiện tượng phóng điện cục bộ (Partial Discharge)-thiết kế bộ Analyser...
Mạch đo hiện tượng phóng điện cục bộ (Partial Discharge)-thiết kế bộ Analyser...Mạch đo hiện tượng phóng điện cục bộ (Partial Discharge)-thiết kế bộ Analyser...
Mạch đo hiện tượng phóng điện cục bộ (Partial Discharge)-thiết kế bộ Analyser...
Man_Ebook
 
THIẾT KẾ LẮP ĐẶT BỘ GIẢM ÁP DC/DC DÙNG TRONG HỆ THỐNG NĂNG LƯỢNG MẶT TRỜI NỐI...
THIẾT KẾ LẮP ĐẶT BỘ GIẢM ÁP DC/DC DÙNG TRONG HỆ THỐNG NĂNG LƯỢNG MẶT TRỜI NỐI...THIẾT KẾ LẮP ĐẶT BỘ GIẢM ÁP DC/DC DÙNG TRONG HỆ THỐNG NĂNG LƯỢNG MẶT TRỜI NỐI...
THIẾT KẾ LẮP ĐẶT BỘ GIẢM ÁP DC/DC DÙNG TRONG HỆ THỐNG NĂNG LƯỢNG MẶT TRỜI NỐI...
nataliej4
 
Luận văn: Nghiên cứu ảnh hưởng của các thông số công nghệ tới độ chính xác gi...
Luận văn: Nghiên cứu ảnh hưởng của các thông số công nghệ tới độ chính xác gi...Luận văn: Nghiên cứu ảnh hưởng của các thông số công nghệ tới độ chính xác gi...
Luận văn: Nghiên cứu ảnh hưởng của các thông số công nghệ tới độ chính xác gi...
Dịch vụ viết thuê Khóa Luận - ZALO 0932091562
 
Phương Pháp Phổ Tổng Trở Và Ứng Dụng​.pdf
Phương Pháp Phổ Tổng Trở Và Ứng Dụng​.pdfPhương Pháp Phổ Tổng Trở Và Ứng Dụng​.pdf
Phương Pháp Phổ Tổng Trở Và Ứng Dụng​.pdf
Man_Ebook
 
Luận án: Vận dụng trạng thái phi cổ điển vào thông tin lượng tử
Luận án: Vận dụng trạng thái phi cổ điển vào thông tin lượng tửLuận án: Vận dụng trạng thái phi cổ điển vào thông tin lượng tử
Luận án: Vận dụng trạng thái phi cổ điển vào thông tin lượng tử
Dịch vụ viết bài trọn gói ZALO 0917193864
 
Luận văn: Khảo sát độ linh động của điện tử trong giếng lượng tử, 9đ
Luận văn: Khảo sát độ linh động của điện tử trong giếng lượng tử, 9đLuận văn: Khảo sát độ linh động của điện tử trong giếng lượng tử, 9đ
Luận văn: Khảo sát độ linh động của điện tử trong giếng lượng tử, 9đ
Dịch vụ viết bài trọn gói ZALO: 0936 885 877
 
Luận văn: khảo sát độ linh động của điện tử trong giếng lượng tử Inn/Gan
Luận văn: khảo sát độ linh động của điện tử trong giếng lượng tử Inn/GanLuận văn: khảo sát độ linh động của điện tử trong giếng lượng tử Inn/Gan
Luận văn: khảo sát độ linh động của điện tử trong giếng lượng tử Inn/Gan
Dịch vụ viết bài trọn gói ZALO: 0936 885 877
 
Ảnh hưởng của chuyển động hạt nhân lên cường độ phát xạ sóng
Ảnh hưởng của chuyển động hạt nhân lên cường độ phát xạ sóngẢnh hưởng của chuyển động hạt nhân lên cường độ phát xạ sóng
Ảnh hưởng của chuyển động hạt nhân lên cường độ phát xạ sóng
Dịch vụ viết bài trọn gói ZALO 0917193864
 
Luận văn: Thiết bị quan trắc và cảnh báo phóng xạ môi trường, 9đ
Luận văn: Thiết bị quan trắc và cảnh báo phóng xạ môi trường, 9đLuận văn: Thiết bị quan trắc và cảnh báo phóng xạ môi trường, 9đ
Luận văn: Thiết bị quan trắc và cảnh báo phóng xạ môi trường, 9đ
Dịch vụ viết bài trọn gói ZALO 0917193864
 
Nghiên cứu tính chất của hợp chất La2-3Pb1-3MnO3 khi thay thế 10% hàm lượng Z...
Nghiên cứu tính chất của hợp chất La2-3Pb1-3MnO3 khi thay thế 10% hàm lượng Z...Nghiên cứu tính chất của hợp chất La2-3Pb1-3MnO3 khi thay thế 10% hàm lượng Z...
Nghiên cứu tính chất của hợp chất La2-3Pb1-3MnO3 khi thay thế 10% hàm lượng Z...
HanaTiti
 
Tính toán cung cấp điện cho khu đô thị Cửu Long.pdf
Tính toán cung cấp điện cho khu đô thị Cửu Long.pdfTính toán cung cấp điện cho khu đô thị Cửu Long.pdf
Tính toán cung cấp điện cho khu đô thị Cửu Long.pdf
Man_Ebook
 
Luận án: Thuật toán trí tuệ nhân tạo cho bài toán tái cấu trúc lưới điện
Luận án: Thuật toán trí tuệ nhân tạo cho bài toán tái cấu trúc lưới điệnLuận án: Thuật toán trí tuệ nhân tạo cho bài toán tái cấu trúc lưới điện
Luận án: Thuật toán trí tuệ nhân tạo cho bài toán tái cấu trúc lưới điện
Dịch vụ viết bài trọn gói ZALO 0917193864
 
Đề tài: Tương tác của siêu vật liệu metamaterials với trường điện từ
Đề tài: Tương tác của siêu vật liệu metamaterials với trường điện từĐề tài: Tương tác của siêu vật liệu metamaterials với trường điện từ
Đề tài: Tương tác của siêu vật liệu metamaterials với trường điện từ
Dịch vụ viết bài trọn gói ZALO 0917193864
 

Similar to Luận văn: Hiệu ứng pha tạp và độ hạt trong phổ hóa tổng trở, 9đ (20)

NGHIÊN CỨU CHẾ TẠO THIẾT BỊ SIÊU ÂM ĐỂ TỔNG HỢP VẬT VẬT LIỆU NANO TIO2
NGHIÊN CỨU CHẾ TẠO THIẾT BỊ SIÊU ÂM ĐỂ TỔNG HỢP VẬT VẬT LIỆU NANO TIO2NGHIÊN CỨU CHẾ TẠO THIẾT BỊ SIÊU ÂM ĐỂ TỔNG HỢP VẬT VẬT LIỆU NANO TIO2
NGHIÊN CỨU CHẾ TẠO THIẾT BỊ SIÊU ÂM ĐỂ TỔNG HỢP VẬT VẬT LIỆU NANO TIO2
 
Luận án: Chế tạo thiết bị siêu âm công suất để tổng hợp vật liệu Tio2
Luận án: Chế tạo thiết bị siêu âm công suất để tổng hợp vật liệu Tio2Luận án: Chế tạo thiết bị siêu âm công suất để tổng hợp vật liệu Tio2
Luận án: Chế tạo thiết bị siêu âm công suất để tổng hợp vật liệu Tio2
 
Hiệu ứng giao thoa điện tử với việc tách thông tin cấu trúc phân tử oxy
Hiệu ứng giao thoa điện tử với việc tách thông tin cấu trúc phân tử oxyHiệu ứng giao thoa điện tử với việc tách thông tin cấu trúc phân tử oxy
Hiệu ứng giao thoa điện tử với việc tách thông tin cấu trúc phân tử oxy
 
Vật lý đại cương
Vật lý đại cươngVật lý đại cương
Vật lý đại cương
 
File goc 771349
File goc 771349File goc 771349
File goc 771349
 
Luận án: Động lực học của hạt tải có cấu trúc nano, HAY
Luận án: Động lực học của hạt tải có cấu trúc nano, HAYLuận án: Động lực học của hạt tải có cấu trúc nano, HAY
Luận án: Động lực học của hạt tải có cấu trúc nano, HAY
 
Luận án: Tính chất quang học của vật liệu TiO2 có cấu trúc nano
Luận án: Tính chất quang học của vật liệu TiO2 có cấu trúc nanoLuận án: Tính chất quang học của vật liệu TiO2 có cấu trúc nano
Luận án: Tính chất quang học của vật liệu TiO2 có cấu trúc nano
 
Mạch đo hiện tượng phóng điện cục bộ (Partial Discharge)-thiết kế bộ Analyser...
Mạch đo hiện tượng phóng điện cục bộ (Partial Discharge)-thiết kế bộ Analyser...Mạch đo hiện tượng phóng điện cục bộ (Partial Discharge)-thiết kế bộ Analyser...
Mạch đo hiện tượng phóng điện cục bộ (Partial Discharge)-thiết kế bộ Analyser...
 
THIẾT KẾ LẮP ĐẶT BỘ GIẢM ÁP DC/DC DÙNG TRONG HỆ THỐNG NĂNG LƯỢNG MẶT TRỜI NỐI...
THIẾT KẾ LẮP ĐẶT BỘ GIẢM ÁP DC/DC DÙNG TRONG HỆ THỐNG NĂNG LƯỢNG MẶT TRỜI NỐI...THIẾT KẾ LẮP ĐẶT BỘ GIẢM ÁP DC/DC DÙNG TRONG HỆ THỐNG NĂNG LƯỢNG MẶT TRỜI NỐI...
THIẾT KẾ LẮP ĐẶT BỘ GIẢM ÁP DC/DC DÙNG TRONG HỆ THỐNG NĂNG LƯỢNG MẶT TRỜI NỐI...
 
Luận văn: Nghiên cứu ảnh hưởng của các thông số công nghệ tới độ chính xác gi...
Luận văn: Nghiên cứu ảnh hưởng của các thông số công nghệ tới độ chính xác gi...Luận văn: Nghiên cứu ảnh hưởng của các thông số công nghệ tới độ chính xác gi...
Luận văn: Nghiên cứu ảnh hưởng của các thông số công nghệ tới độ chính xác gi...
 
Phương Pháp Phổ Tổng Trở Và Ứng Dụng​.pdf
Phương Pháp Phổ Tổng Trở Và Ứng Dụng​.pdfPhương Pháp Phổ Tổng Trở Và Ứng Dụng​.pdf
Phương Pháp Phổ Tổng Trở Và Ứng Dụng​.pdf
 
Luận án: Vận dụng trạng thái phi cổ điển vào thông tin lượng tử
Luận án: Vận dụng trạng thái phi cổ điển vào thông tin lượng tửLuận án: Vận dụng trạng thái phi cổ điển vào thông tin lượng tử
Luận án: Vận dụng trạng thái phi cổ điển vào thông tin lượng tử
 
Luận văn: Khảo sát độ linh động của điện tử trong giếng lượng tử, 9đ
Luận văn: Khảo sát độ linh động của điện tử trong giếng lượng tử, 9đLuận văn: Khảo sát độ linh động của điện tử trong giếng lượng tử, 9đ
Luận văn: Khảo sát độ linh động của điện tử trong giếng lượng tử, 9đ
 
Luận văn: khảo sát độ linh động của điện tử trong giếng lượng tử Inn/Gan
Luận văn: khảo sát độ linh động của điện tử trong giếng lượng tử Inn/GanLuận văn: khảo sát độ linh động của điện tử trong giếng lượng tử Inn/Gan
Luận văn: khảo sát độ linh động của điện tử trong giếng lượng tử Inn/Gan
 
Ảnh hưởng của chuyển động hạt nhân lên cường độ phát xạ sóng
Ảnh hưởng của chuyển động hạt nhân lên cường độ phát xạ sóngẢnh hưởng của chuyển động hạt nhân lên cường độ phát xạ sóng
Ảnh hưởng của chuyển động hạt nhân lên cường độ phát xạ sóng
 
Luận văn: Thiết bị quan trắc và cảnh báo phóng xạ môi trường, 9đ
Luận văn: Thiết bị quan trắc và cảnh báo phóng xạ môi trường, 9đLuận văn: Thiết bị quan trắc và cảnh báo phóng xạ môi trường, 9đ
Luận văn: Thiết bị quan trắc và cảnh báo phóng xạ môi trường, 9đ
 
Nghiên cứu tính chất của hợp chất La2-3Pb1-3MnO3 khi thay thế 10% hàm lượng Z...
Nghiên cứu tính chất của hợp chất La2-3Pb1-3MnO3 khi thay thế 10% hàm lượng Z...Nghiên cứu tính chất của hợp chất La2-3Pb1-3MnO3 khi thay thế 10% hàm lượng Z...
Nghiên cứu tính chất của hợp chất La2-3Pb1-3MnO3 khi thay thế 10% hàm lượng Z...
 
Tính toán cung cấp điện cho khu đô thị Cửu Long.pdf
Tính toán cung cấp điện cho khu đô thị Cửu Long.pdfTính toán cung cấp điện cho khu đô thị Cửu Long.pdf
Tính toán cung cấp điện cho khu đô thị Cửu Long.pdf
 
Luận án: Thuật toán trí tuệ nhân tạo cho bài toán tái cấu trúc lưới điện
Luận án: Thuật toán trí tuệ nhân tạo cho bài toán tái cấu trúc lưới điệnLuận án: Thuật toán trí tuệ nhân tạo cho bài toán tái cấu trúc lưới điện
Luận án: Thuật toán trí tuệ nhân tạo cho bài toán tái cấu trúc lưới điện
 
Đề tài: Tương tác của siêu vật liệu metamaterials với trường điện từ
Đề tài: Tương tác của siêu vật liệu metamaterials với trường điện từĐề tài: Tương tác của siêu vật liệu metamaterials với trường điện từ
Đề tài: Tương tác của siêu vật liệu metamaterials với trường điện từ
 

More from Dịch Vụ Viết Bài Trọn Gói ZALO 0917193864

Yếu Tố Tự Truyện Trong Truyện Ngắn Thạch Lam Và Thanh Tịnh.doc
Yếu Tố Tự Truyện Trong Truyện Ngắn Thạch Lam Và Thanh Tịnh.docYếu Tố Tự Truyện Trong Truyện Ngắn Thạch Lam Và Thanh Tịnh.doc
Yếu Tố Tự Truyện Trong Truyện Ngắn Thạch Lam Và Thanh Tịnh.doc
Dịch Vụ Viết Bài Trọn Gói ZALO 0917193864
 
Từ Ngữ Biểu Thị Tâm Lí – Tình Cảm Trong Ca Dao Người Việt.doc
Từ Ngữ Biểu Thị Tâm Lí – Tình Cảm Trong Ca Dao Người Việt.docTừ Ngữ Biểu Thị Tâm Lí – Tình Cảm Trong Ca Dao Người Việt.doc
Từ Ngữ Biểu Thị Tâm Lí – Tình Cảm Trong Ca Dao Người Việt.doc
Dịch Vụ Viết Bài Trọn Gói ZALO 0917193864
 
Quản Lý Hoạt Động Dạy Học Các Môn Khoa Học Tự Nhiên Theo Chuẩn Kiến Thức Và K...
Quản Lý Hoạt Động Dạy Học Các Môn Khoa Học Tự Nhiên Theo Chuẩn Kiến Thức Và K...Quản Lý Hoạt Động Dạy Học Các Môn Khoa Học Tự Nhiên Theo Chuẩn Kiến Thức Và K...
Quản Lý Hoạt Động Dạy Học Các Môn Khoa Học Tự Nhiên Theo Chuẩn Kiến Thức Và K...
Dịch Vụ Viết Bài Trọn Gói ZALO 0917193864
 
Quản Lý Thu Thuế Giá Trị Gia Tăng Đối Với Doanh Nghiệp Ngoài Quốc Doanh Trên ...
Quản Lý Thu Thuế Giá Trị Gia Tăng Đối Với Doanh Nghiệp Ngoài Quốc Doanh Trên ...Quản Lý Thu Thuế Giá Trị Gia Tăng Đối Với Doanh Nghiệp Ngoài Quốc Doanh Trên ...
Quản Lý Thu Thuế Giá Trị Gia Tăng Đối Với Doanh Nghiệp Ngoài Quốc Doanh Trên ...
Dịch Vụ Viết Bài Trọn Gói ZALO 0917193864
 
Thu Hút Nguồn Nhân Lực Trình Độ Cao Vào Các Cơ Quan Hành Chính Nhà Nước Tỉnh ...
Thu Hút Nguồn Nhân Lực Trình Độ Cao Vào Các Cơ Quan Hành Chính Nhà Nước Tỉnh ...Thu Hút Nguồn Nhân Lực Trình Độ Cao Vào Các Cơ Quan Hành Chính Nhà Nước Tỉnh ...
Thu Hút Nguồn Nhân Lực Trình Độ Cao Vào Các Cơ Quan Hành Chính Nhà Nước Tỉnh ...
Dịch Vụ Viết Bài Trọn Gói ZALO 0917193864
 
Quản Trị Rủi Ro Tín Dụng Trong Cho Vay Doanh Nghiệp Tại Ngân Hàng Thương Mại ...
Quản Trị Rủi Ro Tín Dụng Trong Cho Vay Doanh Nghiệp Tại Ngân Hàng Thương Mại ...Quản Trị Rủi Ro Tín Dụng Trong Cho Vay Doanh Nghiệp Tại Ngân Hàng Thương Mại ...
Quản Trị Rủi Ro Tín Dụng Trong Cho Vay Doanh Nghiệp Tại Ngân Hàng Thương Mại ...
Dịch Vụ Viết Bài Trọn Gói ZALO 0917193864
 
Vaporisation Of Single And Binary Component Droplets In Heated Flowing Gas St...
Vaporisation Of Single And Binary Component Droplets In Heated Flowing Gas St...Vaporisation Of Single And Binary Component Droplets In Heated Flowing Gas St...
Vaporisation Of Single And Binary Component Droplets In Heated Flowing Gas St...
Dịch Vụ Viết Bài Trọn Gói ZALO 0917193864
 
Quản Lý Hoạt Động Dạy Học Các Trường Thpt Trên Địa Bàn Huyện Sơn Hà Tỉnh Quản...
Quản Lý Hoạt Động Dạy Học Các Trường Thpt Trên Địa Bàn Huyện Sơn Hà Tỉnh Quản...Quản Lý Hoạt Động Dạy Học Các Trường Thpt Trên Địa Bàn Huyện Sơn Hà Tỉnh Quản...
Quản Lý Hoạt Động Dạy Học Các Trường Thpt Trên Địa Bàn Huyện Sơn Hà Tỉnh Quản...
Dịch Vụ Viết Bài Trọn Gói ZALO 0917193864
 
Tác Giả Hàm Ẩn Trong Tiểu Thuyết Nguyễn Việt Hà.doc
Tác Giả Hàm Ẩn Trong Tiểu Thuyết Nguyễn Việt Hà.docTác Giả Hàm Ẩn Trong Tiểu Thuyết Nguyễn Việt Hà.doc
Tác Giả Hàm Ẩn Trong Tiểu Thuyết Nguyễn Việt Hà.doc
Dịch Vụ Viết Bài Trọn Gói ZALO 0917193864
 
Quản Trị Rủi Ro Tín Dụng Trong Cho Vay Ngắn Hạn Tại Ngân Hàng Công Thƣơng Chi...
Quản Trị Rủi Ro Tín Dụng Trong Cho Vay Ngắn Hạn Tại Ngân Hàng Công Thƣơng Chi...Quản Trị Rủi Ro Tín Dụng Trong Cho Vay Ngắn Hạn Tại Ngân Hàng Công Thƣơng Chi...
Quản Trị Rủi Ro Tín Dụng Trong Cho Vay Ngắn Hạn Tại Ngân Hàng Công Thƣơng Chi...
Dịch Vụ Viết Bài Trọn Gói ZALO 0917193864
 
Quản Lý Nhà Nước Về Nuôi Trồng Thủy Sản Nước Ngọt Trên Địa Bàn Thành Phố Hải ...
Quản Lý Nhà Nước Về Nuôi Trồng Thủy Sản Nước Ngọt Trên Địa Bàn Thành Phố Hải ...Quản Lý Nhà Nước Về Nuôi Trồng Thủy Sản Nước Ngọt Trên Địa Bàn Thành Phố Hải ...
Quản Lý Nhà Nước Về Nuôi Trồng Thủy Sản Nước Ngọt Trên Địa Bàn Thành Phố Hải ...
Dịch Vụ Viết Bài Trọn Gói ZALO 0917193864
 
Song Song Hóa Các Thuật Toán Trên Mạng Đồ Thị.doc
Song Song Hóa Các Thuật Toán Trên Mạng Đồ Thị.docSong Song Hóa Các Thuật Toán Trên Mạng Đồ Thị.doc
Song Song Hóa Các Thuật Toán Trên Mạng Đồ Thị.doc
Dịch Vụ Viết Bài Trọn Gói ZALO 0917193864
 
Ứng Dụng Số Phức Trong Các Bài Toán Sơ Cấp.doc
Ứng Dụng Số Phức Trong Các Bài Toán Sơ Cấp.docỨng Dụng Số Phức Trong Các Bài Toán Sơ Cấp.doc
Ứng Dụng Số Phức Trong Các Bài Toán Sơ Cấp.doc
Dịch Vụ Viết Bài Trọn Gói ZALO 0917193864
 
Vai Trò Của Cái Bi Trong Giáo Dục Thẩm Mỹ.doc
Vai Trò Của Cái Bi Trong Giáo Dục Thẩm Mỹ.docVai Trò Của Cái Bi Trong Giáo Dục Thẩm Mỹ.doc
Vai Trò Của Cái Bi Trong Giáo Dục Thẩm Mỹ.doc
Dịch Vụ Viết Bài Trọn Gói ZALO 0917193864
 
Quản Lý Hoạt Động Giáo Dục Ngoài Giờ Lên Lớp Ở Các Trường Thcs Huyện Chư Păh ...
Quản Lý Hoạt Động Giáo Dục Ngoài Giờ Lên Lớp Ở Các Trường Thcs Huyện Chư Păh ...Quản Lý Hoạt Động Giáo Dục Ngoài Giờ Lên Lớp Ở Các Trường Thcs Huyện Chư Păh ...
Quản Lý Hoạt Động Giáo Dục Ngoài Giờ Lên Lớp Ở Các Trường Thcs Huyện Chư Păh ...
Dịch Vụ Viết Bài Trọn Gói ZALO 0917193864
 
Thu Hút Vốn Đầu Tư Vào Lĩnh Vực Nông Nghiệp Trên Địa Bàn Tỉnh Gia Lai.doc
Thu Hút Vốn Đầu Tư Vào Lĩnh Vực Nông Nghiệp Trên Địa Bàn Tỉnh Gia Lai.docThu Hút Vốn Đầu Tư Vào Lĩnh Vực Nông Nghiệp Trên Địa Bàn Tỉnh Gia Lai.doc
Thu Hút Vốn Đầu Tư Vào Lĩnh Vực Nông Nghiệp Trên Địa Bàn Tỉnh Gia Lai.doc
Dịch Vụ Viết Bài Trọn Gói ZALO 0917193864
 
Quản Lý Hoạt Động Dạy Học Ngoại Ngữ Tại Các Trung Tâm Ngoại Ngữ - Tin Học Trê...
Quản Lý Hoạt Động Dạy Học Ngoại Ngữ Tại Các Trung Tâm Ngoại Ngữ - Tin Học Trê...Quản Lý Hoạt Động Dạy Học Ngoại Ngữ Tại Các Trung Tâm Ngoại Ngữ - Tin Học Trê...
Quản Lý Hoạt Động Dạy Học Ngoại Ngữ Tại Các Trung Tâm Ngoại Ngữ - Tin Học Trê...
Dịch Vụ Viết Bài Trọn Gói ZALO 0917193864
 
Quản Trị Rủi Ro Tín Dụng Trong Cho Vay Doanh Nghiệp Tại Ngân Hàng Thƣơng Mại ...
Quản Trị Rủi Ro Tín Dụng Trong Cho Vay Doanh Nghiệp Tại Ngân Hàng Thƣơng Mại ...Quản Trị Rủi Ro Tín Dụng Trong Cho Vay Doanh Nghiệp Tại Ngân Hàng Thƣơng Mại ...
Quản Trị Rủi Ro Tín Dụng Trong Cho Vay Doanh Nghiệp Tại Ngân Hàng Thƣơng Mại ...
Dịch Vụ Viết Bài Trọn Gói ZALO 0917193864
 
Tạo Việc Làm Cho Thanh Niên Trên Địa Bàn Quận Thanh Khê, Thành Phố Đà Nẵng.doc
Tạo Việc Làm Cho Thanh Niên Trên Địa Bàn Quận Thanh Khê, Thành Phố Đà Nẵng.docTạo Việc Làm Cho Thanh Niên Trên Địa Bàn Quận Thanh Khê, Thành Phố Đà Nẵng.doc
Tạo Việc Làm Cho Thanh Niên Trên Địa Bàn Quận Thanh Khê, Thành Phố Đà Nẵng.doc
Dịch Vụ Viết Bài Trọn Gói ZALO 0917193864
 
Quản Trị Rủi Ro Tín Dụng Trong Cho Vay Trung Và Dài Hạn Tại Ngân Hàng Thương ...
Quản Trị Rủi Ro Tín Dụng Trong Cho Vay Trung Và Dài Hạn Tại Ngân Hàng Thương ...Quản Trị Rủi Ro Tín Dụng Trong Cho Vay Trung Và Dài Hạn Tại Ngân Hàng Thương ...
Quản Trị Rủi Ro Tín Dụng Trong Cho Vay Trung Và Dài Hạn Tại Ngân Hàng Thương ...
Dịch Vụ Viết Bài Trọn Gói ZALO 0917193864
 

More from Dịch Vụ Viết Bài Trọn Gói ZALO 0917193864 (20)

Yếu Tố Tự Truyện Trong Truyện Ngắn Thạch Lam Và Thanh Tịnh.doc
Yếu Tố Tự Truyện Trong Truyện Ngắn Thạch Lam Và Thanh Tịnh.docYếu Tố Tự Truyện Trong Truyện Ngắn Thạch Lam Và Thanh Tịnh.doc
Yếu Tố Tự Truyện Trong Truyện Ngắn Thạch Lam Và Thanh Tịnh.doc
 
Từ Ngữ Biểu Thị Tâm Lí – Tình Cảm Trong Ca Dao Người Việt.doc
Từ Ngữ Biểu Thị Tâm Lí – Tình Cảm Trong Ca Dao Người Việt.docTừ Ngữ Biểu Thị Tâm Lí – Tình Cảm Trong Ca Dao Người Việt.doc
Từ Ngữ Biểu Thị Tâm Lí – Tình Cảm Trong Ca Dao Người Việt.doc
 
Quản Lý Hoạt Động Dạy Học Các Môn Khoa Học Tự Nhiên Theo Chuẩn Kiến Thức Và K...
Quản Lý Hoạt Động Dạy Học Các Môn Khoa Học Tự Nhiên Theo Chuẩn Kiến Thức Và K...Quản Lý Hoạt Động Dạy Học Các Môn Khoa Học Tự Nhiên Theo Chuẩn Kiến Thức Và K...
Quản Lý Hoạt Động Dạy Học Các Môn Khoa Học Tự Nhiên Theo Chuẩn Kiến Thức Và K...
 
Quản Lý Thu Thuế Giá Trị Gia Tăng Đối Với Doanh Nghiệp Ngoài Quốc Doanh Trên ...
Quản Lý Thu Thuế Giá Trị Gia Tăng Đối Với Doanh Nghiệp Ngoài Quốc Doanh Trên ...Quản Lý Thu Thuế Giá Trị Gia Tăng Đối Với Doanh Nghiệp Ngoài Quốc Doanh Trên ...
Quản Lý Thu Thuế Giá Trị Gia Tăng Đối Với Doanh Nghiệp Ngoài Quốc Doanh Trên ...
 
Thu Hút Nguồn Nhân Lực Trình Độ Cao Vào Các Cơ Quan Hành Chính Nhà Nước Tỉnh ...
Thu Hút Nguồn Nhân Lực Trình Độ Cao Vào Các Cơ Quan Hành Chính Nhà Nước Tỉnh ...Thu Hút Nguồn Nhân Lực Trình Độ Cao Vào Các Cơ Quan Hành Chính Nhà Nước Tỉnh ...
Thu Hút Nguồn Nhân Lực Trình Độ Cao Vào Các Cơ Quan Hành Chính Nhà Nước Tỉnh ...
 
Quản Trị Rủi Ro Tín Dụng Trong Cho Vay Doanh Nghiệp Tại Ngân Hàng Thương Mại ...
Quản Trị Rủi Ro Tín Dụng Trong Cho Vay Doanh Nghiệp Tại Ngân Hàng Thương Mại ...Quản Trị Rủi Ro Tín Dụng Trong Cho Vay Doanh Nghiệp Tại Ngân Hàng Thương Mại ...
Quản Trị Rủi Ro Tín Dụng Trong Cho Vay Doanh Nghiệp Tại Ngân Hàng Thương Mại ...
 
Vaporisation Of Single And Binary Component Droplets In Heated Flowing Gas St...
Vaporisation Of Single And Binary Component Droplets In Heated Flowing Gas St...Vaporisation Of Single And Binary Component Droplets In Heated Flowing Gas St...
Vaporisation Of Single And Binary Component Droplets In Heated Flowing Gas St...
 
Quản Lý Hoạt Động Dạy Học Các Trường Thpt Trên Địa Bàn Huyện Sơn Hà Tỉnh Quản...
Quản Lý Hoạt Động Dạy Học Các Trường Thpt Trên Địa Bàn Huyện Sơn Hà Tỉnh Quản...Quản Lý Hoạt Động Dạy Học Các Trường Thpt Trên Địa Bàn Huyện Sơn Hà Tỉnh Quản...
Quản Lý Hoạt Động Dạy Học Các Trường Thpt Trên Địa Bàn Huyện Sơn Hà Tỉnh Quản...
 
Tác Giả Hàm Ẩn Trong Tiểu Thuyết Nguyễn Việt Hà.doc
Tác Giả Hàm Ẩn Trong Tiểu Thuyết Nguyễn Việt Hà.docTác Giả Hàm Ẩn Trong Tiểu Thuyết Nguyễn Việt Hà.doc
Tác Giả Hàm Ẩn Trong Tiểu Thuyết Nguyễn Việt Hà.doc
 
Quản Trị Rủi Ro Tín Dụng Trong Cho Vay Ngắn Hạn Tại Ngân Hàng Công Thƣơng Chi...
Quản Trị Rủi Ro Tín Dụng Trong Cho Vay Ngắn Hạn Tại Ngân Hàng Công Thƣơng Chi...Quản Trị Rủi Ro Tín Dụng Trong Cho Vay Ngắn Hạn Tại Ngân Hàng Công Thƣơng Chi...
Quản Trị Rủi Ro Tín Dụng Trong Cho Vay Ngắn Hạn Tại Ngân Hàng Công Thƣơng Chi...
 
Quản Lý Nhà Nước Về Nuôi Trồng Thủy Sản Nước Ngọt Trên Địa Bàn Thành Phố Hải ...
Quản Lý Nhà Nước Về Nuôi Trồng Thủy Sản Nước Ngọt Trên Địa Bàn Thành Phố Hải ...Quản Lý Nhà Nước Về Nuôi Trồng Thủy Sản Nước Ngọt Trên Địa Bàn Thành Phố Hải ...
Quản Lý Nhà Nước Về Nuôi Trồng Thủy Sản Nước Ngọt Trên Địa Bàn Thành Phố Hải ...
 
Song Song Hóa Các Thuật Toán Trên Mạng Đồ Thị.doc
Song Song Hóa Các Thuật Toán Trên Mạng Đồ Thị.docSong Song Hóa Các Thuật Toán Trên Mạng Đồ Thị.doc
Song Song Hóa Các Thuật Toán Trên Mạng Đồ Thị.doc
 
Ứng Dụng Số Phức Trong Các Bài Toán Sơ Cấp.doc
Ứng Dụng Số Phức Trong Các Bài Toán Sơ Cấp.docỨng Dụng Số Phức Trong Các Bài Toán Sơ Cấp.doc
Ứng Dụng Số Phức Trong Các Bài Toán Sơ Cấp.doc
 
Vai Trò Của Cái Bi Trong Giáo Dục Thẩm Mỹ.doc
Vai Trò Của Cái Bi Trong Giáo Dục Thẩm Mỹ.docVai Trò Của Cái Bi Trong Giáo Dục Thẩm Mỹ.doc
Vai Trò Của Cái Bi Trong Giáo Dục Thẩm Mỹ.doc
 
Quản Lý Hoạt Động Giáo Dục Ngoài Giờ Lên Lớp Ở Các Trường Thcs Huyện Chư Păh ...
Quản Lý Hoạt Động Giáo Dục Ngoài Giờ Lên Lớp Ở Các Trường Thcs Huyện Chư Păh ...Quản Lý Hoạt Động Giáo Dục Ngoài Giờ Lên Lớp Ở Các Trường Thcs Huyện Chư Păh ...
Quản Lý Hoạt Động Giáo Dục Ngoài Giờ Lên Lớp Ở Các Trường Thcs Huyện Chư Păh ...
 
Thu Hút Vốn Đầu Tư Vào Lĩnh Vực Nông Nghiệp Trên Địa Bàn Tỉnh Gia Lai.doc
Thu Hút Vốn Đầu Tư Vào Lĩnh Vực Nông Nghiệp Trên Địa Bàn Tỉnh Gia Lai.docThu Hút Vốn Đầu Tư Vào Lĩnh Vực Nông Nghiệp Trên Địa Bàn Tỉnh Gia Lai.doc
Thu Hút Vốn Đầu Tư Vào Lĩnh Vực Nông Nghiệp Trên Địa Bàn Tỉnh Gia Lai.doc
 
Quản Lý Hoạt Động Dạy Học Ngoại Ngữ Tại Các Trung Tâm Ngoại Ngữ - Tin Học Trê...
Quản Lý Hoạt Động Dạy Học Ngoại Ngữ Tại Các Trung Tâm Ngoại Ngữ - Tin Học Trê...Quản Lý Hoạt Động Dạy Học Ngoại Ngữ Tại Các Trung Tâm Ngoại Ngữ - Tin Học Trê...
Quản Lý Hoạt Động Dạy Học Ngoại Ngữ Tại Các Trung Tâm Ngoại Ngữ - Tin Học Trê...
 
Quản Trị Rủi Ro Tín Dụng Trong Cho Vay Doanh Nghiệp Tại Ngân Hàng Thƣơng Mại ...
Quản Trị Rủi Ro Tín Dụng Trong Cho Vay Doanh Nghiệp Tại Ngân Hàng Thƣơng Mại ...Quản Trị Rủi Ro Tín Dụng Trong Cho Vay Doanh Nghiệp Tại Ngân Hàng Thƣơng Mại ...
Quản Trị Rủi Ro Tín Dụng Trong Cho Vay Doanh Nghiệp Tại Ngân Hàng Thƣơng Mại ...
 
Tạo Việc Làm Cho Thanh Niên Trên Địa Bàn Quận Thanh Khê, Thành Phố Đà Nẵng.doc
Tạo Việc Làm Cho Thanh Niên Trên Địa Bàn Quận Thanh Khê, Thành Phố Đà Nẵng.docTạo Việc Làm Cho Thanh Niên Trên Địa Bàn Quận Thanh Khê, Thành Phố Đà Nẵng.doc
Tạo Việc Làm Cho Thanh Niên Trên Địa Bàn Quận Thanh Khê, Thành Phố Đà Nẵng.doc
 
Quản Trị Rủi Ro Tín Dụng Trong Cho Vay Trung Và Dài Hạn Tại Ngân Hàng Thương ...
Quản Trị Rủi Ro Tín Dụng Trong Cho Vay Trung Và Dài Hạn Tại Ngân Hàng Thương ...Quản Trị Rủi Ro Tín Dụng Trong Cho Vay Trung Và Dài Hạn Tại Ngân Hàng Thương ...
Quản Trị Rủi Ro Tín Dụng Trong Cho Vay Trung Và Dài Hạn Tại Ngân Hàng Thương ...
 

Recently uploaded

[NBV]-CHUYÊN ĐỀ 3. GTLN-GTNN CỦA HÀM SỐ (CÓ ĐÁP ÁN CHI TIẾT).pdf
[NBV]-CHUYÊN ĐỀ 3. GTLN-GTNN CỦA HÀM SỐ (CÓ ĐÁP ÁN CHI TIẾT).pdf[NBV]-CHUYÊN ĐỀ 3. GTLN-GTNN CỦA HÀM SỐ (CÓ ĐÁP ÁN CHI TIẾT).pdf
[NBV]-CHUYÊN ĐỀ 3. GTLN-GTNN CỦA HÀM SỐ (CÓ ĐÁP ÁN CHI TIẾT).pdf
NamNguynHi23
 
Smartbiz_He thong MES nganh may mac_2024june
Smartbiz_He thong MES nganh may mac_2024juneSmartbiz_He thong MES nganh may mac_2024june
Smartbiz_He thong MES nganh may mac_2024june
SmartBiz
 
THONG BAO nop ho so xet tuyen TS6 24-25.pdf
THONG BAO nop ho so xet tuyen TS6 24-25.pdfTHONG BAO nop ho so xet tuyen TS6 24-25.pdf
THONG BAO nop ho so xet tuyen TS6 24-25.pdf
QucHHunhnh
 
Halloween vocabulary for kids in primary school
Halloween vocabulary for kids in primary schoolHalloween vocabulary for kids in primary school
Halloween vocabulary for kids in primary school
AnhPhm265031
 
Khí huyết và tân dịch - Y học cổ truyền VN
Khí huyết và tân dịch - Y học cổ truyền VNKhí huyết và tân dịch - Y học cổ truyền VN
Khí huyết và tân dịch - Y học cổ truyền VN
ThaiTrinh16
 
Tuyển tập 9 chuyên đề bồi dưỡng Toán lớp 5 cơ bản và nâng cao ôn thi vào lớp ...
Tuyển tập 9 chuyên đề bồi dưỡng Toán lớp 5 cơ bản và nâng cao ôn thi vào lớp ...Tuyển tập 9 chuyên đề bồi dưỡng Toán lớp 5 cơ bản và nâng cao ôn thi vào lớp ...
Tuyển tập 9 chuyên đề bồi dưỡng Toán lớp 5 cơ bản và nâng cao ôn thi vào lớp ...
Bồi Dưỡng HSG Toán Lớp 3
 
DANH SÁCH XÉT TUYỂN SỚM_NĂM 2023_học ba DPY.pdf
DANH SÁCH XÉT TUYỂN SỚM_NĂM 2023_học ba DPY.pdfDANH SÁCH XÉT TUYỂN SỚM_NĂM 2023_học ba DPY.pdf
DANH SÁCH XÉT TUYỂN SỚM_NĂM 2023_học ba DPY.pdf
thanhluan21
 
Các bình diện Ngôn ngữ học đối chiếu.pdf
Các bình diện Ngôn ngữ học đối chiếu.pdfCác bình diện Ngôn ngữ học đối chiếu.pdf
Các bình diện Ngôn ngữ học đối chiếu.pdf
linhlevietdav
 
Biểu tượng trăng và bầu trời trong tác phẩm của Nguyễn Quang Thiều
Biểu tượng trăng và bầu trời trong tác phẩm của Nguyễn Quang ThiềuBiểu tượng trăng và bầu trời trong tác phẩm của Nguyễn Quang Thiều
Biểu tượng trăng và bầu trời trong tác phẩm của Nguyễn Quang Thiều
lamluanvan.net Viết thuê luận văn
 
tiếng việt dành cho sinh viên ngoại ngữ h
tiếng việt dành cho sinh viên ngoại ngữ htiếng việt dành cho sinh viên ngoại ngữ h
tiếng việt dành cho sinh viên ngoại ngữ h
huynhanhthu082007
 
CHUYÊN ĐỀ DẠY THÊM HÓA HỌC LỚP 10 - SÁCH MỚI - FORM BÀI TẬP 2025 (DÙNG CHUNG ...
CHUYÊN ĐỀ DẠY THÊM HÓA HỌC LỚP 10 - SÁCH MỚI - FORM BÀI TẬP 2025 (DÙNG CHUNG ...CHUYÊN ĐỀ DẠY THÊM HÓA HỌC LỚP 10 - SÁCH MỚI - FORM BÀI TẬP 2025 (DÙNG CHUNG ...
CHUYÊN ĐỀ DẠY THÊM HÓA HỌC LỚP 10 - SÁCH MỚI - FORM BÀI TẬP 2025 (DÙNG CHUNG ...
Nguyen Thanh Tu Collection
 
BÁO CÁO CUỐI KỲ PHÂN TÍCH THIẾT KẾ HƯỚNG ĐỐI TƯỢNG - NHÓM 7.docx
BÁO CÁO CUỐI KỲ PHÂN TÍCH THIẾT KẾ HƯỚNG ĐỐI TƯỢNG - NHÓM 7.docxBÁO CÁO CUỐI KỲ PHÂN TÍCH THIẾT KẾ HƯỚNG ĐỐI TƯỢNG - NHÓM 7.docx
BÁO CÁO CUỐI KỲ PHÂN TÍCH THIẾT KẾ HƯỚNG ĐỐI TƯỢNG - NHÓM 7.docx
HngL891608
 
kl_HOÀN THIỆN CÔNG TÁC ĐÁNH GIÁ THỰC HIỆN CÔNG VIỆC TẠI CÔNG TY CỔ PHẦN ĐẦU T...
kl_HOÀN THIỆN CÔNG TÁC ĐÁNH GIÁ THỰC HIỆN CÔNG VIỆC TẠI CÔNG TY CỔ PHẦN ĐẦU T...kl_HOÀN THIỆN CÔNG TÁC ĐÁNH GIÁ THỰC HIỆN CÔNG VIỆC TẠI CÔNG TY CỔ PHẦN ĐẦU T...
kl_HOÀN THIỆN CÔNG TÁC ĐÁNH GIÁ THỰC HIỆN CÔNG VIỆC TẠI CÔNG TY CỔ PHẦN ĐẦU T...
Luận Văn Uy Tín
 
Tóm tắt Tư tưởng Hồ Chí Minhhhhhhhhhhhhh
Tóm tắt Tư tưởng Hồ Chí MinhhhhhhhhhhhhhTóm tắt Tư tưởng Hồ Chí Minhhhhhhhhhhhhh
Tóm tắt Tư tưởng Hồ Chí Minhhhhhhhhhhhhh
nnguyenthao204
 
Từ ngữ về con người và chiến tranh trong Nhật ký Đặng Thùy Trâm.pdf
Từ ngữ về con người và chiến tranh trong Nhật ký Đặng Thùy Trâm.pdfTừ ngữ về con người và chiến tranh trong Nhật ký Đặng Thùy Trâm.pdf
Từ ngữ về con người và chiến tranh trong Nhật ký Đặng Thùy Trâm.pdf
Man_Ebook
 
BÀI TẬP DẠY THÊM HÓA HỌC LỚP 12 - CẢ NĂM - THEO FORM THI MỚI BGD 2025 (DÙNG C...
BÀI TẬP DẠY THÊM HÓA HỌC LỚP 12 - CẢ NĂM - THEO FORM THI MỚI BGD 2025 (DÙNG C...BÀI TẬP DẠY THÊM HÓA HỌC LỚP 12 - CẢ NĂM - THEO FORM THI MỚI BGD 2025 (DÙNG C...
BÀI TẬP DẠY THÊM HÓA HỌC LỚP 12 - CẢ NĂM - THEO FORM THI MỚI BGD 2025 (DÙNG C...
Nguyen Thanh Tu Collection
 
Tai-lieu-Boi-Duong-HSG-môn-Ngữ-Văn-THPT-Tập-1.docx
Tai-lieu-Boi-Duong-HSG-môn-Ngữ-Văn-THPT-Tập-1.docxTai-lieu-Boi-Duong-HSG-môn-Ngữ-Văn-THPT-Tập-1.docx
Tai-lieu-Boi-Duong-HSG-môn-Ngữ-Văn-THPT-Tập-1.docx
NhNguynTQunh
 
Bài tập chương 5. Năng lượng phản ứng.docx
Bài tập chương 5. Năng lượng phản ứng.docxBài tập chương 5. Năng lượng phản ứng.docx
Bài tập chương 5. Năng lượng phản ứng.docx
gorse871
 
trắc nhiệm ký sinh.docxddddddddddddddddd
trắc nhiệm ký sinh.docxdddddddddddddddddtrắc nhiệm ký sinh.docxddddddddddddddddd
trắc nhiệm ký sinh.docxddddddddddddddddd
my21xn0084
 
LUẬN VĂN THẠC SĨ LUẬT - Luận Văn Uy Tín.docx
LUẬN VĂN THẠC SĨ LUẬT - Luận Văn Uy Tín.docxLUẬN VĂN THẠC SĨ LUẬT - Luận Văn Uy Tín.docx
LUẬN VĂN THẠC SĨ LUẬT - Luận Văn Uy Tín.docx
Luận Văn Uy Tín
 

Recently uploaded (20)

[NBV]-CHUYÊN ĐỀ 3. GTLN-GTNN CỦA HÀM SỐ (CÓ ĐÁP ÁN CHI TIẾT).pdf
[NBV]-CHUYÊN ĐỀ 3. GTLN-GTNN CỦA HÀM SỐ (CÓ ĐÁP ÁN CHI TIẾT).pdf[NBV]-CHUYÊN ĐỀ 3. GTLN-GTNN CỦA HÀM SỐ (CÓ ĐÁP ÁN CHI TIẾT).pdf
[NBV]-CHUYÊN ĐỀ 3. GTLN-GTNN CỦA HÀM SỐ (CÓ ĐÁP ÁN CHI TIẾT).pdf
 
Smartbiz_He thong MES nganh may mac_2024june
Smartbiz_He thong MES nganh may mac_2024juneSmartbiz_He thong MES nganh may mac_2024june
Smartbiz_He thong MES nganh may mac_2024june
 
THONG BAO nop ho so xet tuyen TS6 24-25.pdf
THONG BAO nop ho so xet tuyen TS6 24-25.pdfTHONG BAO nop ho so xet tuyen TS6 24-25.pdf
THONG BAO nop ho so xet tuyen TS6 24-25.pdf
 
Halloween vocabulary for kids in primary school
Halloween vocabulary for kids in primary schoolHalloween vocabulary for kids in primary school
Halloween vocabulary for kids in primary school
 
Khí huyết và tân dịch - Y học cổ truyền VN
Khí huyết và tân dịch - Y học cổ truyền VNKhí huyết và tân dịch - Y học cổ truyền VN
Khí huyết và tân dịch - Y học cổ truyền VN
 
Tuyển tập 9 chuyên đề bồi dưỡng Toán lớp 5 cơ bản và nâng cao ôn thi vào lớp ...
Tuyển tập 9 chuyên đề bồi dưỡng Toán lớp 5 cơ bản và nâng cao ôn thi vào lớp ...Tuyển tập 9 chuyên đề bồi dưỡng Toán lớp 5 cơ bản và nâng cao ôn thi vào lớp ...
Tuyển tập 9 chuyên đề bồi dưỡng Toán lớp 5 cơ bản và nâng cao ôn thi vào lớp ...
 
DANH SÁCH XÉT TUYỂN SỚM_NĂM 2023_học ba DPY.pdf
DANH SÁCH XÉT TUYỂN SỚM_NĂM 2023_học ba DPY.pdfDANH SÁCH XÉT TUYỂN SỚM_NĂM 2023_học ba DPY.pdf
DANH SÁCH XÉT TUYỂN SỚM_NĂM 2023_học ba DPY.pdf
 
Các bình diện Ngôn ngữ học đối chiếu.pdf
Các bình diện Ngôn ngữ học đối chiếu.pdfCác bình diện Ngôn ngữ học đối chiếu.pdf
Các bình diện Ngôn ngữ học đối chiếu.pdf
 
Biểu tượng trăng và bầu trời trong tác phẩm của Nguyễn Quang Thiều
Biểu tượng trăng và bầu trời trong tác phẩm của Nguyễn Quang ThiềuBiểu tượng trăng và bầu trời trong tác phẩm của Nguyễn Quang Thiều
Biểu tượng trăng và bầu trời trong tác phẩm của Nguyễn Quang Thiều
 
tiếng việt dành cho sinh viên ngoại ngữ h
tiếng việt dành cho sinh viên ngoại ngữ htiếng việt dành cho sinh viên ngoại ngữ h
tiếng việt dành cho sinh viên ngoại ngữ h
 
CHUYÊN ĐỀ DẠY THÊM HÓA HỌC LỚP 10 - SÁCH MỚI - FORM BÀI TẬP 2025 (DÙNG CHUNG ...
CHUYÊN ĐỀ DẠY THÊM HÓA HỌC LỚP 10 - SÁCH MỚI - FORM BÀI TẬP 2025 (DÙNG CHUNG ...CHUYÊN ĐỀ DẠY THÊM HÓA HỌC LỚP 10 - SÁCH MỚI - FORM BÀI TẬP 2025 (DÙNG CHUNG ...
CHUYÊN ĐỀ DẠY THÊM HÓA HỌC LỚP 10 - SÁCH MỚI - FORM BÀI TẬP 2025 (DÙNG CHUNG ...
 
BÁO CÁO CUỐI KỲ PHÂN TÍCH THIẾT KẾ HƯỚNG ĐỐI TƯỢNG - NHÓM 7.docx
BÁO CÁO CUỐI KỲ PHÂN TÍCH THIẾT KẾ HƯỚNG ĐỐI TƯỢNG - NHÓM 7.docxBÁO CÁO CUỐI KỲ PHÂN TÍCH THIẾT KẾ HƯỚNG ĐỐI TƯỢNG - NHÓM 7.docx
BÁO CÁO CUỐI KỲ PHÂN TÍCH THIẾT KẾ HƯỚNG ĐỐI TƯỢNG - NHÓM 7.docx
 
kl_HOÀN THIỆN CÔNG TÁC ĐÁNH GIÁ THỰC HIỆN CÔNG VIỆC TẠI CÔNG TY CỔ PHẦN ĐẦU T...
kl_HOÀN THIỆN CÔNG TÁC ĐÁNH GIÁ THỰC HIỆN CÔNG VIỆC TẠI CÔNG TY CỔ PHẦN ĐẦU T...kl_HOÀN THIỆN CÔNG TÁC ĐÁNH GIÁ THỰC HIỆN CÔNG VIỆC TẠI CÔNG TY CỔ PHẦN ĐẦU T...
kl_HOÀN THIỆN CÔNG TÁC ĐÁNH GIÁ THỰC HIỆN CÔNG VIỆC TẠI CÔNG TY CỔ PHẦN ĐẦU T...
 
Tóm tắt Tư tưởng Hồ Chí Minhhhhhhhhhhhhh
Tóm tắt Tư tưởng Hồ Chí MinhhhhhhhhhhhhhTóm tắt Tư tưởng Hồ Chí Minhhhhhhhhhhhhh
Tóm tắt Tư tưởng Hồ Chí Minhhhhhhhhhhhhh
 
Từ ngữ về con người và chiến tranh trong Nhật ký Đặng Thùy Trâm.pdf
Từ ngữ về con người và chiến tranh trong Nhật ký Đặng Thùy Trâm.pdfTừ ngữ về con người và chiến tranh trong Nhật ký Đặng Thùy Trâm.pdf
Từ ngữ về con người và chiến tranh trong Nhật ký Đặng Thùy Trâm.pdf
 
BÀI TẬP DẠY THÊM HÓA HỌC LỚP 12 - CẢ NĂM - THEO FORM THI MỚI BGD 2025 (DÙNG C...
BÀI TẬP DẠY THÊM HÓA HỌC LỚP 12 - CẢ NĂM - THEO FORM THI MỚI BGD 2025 (DÙNG C...BÀI TẬP DẠY THÊM HÓA HỌC LỚP 12 - CẢ NĂM - THEO FORM THI MỚI BGD 2025 (DÙNG C...
BÀI TẬP DẠY THÊM HÓA HỌC LỚP 12 - CẢ NĂM - THEO FORM THI MỚI BGD 2025 (DÙNG C...
 
Tai-lieu-Boi-Duong-HSG-môn-Ngữ-Văn-THPT-Tập-1.docx
Tai-lieu-Boi-Duong-HSG-môn-Ngữ-Văn-THPT-Tập-1.docxTai-lieu-Boi-Duong-HSG-môn-Ngữ-Văn-THPT-Tập-1.docx
Tai-lieu-Boi-Duong-HSG-môn-Ngữ-Văn-THPT-Tập-1.docx
 
Bài tập chương 5. Năng lượng phản ứng.docx
Bài tập chương 5. Năng lượng phản ứng.docxBài tập chương 5. Năng lượng phản ứng.docx
Bài tập chương 5. Năng lượng phản ứng.docx
 
trắc nhiệm ký sinh.docxddddddddddddddddd
trắc nhiệm ký sinh.docxdddddddddddddddddtrắc nhiệm ký sinh.docxddddddddddddddddd
trắc nhiệm ký sinh.docxddddddddddddddddd
 
LUẬN VĂN THẠC SĨ LUẬT - Luận Văn Uy Tín.docx
LUẬN VĂN THẠC SĨ LUẬT - Luận Văn Uy Tín.docxLUẬN VĂN THẠC SĨ LUẬT - Luận Văn Uy Tín.docx
LUẬN VĂN THẠC SĨ LUẬT - Luận Văn Uy Tín.docx
 

Luận văn: Hiệu ứng pha tạp và độ hạt trong phổ hóa tổng trở, 9đ

  • 1. ĐẠI HỌC QUỐC GIA HÀ NỘI TRƢỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN ---------------------------- Vũ Thị Ngần HIỆU ỨNG PHA TẠP VÀ ĐỘ HẠT TRONG PHỔ HÓA TỔNG TRỞ CỦA HỆ LaNi5-xGex LUẬN VĂN THẠC SĨ KHOA HỌC Hà Nội – Năm 2013
  • 2. ĐẠI HỌC QUỐC GIA HÀ NỘI TRƢỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN ---------------------------- Vũ Thị Ngần HIỆU ỨNG PHA TẠP VÀ ĐỘ HẠT TRONG PHỔ HÓA TỔNG TRỞ CỦA HỆ LaNi5-xGex Chuyên ngành: Vật Lý Nhiệt Mã số: LUẬN VĂN THẠC SĨ KHOA HỌC NGƢỜI HƢỚNG DẪN KHOA HỌC: GS. TS. LƢU TUẤN TÀI Hà Nội – Năm 2013
  • 3. Luận văn thạc sĩ khoa học Vũ Thị Ngần i LỜI CẢM ƠN Trƣớc hết, Tôi xin chân thành bày tỏ lòng biết ơn sâu sắc tới GS. TS. Lƣu Tuấn Tài – ngƣời Thầy – nhà khoa học trực tiếp hƣớng dẫn giúp đỡ Tôi hoàn thành khóa luận này. Trong quá trình thực hiện luận văn, Thầy đã tận tình chỉ bảo, gợi mở kiến thức để em đạt đƣợc kết quả nhƣ ngày hôm nay. Tôi xin chân thành cám ơn tập thể các Thầy, Cô công tác tại bộ môn Vật Lý Nhiệt đã cung cấp những kiến thức bổ ích làm tiền đề giúp Tôi thực hiện luận văn này. Cuối cùng, Tôi xin gửi lời cảm ơn tới gia đình và bạn bè thân thiết đã luôn luôn động viên, cổ vũ Tôi trong suốt thời gian qua. Hà Nội, ngày 5 tháng 12 năm 2013 Học viên Vũ Thị Ngần
  • 4. Luận văn thạc sĩ khoa học Vũ Thị Ngần ii MỤC LỤC LỜI CẢM ƠN ..............................................................................................................1 MỤC LỤC.................................................................................................................. ii DANH MỤC CÁC CHỮ VIẾT TẮT VÀ KÍ HIỆU................................................. iv DANH MỤC CÁC HÌNH TRONG LUẬN VĂN ......................................................v DANH MỤC CÁC BẢNG TRONG LUẬN VĂN................................................... vi MỞ ĐẦU.....................................................................................................................1 Chƣơng I : TỔNG QUAN VỀ VẬT LIỆU RT5..........................................................3 1.1 Cấu trúc vật liệu RT5 .....................................................................................3 1.2 Vai trò của các nguyên tố trong hợp kim ......................................................3 1.3 Tính chất từ của vật liệu ................................................................................5 1.4 Quá trình hấp phụ , hấp thụ và giải hấp thụ của Hydro của vật liệu LaNi5 và ứng dụng làm cực âm trong pin Ni-MH ..................................................................6 1.4.1 Khả năng hấp thụ và hấp phụ Hydro của các hợp chất RT5 ...................6 1.4.2 Quá trình hấp thụ và giải hấp thụ của LaNi5 ..........................................7 1.4.3 Sự hấp thụ Hydro trong các hệ điện hóa.................................................9 1.5 Tính chất điện hóa của hợp chất RT5 làm cực âm trong pin Ni-MH ..........10 1.5.1 Xác định tính chất bằng phƣơng pháp đo phóng nạp ...........................10 1.5.2 Các tính chất điện hóa của RT5.............................................................11 1.6 Ảnh hƣởng của kích thƣớc hạt lên dung lƣợng pin.....................................12 1.7 Khái niệm về pin nạp lại..............................................................................14 1.7.1 Các phản ứng chính ..............................................................................14 1.7.2 Sự quá nạp và sự quá phóng .................................................................15 1.7.3 Sự tự phóng...........................................................................................17 1.7.4 Thời gian sống ......................................................................................18 CHƢƠNG II: PHƢƠNG PHÁP THỰC NGHIỆM ..................................................20 2.1 Chế tạo mẫu bằng phƣơng pháp nóng chảy hồ quang..................................20 2.1.1 Chuẩn bị kim loại ban đầu.........................................................................20 2.1.2 Quy trình chế tạo mẫu bằng phƣơng pháp nóng chảy hồ quang..............20
  • 5. Luận văn thạc sĩ khoa học Vũ Thị Ngần iii 2.1.3 Phƣơng pháp và thiết bị nghiền cơ...........................................................22 2.2 Phân tích cấu trúc bằng phƣơng pháp đo nhiễu xạ tia X.............................25 2.3 Xác định kích thƣớc hạt bằng kính hiển vi điện tử quét (SEM)...................26 2.4 Nghiên cứu tính chất từ bằng từ kế mẫu rung ................................................28 2.5 Các phép đo điện hóa..................................................................................28 2.5.1 Hệ đo điện hóa..........................................................................................28 2.5.2 Chế tạo điện cực âm .................................................................................29 2.5.3 Đo chu kì phóng nạp ................................................................................30 2.5.4 Phƣơng pháp đo phổ tổng trở EIS............................................................31 CHƢƠNG III: KẾT QUẢ VÀ THẢO LUẬN..........................................................36 3.1 Kết quả phân tích nhiễu xạ tia X ................................................................36 3.2 Kết quả phép đo từ......................................................................................38 3.3 Đặc trƣng phóng nạp của vật liệu...............................................................41 3.4. Kết quả đo phổ tổng trờ ..............................................................................43 3.4.1 Phổ tổng trở của các mẫu nghiền thô ......................................................44 3.4.2 Sự phụ thuộc của điện trở chuyển điện tích Rct và điện dung lớp điện tích kép Cdl vào hàm lƣợng thay thế Ni.....................................................................45 3.4.3 Ảnh hƣởng của thời gian nghiền lên phổ tổng trở ..................................46 KẾT LUẬN...............................................................................................................49 TÀI LIỆU THAM KHẢO.........................................................................................50
  • 6. Luận văn thạc sĩ khoa học Vũ Thị Ngần iv DANH MỤC CÁC CHỮ VIẾT TẮT VÀ KÍ HIỆU 1. Các chữ viết tắt Ni-MH: Niken – Hyđrua kim loại V/SCE: Vôn so với thế điện cực calomen bão hòa SEM: Kính hiển vi điện tử quét EIS: Phổ tổng trở điện hóa VSM : Từ kế mẫu rung 2. Các kí hiệu Cdl: Điện dung lớp điện tích kép Rp: Điện trở phân cực Rct: Điện trở chuyển điện tích Q: Điện lƣợng trong quá trình phóng nạp
  • 7. Luận văn thạc sĩ khoa học Vũ Thị Ngần v DANH MỤC CÁC HÌNH TRONG LUẬN VĂN Trang Hình 1.1: Sơ đồ mạng tinh thể của hệ hợp chất LaNi5 3 Hình 0.1 : Sự thay đổi thể tích ô mạng phụ thuộc nồng các nguyên tố thay thế 5 Hình 1.3: Sự phụ thuộc của 2 ln HP vào 1 T 8 Hình 1.4: Sơ đồ mô tả một biên pha của một kim loại hấp thụ Hydro 9 Hình 1.5: Cấu tạo lớp điện tích kép 11 Hình 1.6: Đồ thị phóng (D) nạp (C) của LaNi5 với các chu kì khác nhau 12 Hình 1.7 : Mô hình biểu diễn quá trình phóng nạp xảy ra trong pin Ni – MH 15 Hình 2.1 : Cấu tạo buồng nấu và hệ thống nấu luyện hồ quang 21 Hình 2.2 : Hình ảnh hệ thống nấu luyện hồ quang 22 Hình 2.3: Máy nghiền hành tinh Retsch -PM 400/2 22 Hình 2.4: Hình ảnh chuyển động của cối và bi trong quá trình nghiền 23 Hình 2.5: Cối nghiền và bi nghiền của máy Retsch -PM 400/2 24 Hình 2.6: Sơ đồ nguyên lý và ảnh thiết bị nhiễu xạ tia X 25 Hình 2.7 : Sơ đồ cấu tạo và nguyên lý phóng đại ảnh của SEM 27 Hình 2.8 : Hệ 3 điện cực trong phép đo điện hóa của pin Ni-MH 28 Hình 2.9 : Sơ đồ nguyên lý của thiết bị đo phóng nạp Battery tester 30 Hình 2.10: Hệ đo chu kỳ phóng nạp Battery tester 30 Hình 2.11: Mạch điện tƣơng đƣơng của bình điện phân 31 Hình 2.12: Tổng trở trên mặt phẳng phức 32
  • 8. Luận văn thạc sĩ khoa học Vũ Thị Ngần vi Hình 2.13: Tổng trở của quá trình điện cực nhiều giai đoạn 33 Hình 2.14: Tổng trở khi có sự hấp phụ đặc biệt (a) và khi có sự thụ động (b) 33 Hình 2.15: Phổ tổng trở Nyquist của điện cực LaNi5 tại E = -1,2 V/SCE 34 Hình 2.16: Sơ đồ mạch tƣơng đƣơng của điện cực gốc LaNi5 34 Hình 3.1 : Giản đồ nhiễu xạ tia X của mẫu LaNi4.5Ge0.5, LaNi4.7Ge0.3 36 Hình 3.2 : Đƣờng cong từ hóa của mẫu LaNi4.6Ge0.4 38 Hình 3.3 : Đƣờng cong từ hóa của mẫu LaNi4.8Ge0.2 39 Hình 3.4 : Đƣờng cong từ nhiệt của mẫu LaNi4.8Ge0.2 40 Hình 3.5 : Đƣờng cong từ nhiệt của mẫu LaNi4.6Ge0.4 41 Hình 3.6 : Đƣờng cong phóng nạp của các mẫu LaNi4.6Ge0.4 và LaNi4.8Ge0.2 42 Hình 3.7 : Đƣờng cong phóng nạp của mẫu LaNi5 43 Hình 3.8 : Đƣờng cong Nyquist của mẫu LaNi5-xGex tại thế phân cực E = -1,1 V 44 Hình 3.9: Sự phụ thuộc Rct và Cdl vào hàm lƣợng thay thế Ge cho Ni 45 Hình 3.10: Đƣờng cong Nyquist của mẫu LaNi4.6Ge0.4 với thời gian nghiền 46 Hình 3.11: Sự phụ thuộc của Rct và Cdl của LaNi4.6Ge0.4 theo thời gian nghiền 47
  • 9. Luận văn thạc sĩ khoa học Vũ Thị Ngần vii DANH MỤC CÁC BẢNG TRONG LUẬN VĂN Trang Bảng 1.1: Giới hạn hàm lƣợng các nguyên tố thay thế trong LaNi5-xMx 4 Bảng 3.1: Các thông số mạng tinh thể 37 Bảng 3.2 : Độ cảm từ χ của các mẫu 40
  • 10. Luận văn thạc sĩ khoa học Vũ Thị Ngần 1 MỞ ĐẦU Pin là một thiết bị lƣu trữ năng lƣợng dƣới dạng hóa học. Từ khi đƣợc sáng chế lần đầu tiên năm 1800 ( pin Volta) bởi Alessandro Volta, pin đã trở thành nguồn năng lƣợng thông dụng cho nhiều đồ vật trong gia đình cũng nhƣ cho các ứng dụng công nghiệp. Có 2 loại pin: pin sơ cấp ( chỉ dùng 1 lần) và pin nạp lại ( đƣợc thiết kế để nạp lại nhiều lần). Do có dung lƣợng lớn và nội trở nhỏ nên hiện nay pin nạp Ni-MH là lựa chọn phổ biến cho các thiết bị tiêu hao năng lƣợng trung bình nhƣ: điện thoại di động, đồng hồ đeo tay, máy ảnh số... Kỹ thuật pin Ni-MH đƣợc Ovonic Battery, một chi nhánh của ECD Ovonics có trụ sở tại Michigan phát triển. Các pin Ni-MH bắt đầu đƣợc bán ra công chúng năm 1983. Ni-MH là 1 kiểu pin sạc sử dụng hỗn hợp hấp thu Hydro cho anot, không gây ô nhiễm môi trƣờng. Kim loại trong pin Ni-MH thực chất là hỗn hợp liên kim loại. Nhiều hợp chất đƣợc nghiên cứu cho ứng dụng này nhƣng hợp chất thƣờng đƣợc sử dụng hiện nay là RT5 ( với R – là đất hiếm, B – là Ni, Mn, Co, Al, Fe). Hợp chất LaNi5 đã đƣợc sử dụng để làm cực âm trong pin nạp lại Ni – MH do nó có thể hấp thụ và giải hấp thụ một lƣợng lớn hydro ở điều kiện áp suất và nhiệt độ phòng mà không làm hỏng cấu trúc mạng. Tuy nhiên thời gian sống và các quá trình điện hóa của LaNi5 là kém ổn định. Dung lƣợng riêng, tốc độ phóng nạp, thời gian sống của pin phụ thuộc rất nhiều vào vật liệu làm điện cực âm gốc LaNi5. Các nghiên cứu cho thấy, khi thay thế một phần Ni bằng các nguyên tố kim loại M chuyển tiếp nhƣ : Co, Mn, Fe, Al, Cu thì tính chất điện hóa của vật liệu làm điện cực thay đổi đáng kể. Dung lƣợng, thời gian sống và mật độ dòng của pin đƣợc cải thiện rõ rệt. Các nguyên tố nhƣ : Co, Mn, Al, Fe, Cu đƣợc dùng để thay thế cho một phần Ni chủ yếu là các nguyên tố 3d và có tính hấp thụ lớn. Hydro đƣợc tích tụ trong mạng tinh thể vật liệu ở dạng bền vững, nên nó trở thành một dạng bình chứa và dự trữ năng lƣợng. Các nghiên cứu cho thấy, trong quá trình Hydro hóa, các nguyên tố
  • 11. Luận văn thạc sĩ khoa học Vũ Thị Ngần 2 3d này bị giải phóng ra khỏi bề mặt điện cực dƣới dạng các vi hạt, dẫn đến làm tăng khả năng hấp thụ Hydro [9]. Tuy nhiên, khi thay thế một phần Ni bằng các nguyên tố bán dẫn nhƣ Si, Ge thì tính chất của vật liệu cũng thay đổi đáng kể. Điều này chứng tỏ còn có cơ chế khác cải thiện các đặc trƣng của pin. Mặt khác, khi thực hiện phóng nạp trong quá trình Hydro hóa, các hạt làm điện cực có kích thƣớc 50µm thƣờng bị vỡ ra. Đây là nguyên nhân làm thay đổi vật liệu đồng thời làm giảm thời gian sống của pin. T.Sakai và cộng sự [10] đã nghiên cứu và chỉ ra rằng : khi kích thƣớc hạt vật liệu làm điện cực là 5µm thì các hạt sẽ không bị vỡ trong khi phóng nạp. Vật liệu có kích thƣớc hạt nhỏ, bề mặt tiếp xúc sẽ lớn, quãng đƣờng khuếch tán của Hydro ngắn. Điều đó sẽ làm tăng tốc độ phóng nạp, dung lƣợng riêng, và độ bền của pin Ni-MH. Trong khóa luận này, tôi đã sử dụng Ge để thay thế một phần Ni nhằm nghiên cứu hiệu ứng pha tạp và khảo sát cấu trúc tinh thể, tính chất từ, đặc trƣng phóng nạp và ảnh hƣởng của độ hạt lên phổ tổng trở của vật liệu LaNi5-xGex.Từ đó , rút ra kết luận ảnh hƣởng của nguyên tố Ge tới các đặc trƣng của pin Ni-MH. Nội dung của khóa luận này bao gồm :  Chƣơng I : TỔNG QUAN VỀ VẬT LIỆU RT5  Chƣơng II : PHƢƠNG PHÁP THỰC NGHIỆM  Chƣơng III : KẾT QUẢ VÀ THẢO LUẬN  Kết Luận  Tài liệu tham khảo
  • 12. Luận văn thạc sĩ khoa học Vũ Thị Ngần 3 Chƣơng I : TỔNG QUAN VỀ VẬT LIỆU RT5 1.1 Cấu trúc vật liệu RT5 Lanthanum 1a NickelI 2c NickelII 3g Hình 1.1: Sơ đồ mạng tinh thể của hệ hợp chất LaNi5 Hệ hợp chất RT5 ( với R là nguyên tố đất hiếm, T là các nguyên tố chuyển tiếp nhƣ Co, Ni, Cu, Fe) có cấu trúc tinh thể lục giác xếp chặt kiểu CaCu5 thuộc nhóm không gian P6/mmm. Cấu trúc này có thể coi là sự sắp xếp xen kẽ của hai lớp nguyên tố khác nhau. Lớp thứ nhất gồm 2 loại nguyên tố : nguyên tố đất hiếm nằm tại vị trí giữa và các đỉnh của mặt lục giác (vị trí 1a) và các nguyên tố chuyển tiếp nằm tại các vị trí 2c. Lớp thứ 2 chỉ gồm các nguyên tố chuyển tiếp nằm ở đỉnh của hình lục giác lệch so với lớp thứ nhất 30o , vị trí 3g [3] .Hình 1.1 là cấu trúc tinh thể tiêu biểu LaNi5. 1.2 Vai trò của các nguyên tố trong hợp kim Quá trình hấp thụ Hydro bão hòa có thể làm cho thể tích mạng tinh thể hợp kim LaNi5 tăng lên đến 25%. Chính sự giãn nở này là một trong những nguyên nhân gây phá hủy vật liệu. Do đó ảnh hƣởng lớn tới việc ứng dụng hợp kim LaNi5.Vì thế
  • 13. Luận văn thạc sĩ khoa học Vũ Thị Ngần 4 ngƣời ta nghiên cứu thay thế La và Ni bởi một nguyên tố khác nhằm khắc phục các nhƣợc điểm nhƣ: khắc phục sự giãn nở, tăng dung lƣợng hấp thụ, nâng cao tốc độ phóng nạp… Những nghiên cứu trƣớc đây cho thấy, khi thay thế một lƣợng La bằng nguyên tố đất hiếm khác hay Ni bằng các nguyên tố nhóm 3d sẽ tạo thành hợp chất có dạng La1-xRxNi5 hoặc LaNi5-xMx. Khi đó, cấu trúc tinh thể của hệ cũng không thay đổi. Do tính chất của các nguyên tố đất hiếm tƣơng tự nhau nên dung dịch rắn La1-xRxNi5 tồn tại với mọi nồng độ trong khi sự thay thế M cho Ni trong LaNi5-xMx lại có giới hạn. Tỷ lệ thay thế phụ thuộc vào bán kính nguyên tử, cấu trúc lớp vỏ điện tử của các nguyên tố kim loại chuyển tiếp và quy trình chế tạo. Bảng 0.1 Giới hạn hàm lượng các nguyên tố thay thế trong LaNi5-xMx [12] Nguyên tố (M trong LaNi5-xMx) Giới hạn thay thế x trong LaNi5-xMx Si 0,6 Fe 1,2 Al 1,3 Mn 2,2 Cu, Co, Pt 5 Khả năng hấp thụ của LaNi5 chủ yếu phụ thuộc vào mạng tinh thể và bản thân nguyên tố thay thế Ni. Những nghiên cứu trƣớc đây cho thấy sự thay thế các nguyên tử Ni bằng Al và Si trong hợp chất LaNi5-xMx chỉ có thể xảy ra ở vị trí 3g. Nhƣng với các nguyên tố khác nhƣ Co, Mn, Fe lại có thể xảy ra ở vị trí 2c, mặt z=1/2 có mật độ nguyên tử thấp. Nhƣ vậy, mỗi nguyên tố thay thế có giới hạn khác nhau và ảnh hƣởng đến hằng số mạng ô cơ sở của hợp kim ở các mức độ khác nhau (hình 1.2).
  • 14. Luận văn thạc sĩ khoa học Vũ Thị Ngần 5 0 1 2 3 4 5 82 84 86 88 90 92 94 96 La1-x Mx Ni5 LaNi5-x Mx Co Cu Yb Ce Si Fe Al Mn Volume(A 3 ) xM Hình 0.1 : Sự thay đổi thể tích ô mạng phụ thuộc nồng độ các nguyên tố thay thế 1.3 Tính chất từ của vật liệu Tính chất từ của các mẫu đƣợc xác định bằng phép đo đƣờng cong từ hóa theo từ trƣờng và đƣờng cong từ nhiệt trên hệ từ kế mẫu rung (VMS). Các phép đo này đƣợc thực hiện trên mẫu khối mới chế tạo, mẫu sau khi nghiền và mẫu sau khi phóng nạp để so sánh. Các kết quả nghiên cứu trƣớc đây cho thấy, LaNi5 là vật liệu thuận từ. Các hợp kim đã chế tạo với nhiều kim loại và á kim thay thế với các thành phần khác nhau đều cho đặc trƣng thuận từ tại nhiệt độ phòng . Tuy nhiên, độ cảm từ χ của các mẫu là thay đổi tùy theo nguyên tố và tỷ lệ thay thế. Tất cả các mẫu đều trở thành sắt từ ngay sau khi hydro hóa hay trải qua chu kì phóng nạp đầu tiên. Hiện tƣợng thay đổi từ trƣớc và sau khi hydro hóa là do trong suốt quá trình hydro hóa các nguyên tử Ni và các nguyên tử Co, Fe, Mn.. bị giải phóng ra tại các bề mặt vật liệu. Từ giản đồ Rơnghen của một số mẫu cũng xác định đƣợc sự có mặt của các nguyên tử Ni, Co là các vật liệu sắt từ. Đặc trƣng sắt từ cũng nhƣ nhiệt đô Curie của vật liệu đều do các nguyên tử này gây ra. Khi giải phóng ra khỏi bề mặt, các nguyên tố 3d có thể ở trạng thái vô định hình hoặc ở dạng từng đám vi hạt. Điều này đƣợc xác nhận khi chúng ta tiến hành đo 2 lần đƣờng cong từ nhiệt trên tất cả các mẫu hydro hóa. Lần thứ nhất, từ độ của mẫu vừa mới hydro hóa đƣợc đo theo chiều tăng của nhiệt độ từ 300K đến 700K. Sau đó ta tiến hành đo trên mẫu đó lần 2 từ 700K đến 300K. Kết quả đo đƣợc mình họa trên hình đƣờng cong từ nhiệt phía trên. Có thể nhận thấy rằng, đƣờng cong từ nhiệt phía dƣới đều có đỉnh dị thƣờng và
  • 15. Luận văn thạc sĩ khoa học Vũ Thị Ngần 6 khó có thể xác định đƣợc nhiệt độ Curie của mẫu. Đƣờng cong phía trên cho ta đặc trƣng từ phụ thuộc nhiệt độ của vật liệu sắt từ quen thuộc. Đối với mẫu LaNi5 , nhiệt độ Curie rất gần với giá trị tuyệt đối Curie của kim loại Ni. Nhiệt độ Curie của mẫu hydro hóa có chứa các nguyên tố 3d thêm vào nhƣ Fe, Co lớn hơn so với mẫu chỉ chứa Ni. Điều này chứng tỏ, ngoài Ni thì các kim loại tự do Co, Fe cũng bị giải phóng ra bề mặt mẫu. Đỉnh dị thƣờng trên đƣờng cong từ nhiệt của lần đo đầu tiên có thể đƣợc giải thích nhƣ sau : các đám nguyên tử Ni ( Co, Fe, Mn) bị giải phóng ra dƣới dạng các đám vi hạt hoặc ở trạng thái vô định hình sau khi bị hydro hóa. Do đó, đƣờng cong có dạng đặc trƣng của loại vật liệu vô định hình. Khi nhiệt độ tăng thì từ độ giảm. Cho tới khi đạt giá trị cực tiểu với nhiệt độ giới hạn nào đó thì từ độ của mẫu lại tăng nhanh. Điểm nhiệt độ giới hạn này có thể coi là nhiệt độ tái kết tinh của đám vi hạt Ni ( hoặc Co, Fe, Mn) trở thành tinh thể hoàn hảo. Các lần đo tiếp theo ta đƣợc đặc trƣng của vật liệu sắt từ ở dạng khối là hoàn toàn phù hợp. Tóm lại, bằng phƣơng pháp đo từ chúng ta có thể hiểu đƣợc các quá trình phản ứng xảy ra trong điện cực. Các phân tích và so sánh tỉ mỉ cho thấy phƣơng pháp đo từ khá đơn giản nhƣng cho ta các thông tin định lƣợng về các quá trình vi mô xảy ra trong vật liệu làm điện cực âm. 1.4 Quá trình hấp phụ , hấp thụ và giải hấp thụ của Hydro của vật liệu LaNi5 và ứng dụng làm cực âm trong pin Ni-MH 1.4.1 Khả năng hấp thụ và hấp phụ Hydro của các hợp chất RT5 Các nguyên tố chuyển tiếp Al, Fe, Ni, Co... có khả năng hấp thụ một lƣợng hydro trên bề mặt. Do các nguyên tố chuyển nhóm thuộc phân lớp 3d có lớp điện tử 3d có khả năng liên kết yếu với hydro nên các nguyên tử hydro có thể bám vào bề mặt kim loại chuyển tiếp. Cƣờng độ và tốc độ bám phụ thuộc vào các yếu tố nhƣ: bản chất kim loại chuyển tiếp, diện tích bề mặt tiếp xúc, nhiệt độ phản ứng và áp suất của hydro. Các hiện tƣợng về hiệu ứng bề mặt của hợp chất liên kim loại đã đƣợc nghiên cứu. Hiện nay, ngƣời ta đã tìm ra một số cơ chế chứng tỏ thành phần trên bề mặt khác với thành phần bên trong khối hợp kim. Do năng lƣợng của bề mặt kim loại đất hiếm nhỏ hơn năng lƣợng bề mặt kim loại 3d nên nồng độ cân bằng trên bề mặt kim loại đất hiếm lớn hơn bên trong khối. Đặc tính khác biệt trên bề mặt là hiện tƣợng phổ biến xảy ra khi các nguyên tố cấu thành hợp kim có tính chất đủ khác
  • 16. Luận văn thạc sĩ khoa học Vũ Thị Ngần 7 nhau. Trong quá trình Hydro hóa luôn luôn tồn tại oxy (hoặc nƣớc) nhƣ là tạp chất của hydro hoặc tồn tại trong môi trƣờng phản ứng. Đây là lý do hình thành các oxit và hydroxit đất hiếm. Thành phần bề mặt và bên trong khối vật liệu khác nhau, kết hợp với khả năng oxy hóa của các kim loại đất hiếm dẫn đến bề mặt các hợp chất liên kim loại sẽ giàu nguyên tố 3d. Do đó, ta có thể khảo sát quá trình hấp phụ hydro của hợp chất liên kim loại trên bề mặt vật liệu thông qua nguyên tố 3d. Xét các hiện tƣợng ảnh hƣởng đến bề mặt cho thấy sự hấp thụ hydro của các hợp kim đƣợc chiếm ƣu thế bởi các kim loại chuyển tiếp trên bề mặt. Các nguyên tử hydro sẽ bị hấp phụ mạnh tại bề mặt vật liệu và khuếch tán vào trong tinh thể. Sự hấp thụ hydro là quá trình các nguyên tử hydro xâm nhập vào mạng tinh thể theo cơ chế điền kẽ và tạo ra các hợp chất hydro hóa. Các nghiên cứu đã chỉ ra rằng hầu hết các hợp chất RT đều phản ứng với hydro để tạo thành hợp chất hydro hóa. 1.4.2 Quá trình hấp thụ và giải hấp thụ của LaNi5 Quá trình hấp thụ hydro đƣợc nghiên cứu bằng đƣờng đẳng nhiệt của áp suất cân bằng nhƣ một hàm của nồng độ x trong các hợp chất hydro hóa. Tuy nhiên, gần đây quá trình động học của nó đƣợc nghiên cứu đơn giản hơn. Khi quá trình hydro hóa xảy ra có 2 pha phân biệt thì biến thiên Entanpi ΔH và biến thiên năng lƣợng tự do ΔF có thể thu đƣợc từ sự phụ thuộc vào nhiệt độ của áp suất cân bằng. Phản ứng giữa Hydro hóa giữa hợp chất LaNi5 và H2 đƣợc biểu diến nhƣ sau: RT5 + mH2 = RT5H2m Trong nhiệt động học, phƣơng trình Vanhoff đƣợc biểu diễn : 2 ln H F H P R RT      Với R là hằng số khí lý tƣởng. Giá trị ΔH và ΔF là các đại lƣợng nhiệt động ứng với 1 mol khí Hydro. Nếu xét trong khoảng nhiệt độ là đủ nhỏ thì có thể coi quá trình là đẳng nhiệt. Do đó, ΔH và ΔF sẽ không phụ thuộc vào nhiệt độ. Bằng cách vẽ đồ thị sự phụ thuộc của 2 ln HP vào nghịch đảo của của nhiệt độ 1 T ta sẽ thu đƣợc một đƣờng thẳng bậc nhất. Dựa vào đồ thị ta tìm đƣợc giá trị ΔS và ΔH . Ứng với
  • 17. Luận văn thạc sĩ khoa học Vũ Thị Ngần 8 độ dốc đƣờng thẳng ΔH có thể mang giá trị âm hoặc dƣơng và nhận các giá trị khác nhau. Quá trình Hydro hóa xảy ra theo 2 giai đoạn:  Giai đoạn I: quá trình phân hủy Hydro thành nguyên tử. Quá trình này tiêu tốn năng lƣợng (ΔH > 0).  Giai đoạn II: quá trình Hydro hóa. Quá trình này tỏa năng lƣợng (ΔH < 0). Nhƣ vậy, tùy vào quá trình nào chiếm ƣu thế hơn mà ΔH nhận giá trị dƣơng hay âm. Nhƣng đối với biến thiên Entropy ΔS thì lại khác, giá trị của nó không phụ thuộc vào hợp chất liên kim loại. Các nghiên cứu cho thấy Entropy trong quá trình Hydro hóa chủ yếu là do đóng góp của Entropy khí Hydro (ΔSkhí=130J/mol H2). Phản ứng Hydro hóa là phản ứng tỏa nhiệt (Δ<0) nên rất dễ xảy ra vì nó có ƣu thế về mặt năng lƣợng. Đồ thị sự phụ thuộc của 2 ln HP vào 1 T có dạng nhƣ sau : 2.2 2.4 2.6 2.8 3.0 3.2 0 10 20 30 40 50 LnPH2 10 3 /T(K -1 ) Hình 1.3: Sự phụ thuộc của 2 ln HP vào 1 T
  • 18. Luận văn thạc sĩ khoa học Vũ Thị Ngần 9 1.4.3 Sự hấp thụ Hydro trong các hệ điện hóa Do đặc trƣng biên pha điện cực chất - điện ly, nên có nhiều yếu tố ảnh hƣởng tới sự hấp thụ Hydro. Một vùng biên pha sẽ đƣợc hình thành ở lớp điện tích kép tại bề mặt tiếp xúc của điện cực và chất điện ly. Trong trƣờng hợp phức tạp, vùng biên pha hình thành ở nhiều lớp tiếp xúc. Điều này liên quan tới quá trình tham gia của các nguyên tố. Vùng biên pha là một hệ mở có một số quá trình liên tiếp xảy ra. Quá trình nào xảy ra chậm nhất sẽ quyết định tốc độ của toàn bộ quá trình. Các quá trình này bao gồm: vận chuyển sản phẩm phản ứng tới bề mặt điện cực, hấp thụ trên bề mặt điện cực, chuyển điện tích, nhả hấp thụ, vận chuyển các sản phẩm phản ứng ra khỏi bề mặt điện cực. Trong một pin các quá trình tƣơng tự xảy ra. Tuy nhiên, các điện tử chuyển ra mặt ngoài, nơi có dòng điện sinh ra. Trên điện cực, trong suốt quá trình phóng của pin Ni-MH, các quá trình liên quan xuất hiện trong một môi trƣờng nhiều pha: rắn, lỏng, khí. Do hợp chất làm điện cực âm có khả năng hấp thụ Hydro nên các điện cực thƣờng là hệ đa pha. Sự vận chuyển qua biên pha là các quá trình nhiệt động liên tiếp ( hình 1.3). Hình 1.4: Sơ đồ mô tả một biên pha của một kim loại hấp thụ Hydro: (a) mặt phẳng hấp thụ, (b) mặt chuyển điện tích, (l) mạng
  • 19. Luận văn thạc sĩ khoa học Vũ Thị Ngần 10 Nguyên tắc chính của biên pha trong chuyển dời điện hóa của hydro tạo ra bên trong điện cực đƣợc thảo luận gần đây và đặc trƣng trung gian của biên pha đƣợc nhấn mạnh. Các kết quả thảo luận cho thấy rằng: biên pha là nhân tố cơ bản và các tính chất của nó đƣợc xác định bằng sự tiếp xúc bởi các pha, bên trong điện cực cũng nhƣ chất điện li. Quy tắc biên pha có thể thay đổi dẫn tới việc kìm hãm hay đẩy mạnh chuyển dời điện tích và chuyển dời phân tử. Khái niệm này chƣa rõ ràng đầy đủ và đƣợc đƣa ra trong thảo luận về sự hấp thụ Hydro từ pha khí. Trong đó cho thấy rằng, các đám nhỏ kim loại hấp thụ nhiều Hydro qua một cơ chế không hiệu quả vì kích thƣớc đám hạt tăng lên. Biên pha có thể thay đổi khi pin hoạt động, điều đó ảnh hƣởng tới quá trình điện hóa của pin. 1.5 Tính chất điện hóa của hợp chất RT5 làm cực âm trong pin Ni-MH 1.5.1 Xác định tính chất bằng phƣơng pháp đo phóng nạp Bằng phƣơng pháp đo phóng nạp chúng ta có thể xác định đƣợc đặc trƣng điện hóa của hợp chất RT5. Đƣờng cong phóng nạp biểu diễn sự biến thiên của thế điện cực theo điện lƣợng Q trong quá trình phóng nạp. Các mẫu có đƣờng cong E-Q của quá trình phóng (Edis) và quá trình nạp (Ec) . Các phản ứng điện hóa bao gồm sự dịch chuyển điện tích tại bề mặt ranh giới của điện cực và dung dịch điện ly. Chúng là các loại phản ƣng bao gồm các quá trình không đồng nhất. Động lực học của phản ứng không đồng nhất đƣợc quy định bởi một chuỗi các bƣớc liên quan tới quá trình chuyển pha dung dịch và quá trình chuyển pha điện tích tại bề mặt phân cách. Nhƣ đã nói ở trên, khi những quá trình này xảy ra không liên tiếp thì toàn bộ quá trình bị điều khiển bởi quá trình có tốc độ chậm nhất. Trong trạng thái không bền hoặc trong những điều kiện tạm thời, tốc độ quá trình riêng lẻ sẽ phụ thuộc vào thời gian. Quá trình điện hóa bắt đầu xảy ra khi cho điện cực vào dung dịch. Lúc này, bề mặt điện cực xuất hiện một lớp chuyển tiếp giữa dung dịch và điện cực đƣợc gọi là lớp điện tích kép. Cấu tạo lớp điện tích kép đƣợc biểu diễn nhƣ hình 1.5 dƣới
  • 20. Luận văn thạc sĩ khoa học Vũ Thị Ngần 11 đây. Ngƣời ta chia lớp điện tích kép làm ba vùng. Vùng trong cùng là vùng giáp với điện cực, chứa các ion hấp thụ đặc biệt. Mặt lõi của vùng này gọi là mặt Helmholtz trong. Vùng tiếp theo là vùng chứa các ion Hydrat không hấp thụ. Vùng ngoài cùng đƣợc gọi là vùng khuếch tán. Trong vùng này, mật độ các ion chịu ảnh hƣởng của sự phân cực điện trƣờng và sự thăng giáng nhiệt độ. Vì vậy, ta có thể coi lớp điện tích kép là một tụ phẳng gồm 3 tụ mắc nối tiếp. Hình 1.5: Cấu tạo lớp điện tích kép Điểm khác nhau cơ bản so với tụ điện là trên ranh giới phân chia điện cực – chất điện ly của hệ điện hóa xảy ra quá trình điện hóa và quá trình tích điện của lớp điện tích kép. 1.5.2 Các tính chất điện hóa của RT5 Ở một số chu kì phóng nạp ban đầu, hầu hết vật liệu làm điện cực âm trong pin Ni-MH có sự thay đổi mạnh và kém ổn định. Chỉ sau vài chu kì, quá trình phóng nạp của điện cực mới trở nên ổn định và bền vững hơn. Kết luận cho thấy, vật liệu sau khi chế tạo phải đƣợc huấn luyện với một chu kì xác định trƣớc khi chế tạo thành sản phẩm đƣa vào sử dụng nhằm tăng cƣờng tính hoạt hóa và ổn định chế độ làm việc. Qua những nghiên cứu trƣớc đây, từ đƣờng cong phóng nạp với số chu kì phóng nạp khác nhau của các mẫu vật liệu đã chế tạo có thể thấy đƣờng cong phóng Dung dịch 1 2 3  M Điện cực
  • 21. Luận văn thạc sĩ khoa học Vũ Thị Ngần 12 nạp của LaNi5 kém ổn định. Quá trình không thể lặp lại, thậm chí chỉ trong vòng 10 chu kì phóng nạp. Các mẫu với thành phần pha tạp nhƣ Co, Ge, Ga, Si... có chất lƣợng chu kì phóng nạp tốt hơn. Các nguyên tố pha vào trong mỗi mẫu làm cho quá trình phóng nạp nhanh chóng ổn định hơn. Chỉ sau vài chu kì phóng nạp ban đầu, vật liệu đã trở nên ổn định và bền vững hơn, có thể làm việc nhƣ một điện cực của pin. Hình 1.6: Đồ thị phóng (D) nạp (C) của LaNi5 với các chu kì khác nhau Các mẫu với thành phần pha tạp nhƣ Co, Ge, Ga, Si... có chất lƣợng chu kì phóng nạp tốt hơn. Các nguyên tố pha vào trong mỗi mẫu làm cho quá trình phóng nạp nhanh chóng ổn định hơn. Chỉ sau vài chu kì phóng nạp ban đầu, vật liệu đã trở nên ổn định và bền vững hơn, có thể làm việc nhƣ một điện cực của pin. Đƣờng cong phóng điện của các mẫu pha tạp có độ giảm rất chậm cho thấy lƣợng điện tích Q phóng trong quá trình làm việc gần nhƣ không đổi. Điều đó có nghĩa là chất lƣợng của mẫu khá tốt. 1.6 Ảnh hƣởng của kích thƣớc hạt lên dung lƣợng pin Các nghiên cứu cho thấy, khi sử dụng hợp kim LaNi5 để làm cực âm trong pin nạp lại thì khả năng hoạt hóa và tính chất điện hóa của nó không mạnh. Vì thế,
  • 22. Luận văn thạc sĩ khoa học Vũ Thị Ngần 13 ngƣời ta pha tạp vật liệu để tăng hiệu suất hoạt hóa của điện cực. Những nghiên cứu về pha tạp vật liệu đã thu đƣợc những thành công đáng kể. Tuy nhiên, một số nghiên cứu gần đây cho thấy việc giảm kích thƣớc hạt cũng ảnh hƣởng tới tính chất vật liệu LaNi5 và các vật liệu pha tạp trƣớc đây thƣờng có kích thƣớc cỡ vài chục micromet. Việc giảm kích thƣớc vật liệu xuống cỡ nanomet là điều mà các nhà khoa học hiện nay đang quan tâm. Trong quá trình phóng nạp của pin, quá trình hấp thụ và giải hấp thụ Hydro gây nên ứng suất trong vật liệu làm cho các hạt bị vỡ ra. Các hạt này tiếp xúc với dung dịch điện li và bị oxy hóa. Do đó, thời gian sống và các tính chất của pin sẽ giảm và không ổn định. Sakai và cộng sự đã nghiên cứu và chỉ ra rằng khi kích thƣớc hạt giảm xuống 5µm thì các hạt sẽ không bị vỡ trong quá trình phóng nạp. Giảm đƣợc kích thƣớc hạt sẽ giải quyết đƣợc các vấn đề trên. M. Jurczyk [7] và các cộng sự đã nghiên cứu chế tạo các vật liệu TiFe, Mg2Ni, LaNi5 với kích thƣớc nanomet bằng phƣơng pháp nghiền cơ học. Sau đó, họ sử dụng các vật liệu trên làm điện cực âm của pin Ni-MH thì thấy các tính chất của vật liệu đƣợc cải thiện đáng kể và thời gian sống của pin tăng lên. Khi kích thƣớc hạt nhỏ thì Hydro dễ khuếch tán vào vật liệu hơn. Quá trình hấp thụ và giải hấp thụ Hydro xảy ra dễ dàng hơn dẫn đến mật độ dòng phóng nạp của điện cực tăng lên. Z. Chen [11], Vũ Xuân Thăng và các cộng sự [1] chế tạo đƣợc các vật liệu RT5 bằng phƣơng pháp nghiền cơ học với kích thƣớc hạt trung bình 50 nm. Kết quả cho thấy thời gian sống của pin cũng nhƣ dung lƣợng của pin tăng so với vật liệu khối thông thƣờng. Boonstra và cộng sự [2] cho thấy quá trình hoạt hóa của điện cực LaNi5 nhanh hơn khi giảm kích thƣớc hạt. Họ giải thích rằng do diện tích tiếp xúc tăng lên khi kích thƣớc hạt nhỏ làm cho mật độ dòng điện tại bề mặt LaNi5 giảm. Điều đó dẫn đến quá trình nạp và phóng điện xảy ra hiệu quả hơn, lƣợng hydro hấp thụ và giải hấp thụ cao hơn. Mặt khác khi giảm kích thƣớc hạt, bề mặt riêng lớn làm tăng quá trình oxy hóa bởi dung dịch điện ly dẫn đến giảm tuổi thọ điện cực. Heikonen và cộng sự [4] nghiên cứu ảnh hƣởng của kích thƣớc hạt đến quá trình phóng điện của hệ Ni-MH bằng mô hình toán học. Mô hình cho thấy kích
  • 23. Luận văn thạc sĩ khoa học Vũ Thị Ngần 14 thƣớc hạt ảnh hƣởng đến hiệu suất điện cực. Khi tăng tốc độ phóng điện, ảnh hƣởng này càng quan trọng. Họ cho rằng để có điện cực với diện tích bề mặt có hoạt tính lớn, hiệu suất cao nên sử dụng các hạt có kích thƣớc không đồng đều. Đƣờng mô phỏng Ragone với các hạt có kích cỡ khác nhau cho thấy mật độ năng lƣợng tăng nhẹ do sự giảm kích thƣớc hạt. Hạt nhỏ hơn làm giảm thời gian hydro di chuyển tới bề mặt điện cực. Do đó, mật độ công suất của điện cực tăng khi giảm kích thƣớc hạt vật liệu. Ise [5] lại thấy rằng các hạt có kích thƣớc nhỏ rất thích hợp để nâng cao hiệu suất điện cực MH. Tuy nhiên, khi kích thƣớc hạt quá nhỏ lại làm giảm dung lƣợng và tuổi thọ của điện cực. Nhƣ vậy, kích thƣớc hạt ảnh hƣởng đến thời gian khuếch tán Hydro và dung lƣợng pin. Do đó, kích thƣớc hạt là một thông số quan trọng cho việc chế tạo điện cực hiệu suất cao cho pin Ni- MH. Các nghiên cứu trƣớc đây cho thấy, quá trình hấp thụ và giải hấp thụ Hydro diễn ra trong quá trình phóng nạp đã làm nứt vỡ các hạt vật liệu, làm giảm tiếp xúc điện. Điều đó dẫn đến các điện cực làm việc không ổn định và giảm thời gian sống. Khi kích thƣớc hạt giảm xuống cỡ nanomet thì các đặc tính của vật liệu đƣợc cải thiện do hoạt tính của hạt vật liệu tăng lên.Tuy nhiên, nếu kích thƣớc hạt quá nhỏ lại làm giảm tuổi thọ điện cực. Vì thế, việc nghiên cứu xác định kích thƣớc hạt phù hợp cho từng mục đích sử dụng là rất cần thiết. 1.7 Khái niệm về pin nạp lại 1.7.1 Các phản ứng chính Pin Ni-MH là một hệ gồm một điện cực làm bằng Ni(OH)2 và một điện cực làm bằng vật liệu RT5 đã đƣợc hydro hóa. Các điện cực này đƣợc làm thành các bản mỏng để tăng diện tích tiếp xúc và đƣợc cách điện với nhau bởi màng cách điện. Toàn bộ hệ đƣợc ngâm trong dung dịch KOH 6M. Khi đó, với vai trò cung cấp ion dẫn trong dung dịch, trên 2 điện cực sẽ xảy ra các quá trình phóng nạp điện tƣơng ứng. Các phản ứng xảy ra nhƣ sau : Ở điện cực dƣơng : Ni(OH)2 +OH- <=> NiOOH + H2O+ e- (1.1)
  • 24. Luận văn thạc sĩ khoa học Vũ Thị Ngần 15 Ở điện cực âm : M + H2O <=> MHab + OH- (1.2) Toàn bộ quá trình : Ni(OH)2 + M <=> NiOOH + MHab (1.3) Trong đó M là hợp kim chƣa hấp thụ Hydro, MHab là hợp kim đã hấp thụ Hydro Hình 1.7 : mô hình biểu diễn quá trình phóng nạp xảy ra trong pin Ni – MH [8] Trong suốt quá trình nạp điện, Ni ở trạng thái Ni2+ bị oxy hóa thành Ni3+ , H2O bị khử thành H2. Các nguyên tử H2 mới sinh ra đã bị hấp thụ bởi điện cực RT5 để tạo thành hợp chất hydrit. Khi quá trình phóng điện diễn ra thì các phản ứng điện hóa diễn ra theo chiều ngƣợc lại. Nhƣ vậy, tổng của quá trình này tƣơng ứng với việc trao đổi ion OH- giữa các điện cực mà không làm phân hủy chất điện phân. Trong quá trình nạp thì hydro đƣợc vận chuyển từ cực dƣơng sang cực âm và ngƣợc lại trong quá trình phóng . Tức là chất phản ứng tại hai điện cực đều là nƣớc. Điều này giải thích tại sao acquy Ni-MH lại thân thiện với môi trƣờng. Chất điện ly không tham gia phản ứng, tức là không có sự tăng hay giảm chất điện ly. Phản ứng xảy ra hoàn toàn ở bề mặt điện cực âm và dƣơng. Ngoài các phản ứng trên còn có các phản ứng phụ do quá phóng và quá nạp gây ra. 1.7.2 Sự quá nạp và sự quá phóng Đối với acquy thì điện cực âm luôn đƣợc thiết kế có dung lƣợng lớn hơn điện cực dƣơng để đảm bảo an toàn. Do vậy, sự quá nạp và quá phóng chỉ có thể xảy ra
  • 25. Luận văn thạc sĩ khoa học Vũ Thị Ngần 16 trên cực dƣơng. Sự quá nạp xảy ra tại điện cực Ni, khi đó các ion OH- bị oxy hóa thành O2. Quá trình nạp điện sau đó không làm tăng dung lƣợng mà chỉ để giải phóng O2 theo phƣơng trình phản ứng : 2 24 4 2OH e H O O     (1.4) Khí O2 sinh ra làm tăng áp suất riêng phần của nó trong bình kín. Sau đó, O2 đƣợc chuyển đến điện cực âm và bị khử thành OH- tại lớp chuyển tiếp giữa điện cực MH và chất điện phân theo phản ứng : 2 2 4 4O H O OH e     (1.5) Điều này làm tiêu hao lƣợng Hydro ở cực âm và gây hao hụt điện năng trong quá trình nạp. Trong trạng thái ổn định, lƣợng O2 giải phóng tại điện cực Ni bằng lƣợng O2 tái hợp tại điện cực âm dẫn tới toàn bộ năng lƣợng điện cung cấp cho pin trong thời gian quá nạp bị chuyển hoàn toàn thành năng lƣợng nhiệt làm cho hệ nóng lên. Sự hình thành nhiệt trong pin đƣợc mô tả bởi công thức: W T S i nF             (1.6) Trong đó : i : là dòng điện chạy qua pin. n : số e- trong phản ứng chuyển hóa điện tích hoàn toàn. T : nhiệt độ. F : hằng số Faraday. σ : điện trở nội của pin. Sự tỏa nhiệt của pin khi có dòng điện chạy qua là do các yếu tố :  Các phản ứng điện hóa dẫn đến sự thay đổi Entropy.  Yếu tố tổng Σ|η| bao gồm các thành phần quá thế khác nhau và các phản ƣng điện hóa khác nhau.  Điện trở nội của pin σ. Nếu quá trình kéo dài thì nhiệt độ sẽ tăng lên. Điều đó ảnh hƣởng không tốt tới các tính chất khác của điện cực nhƣ ăn mòn giảm độ bền nhiệt động , mất tính hấp thụ thuận nghịch hydro của hợp chất LaNi5 và có thể gây cháy nổ acquy.
  • 26. Luận văn thạc sĩ khoa học Vũ Thị Ngần 17 Sự quá phóng xảy ra tại điện cực dƣơng, H2O bị khử thành H2 tại điện cực Ni theo phƣơng trình: 2 22 2 2H O e OH H     (1.7) Sau đó, khí H2 lại chuyển thành H2O tại điện cực MH theo phƣơng trình: 2 22 2 2OH H H O e     (1.8) Trong hai trƣờng hợp : sự chuyển thành H2 ở điện cực MH xảy ra trực tiếp, hoặc ion H+ bị oxy hóa gián tiếp là không rõ ràng. Sự quá phóng cũng gây hại tƣơng tự nhƣ sự quá nạp. Nó làm cho thế điện cực dƣơng giảm mạnh về điện cực âm, cấu trúc hợp kim LaNi5 bị thay đổi và mất hẳn tính hấp thụ thuận nghịch hydro. 1.7.3 Sự tự phóng Sự tự phóng là quá trình mất điện tích trong điều kiện mạch hở. Điều này có ảnh hƣởng rất quan trọng tới tính chất của pin. Tốc độ tự phóng ở nhiệt độ phòng vào khoảng 1% dung lƣợng pin trong một ngày. Có nhiều cơ chế góp phần vào tốc độ tự phóng. Trong đó có cơ chế do bản chất điện hóa gây ra. Ngoài ra những cơ chế khác có tác dụng trong pin Ni-MH xảy ra chủ yếu theo pha khí bị chia thành các quá trình bắt đầu bởi điện cực Ni hay bởi điện cực MH. Đây là một trong những cơ chế quan trọng ảnh hƣởng đến tốc độ tự phóng. Khi cực dƣơng bị oxy hóa , Ni3+ không bền trong môi trƣờng nƣớc. Kết quả là NiOOH bị phân hủy theo phƣơng trình phản ứng sau: 2 2( )NiOOH H O e Ni OH OH      (1.9) 2 24 2 4OH O H O e     (1.10) Những điện tích đƣợc giải phóng bởi ion OH- đƣợc chuyển tới điện cực Ni tại bề mặt tiếp xúc điện cực âm dung dịch điện ly. Mặc dù Ni3+ không bền nhƣng điện tích có thể đƣợc giữ lại trong điện cực Ni. Nguyên nhân là do động lực của quá trình giải phóng oxy tƣơng đối yếu. Quá trình này xảy ra hoàn toàn trƣớc khi dung dịch mất nên quá trình tự phóng của pin xảy ra đáng kể. Oxy đƣợc chuyển tới điện cực MH. Ở đây, oxy lại bị chuyển trở lại thành các ion OH- theo phản ứng: 2 22 4 4O H O e OH     (1.11)
  • 27. Luận văn thạc sĩ khoa học Vũ Thị Ngần 18 22MH OH M H O e      Nhƣ vậy, điện tích đƣợc lƣu trữ ở cả hai điện cực Ni và MH đƣợc giải phóng qua một pha khí, cụ thể là khí oxy. Dung lƣợng ở cả hai điện cực đều bị suy giảm trong quá trình tự phóng với việc hình thành oxy và khử oxy. Những cơ chế khác góp phần vào sự tự phóng trong pin Ni-MH liên quan đến quy trình chế tạo điện cực Ni và kích thƣớc điện cực MH không đƣợc đề cập ở đây. 1.7.4 Thời gian sống Pin Ni-MH có ƣu điểm là mật độ năng lƣợng lớn . Từ đó dung lƣợng pin cũng lớn hơn tới 30-40% so với pin Ni-Cd. Các pin Ni-MH ngày nay thƣờng có dung lƣợng từ 1.800 mAh tới 2.500 mAh. Tuổi thọ của dòng pin này hiện cũng đã lên tới 1.000 lần sạc lại. Nhƣng pin Ni-MH có lƣợng tự suy hao năng lƣợng lớn (khoảng 30%/tháng). Mặt khác, sau khoảng 300 lần sạc là dung lƣợng đã bắt đầu giảm dần. Thời gian sống của pin Ni – MH phụ thuộc vào một số yếu tố nhƣ sau :  Nhiệt độ của quá trình nạp và quá nạp. Pin Ni – MH đƣợc sử dụng ở nhiệt độ phòng sẽ có số chu kì phóng nạp nhiều nhất. Còn ở nhiệt độ lớn hơn hay nhỏ hơn nhiệt độ phòng đều ảnh hƣởng tới những đặc tính của pin. Ở nhiệt độ cao hơn nữa, khí đƣợc sinh ra quá nhiều sẽ phá vỡ van an toàn thoát ra ngoài. Mặt khác, nhiệt độ cao còn làm cho lớp vật liệu các điện và các vật liệu khác giảm chất lƣợng. Với nhiệt độ thấp hơn, khí oxy sinh ra không kịp tái hợp làm cho pin trở nên quá nhạy trong quá trình phóng. Áp suất khí tăng một cách nhanh chóng.  Độ sâu của quá trình phóng. Số chu kì phóng nạp của pin sẽ cao hơn rất nhiều nếu chúng đƣợc sử dụng hết năng lƣợng rồi mới bắt đầu nạp lại.  Dòng điện nạp và dòng điện phóng. Sử dụng pin với dòng điện quá lớn thì pin có thể nhanh hỏng. (1.12 )
  • 28. Luận văn thạc sĩ khoa học Vũ Thị Ngần 19  Phƣơng pháp điều khiển quá trình nạp. Quá trình này phải luôn đƣợc khống chế sao cho tốc độ sinh khí oxy sinh ra luôn nhỏ hơn tốc độ tái hợp.  Trạng thái tích trữ năng lƣợng và độ dài tích trữ. Đồng thời hiểu rõ đƣợc quá trình quá nạp và quá phóng.
  • 29. Luận văn thạc sĩ khoa học Vũ Thị Ngần 20 CHƢƠNG II: PHƢƠNG PHÁP THỰC NGHIỆM 2.1 Chế tạo mẫu bằng phƣơng pháp nóng chảy hồ quang 2.1.1 Chuẩn bị kim loại ban đầu Để chế tạo các hợp kim RT ngƣời ta sử dụng các kim loại T có độ sạch đến 5N ( 99,999%) và các kim loại đất hiếm có độ sạch 3N8 (99,8%).Thành phần các phối liệu ban đầu đƣợc xác định dựa trên giá trị nguyên tử gam và nồng độ các kim loại thành phần. Để chế tạo mẫu RxTy khối lƣợng là m g thì tỉ lệ của từng kim loại đƣợc tính toán theo phƣơng trình sau:   myMxM  TR (2.1) Với MR, MT là nguyên tử gam của các kim loại R,T. Hệ số tỉ lệ α: R T m xM yM    (2.1) Khi đó thành phần khối lƣợng của từng kim loại chế tạo mẫu sẽ là: RR .xMm  (2.3) TT .yMm  (2.4) Đối với hợp chất có nhiều nguyên tố hơn thì việc xác định khối lƣợng mỗi nguyên tố cũng đƣợc tiến hành tƣơng tự. Trong luận văn này, hợp chất cần điều chế là LaNi5-xGex. Do dễ bị bay hơi khi nóng chảy nên kim loại đất hiếm thƣờng đƣợc tính và cân dƣ thêm 2%. Các phối liệu ban đầu đƣợc làm sạch bề mặt trƣớc khi cân theo tỉ lệ trên. Các kim loại chuyển tiếp đƣợc làm sạch bằng axit loãng, còn các kim loại đất hiếm chủ yếu đƣợc làm sạch bằng phƣơng pháp cơ học nhƣ mài, đánh bóng. 2.1.2 Quy trình chế tạo mẫu bằng phƣơng pháp nóng chảy hồ quang Lò nấu luyện hồ quang chân không đƣợc sử dụng để chế tạo hợp kim dễ bị oxy hóa hoặc khó nóng chảy, tinh chế kim loại. Ƣu điểm là cấu tạo không quá phức tạp,thao tác đơn giản, thể tích nhỏ, thời gian nấu nhanh, mẫu có độ tinh khiết cao….
  • 30. Luận văn thạc sĩ khoa học Vũ Thị Ngần 21 Hình 2.1 : Cấu tạo buồng nấu và hệ thống nấu luyện hồ quang Quy trình tiến hành nấu mẫu: Lantan là kim loại dễ bị oxy hóa nên đòi hỏi môi trƣờng nấu luyện phải có độ sạch cao. Trƣớc khi nấu, buồng mẫu đƣợc hút chân không. Khi độ chân không trong buồng nấu đạt 10-5 Torr thì thổi khí Ar nhiều lần để lƣợng dƣ oxy trong bình là nhỏ nhất. Khi bắt đầu nấu, áp suất khí Ar trong bình lớn hơn 1atm. Lƣợng oxy còn lại trong buồng chứa đƣợc khử bằng cách đốt nóng chảy khối Titan. Đóng điện khơi mào hồ quang, điều chỉnh cƣờng độ dòng điện và khoảng cách điện cực để đạt nhiệt độ nung thích hợp. Duy trì tia hồ quang hƣớng vào mẫu đến khi các thành phần hợp kim nóng chảy hòa tan vào nhau. Sau khi các kim loại hòa tan vào nhau, dòng điện nuôi hồ quang đƣợc duy trì 50A trong vòng 5 phút. Trong quá trình nấu, mẫu đƣợc đảo nhiều lần. Sau đó khối hợp kim đƣợc nấu luyện 3 lần nữa để đảm bảo độ đồng đều về thành phần. Sau khi nấu xong, để nguội mẫu theo lò rồi mới lấy ra nhằm tránh hiện tƣợng oxy hóa.
  • 31. Luận văn thạc sĩ khoa học Vũ Thị Ngần 22 Hình 2.2 : Hình ảnh hệ thống nấu luyện hồ quang 2.1.3 Phƣơng pháp và thiết bị nghiền cơ Có nhiều loại thiết bị nghiền đƣợc sử dụng trong nghiên cứu nhƣ: máy nghiền chà xát, máy nghiền hành tinh, máy nghiền năng lƣợng cao…Máy nghiền hành tinh đƣợc sử dụng rất rộng rãi. Hợp kim LaNi5-xGex sau khi đƣợc chế tạo ở dạng khối đƣợc nghiền thô bằng cối mã não trong 30 phút để trở thành dạng bột có kích thƣớc cỡ 50 µm. Bột vật liệu đƣợc đƣa vào nghiền trong máy nghiền hành tinh Retsh của Đức trong môi trƣờng cồn tinh khiết. Hình 2.3: Máy nghiền hành tinh Retsch -PM 400/2.( ITIMS)
  • 32. Luận văn thạc sĩ khoa học Vũ Thị Ngần 23 Nguyên tắc làm việc của máy nghiền hành tinh: khi hoạt động cối nghiền của máy chuyển động giống nhƣ chuyển động của các hành tinh. Những cối này đƣợc sắp xếp trên một đĩa nâng quay tròn và một hệ thống cơ học đặc biệt làm cho chúng có thể chuyển động tròn quanh trục của chính nó. Trong cối chứa vật liệu cần nghiền và bi nghiền. Chuyển động tròn của cối quanh trục và chuyển động của đĩa nâng quay tròn sinh ra lực ly tâm. Khi cối và đĩa nâng chuyển động theo những hƣớng ngƣợc nhau làm cho những viên bi chuyển động lên xuống va đập với thành cối và vật liệu nghiền. Tốc độ nghiền Tốc độ nghiền phụ thuộc rất nhiều vào thiết kế máy và tốc độ quay tối đa của máy. Ví dụ, trong máy nghiền truyền thống việc tăng tốc độ quay sẽ làm tăng tốc độ chuyển động của bi. Ở một tốc độ tới hạn, những viên bi sẽ nén vào bên trong cối, không có bất kì lực nào tác động để làm bi chuyển động lên xuống. Đƣờng kính của đĩa nâng quay tròn , tỷ lệ tốc độ quay giữa cối nghiền và đĩa nâng quay tròn là yếu tố quyết định đối với năng lƣợng đầu vào và do đó quyết định quá trình giảm kích thƣớc. Tỷ lệ tốc độ quay càng cao, năng lƣợng đƣợc tạo ra càng lớn. Hình 2.4: Hình ảnh chuyển động của cối và bi trong quá trình nghiền
  • 33. Luận văn thạc sĩ khoa học Vũ Thị Ngần 24 Cối nghiền và bi nghiền Máy nghiền hành tinh Retsch PM 400/2 có 2 cối nghiền. Cối và bi nghiền có thể chế tạo từ nhiều loại vật liệu khác nhau nhƣ mã não, silicon, nitrit, gốm, ziconi...Cối nghiền có kích thƣớc từ 12- 500ml. Tƣơng ứng với nó vật liệu ban đầu cũng phải có kích thƣớc cực đại từ 1- 10 mm. Hình 2.5: Cối nghiền và bi nghiền của máy Retsch -PM 400/2 Tác dụng nghiền của máy đƣợc mô tả nhƣ sau : bi quay tròn theo cối đến độ cao rơi xuống đập nhỏ vật liệu. Bi lăn trên mặt cối có tác dụng nghiền và trộn. Môi trƣờng nghiền Môi trƣờng bao quanh vật liệu nghiền có thể là khí, lỏng hoặc nhiệt độ cao. Tùy thuộc vào bản chất vật liệu để chọn môi trƣờng nghiền thích hợp. Nếu vật liệu nghiền là các oxit thì có thể nghiền ngay trong không khí thậm chí là không khí nóng để làm giòn vật liệu và dễ nghiền. Các vật liệu dễ bị oxy hóa cần phải nghiền trong môi trƣờng bảo vệ, khí trơ hoặc các dung môi hữu cơ. Tuy nhiên nếu nghiền trong môi trƣờng lỏng thì năng lƣợng của máy sẽ bị giảm xuống. Thời gian nghiền Thời gian nghiền là yếu tố quan trọng nhất ảnh hƣởng đến kích thƣớc hạt. Lựa chọn thời gian nghiền phù hợp sẽ thu đƣợc hiệu quả cao. Thời gian nghiền phụ thuộc vào chủng loại, công suất máy nghiền, bi và cối nghiền, môi trƣờng nghiền và
  • 34. Luận văn thạc sĩ khoa học Vũ Thị Ngần 25 kích thƣớc ban đầu của vật liệu. Không nên nghiền quá lâu vì một số vật liệu ban đầu là tinh thể sau khi nghiền sẽ trở thành bột vô định hình. Khi nghiền với bi có khối lƣợng lớn và tốc độ cao thì thời gian nghiền liên tục không nên quá 1 giờ. Thời gian để nguội từ 0,5 đến 1 giờ. Để giảm thời gian có thể chọn bi nghiền có tỷ trọng lớn hơn. Trƣờng hợp sử dụng cối để trộn mẫu với tốc độ chậm có thể cho máy hoạt động liên tục mà không làm nóng máy. 2.2 Phân tích cấu trúc bằng phƣơng pháp đo nhiễu xạ tia X Mẫu LaNi5-xGex đƣợc phân tích nhiễu xạ tia X trƣớc khi đƣa vào nghiền trong máy nghiền hành tinh và sau khi nghiền để xác định cấu trúc và độ đơn pha. Thiết bị đo nhiễu xạ là Siemens X-ray diffraction D8 của Khoa hoá thuộc trƣờng Đại học Khoa học Tự Nhiên, Đại học Quốc gia Hà Nội. Hình 2.6: Sơ đồ nguyên lý và ảnh thiết bị nhiễu xạ tia X Trong tất cả các phép đo nhiễu xạ, ống tia X đƣợc dùng có anot là Cu. Tia X phát ra các bức xạ có bƣớc sóng lần lƣợt là: K1=1.544390 Ao , K2 = 1.540563 Ao , K = 1.39217 Ao . Các hiện tƣợng nhiễu xạ do Kβ gây ra chồng lên các hiện tƣợng nhiễu xạ của Kα và làm các ảnh nhiễu xa trở nên phức tạp. Ngƣời ta sử dụng tấm lọc Ni để loại bỏ các tia Kβ nhằm thu đƣợc ảnh nhiễu xạ đơn sắc. Khi đó: K(2 K1 + K2 )/3 = 1.54 A0 (2.5)
  • 35. Luận văn thạc sĩ khoa học Vũ Thị Ngần 26 Xác định cấu trúc tinh thể Giản đồ nhiễu xạ Rơnghen của mẫu bột có sự tƣơng đồng với giản đồ nhiễu xạ của hợp kim LaNi5 mà ta đã biết. Các thông số mạng của LaNi5 đƣợc tính theo công thức :   2 2 2 22 2 3 41 c l a khkh dhkl    (2.6) Trong đó : h, k, l là các chỉ số Miller a, b, c là các hằng số mạng dhkl là khoảng cách giữa 2 mặt của mạng tinh thể. Từ công thức trên ta có thể tính đƣợc các hằng số mạng a, c khi biết giá trị dhkl ứng với mỗi đỉnh nhiễu xạ. dhkl đƣợc tính theo công thức nhiễu xạ Bragg : hklhkld  sin2 (2.7) hkl hkld   sin2  (2.8) Với : θhkl là góc giữa tia X và hƣớng vuông góc với mặt phẳng mẫu. λ là bƣớc sóng tia tới. Hằng số mạng tinh thể a, c là giá trị trung bình thống kê của toàn bộ các phép tính ứng với các đỉnh nhiễu xạ. Thể tích của 1 ô tinh thể lục giác xếp chặt đƣợc tính nhƣ sau : 02 120sincaVhex  (2.9) 2.3 Xác định kích thƣớc hạt bằng kính hiển vi điện tử quét (SEM) Kính hiển vi điện tử quét có thể tạo ra ảnh với độ phân giải cao của bề mặt mẫu bằng cách sử dụng chùm điện tử hẹp quét trên bề mặt mẫu. Việc tạo ảnh của mẫu thông qua việc ghi nhận và phân tích các bức xạ phát ra từ tƣơng tác chùm điện tử với bề mặt mẫu. Độ phóng đại của SEM lớn đến 100.000 lần và độ phân giải cỡ vài nanomet. Điện tử đƣợc phát ra từ súng phóng điện tử và đƣợc tăng tốc. Do sự hạn chế của thấu kính từ thế tăng tốc của SEM chỉ từ 10-50kV.
  • 36. Luận văn thạc sĩ khoa học Vũ Thị Ngần 27 Sau khi tăng tốc, các điện tử hội tụ thành chùm điện tử hẹp cỡ vài nanomet. Chùm điện tử quét lên bề mặt mẫu nhờ các cuộn quét tĩnh điện. Chùm điện tử ban đầu khi tƣơng tác với bề mặt mẫu sẽ xuất hiện các điện tử bị bật ngƣợc trở lại. Các điện tử này đƣợc gọi là điện tử tán xạ ngƣợc, có năng lƣợng cao. Điện tử tán xạ ngƣợc đƣợc dùng để ghi nhận ảnh nhiễu xạ điện tử tán xạ ngƣợc giúp cho việc phân tích cấu trúc tinh thể. Hình 2.7 : Sơ đồ cấu tạo và nguyên lý phóng đại ảnh của SEM Điện tử đƣợc phát ra từ súng phóng điện tử và đƣợc tăng tốc. Do sự hạn chế của thấu kính từ thế tăng tốc của SEM chỉ từ 10-50kV. Sau khi tăng tốc, các điện tử hội tụ thành chùm điện tử hẹp cỡ vài nanomet. Chùm điện tử quét lên bề mặt mẫu nhờ các cuộn quét tĩnh điện. Chùm điện tử ban đầu khi tƣơng tác với bề mặt mẫu sẽ xuất hiện các điện tử bị bật ngƣợc trở lại. Các điện tử này đƣợc gọi là điện tử tán xạ ngƣợc, có năng lƣợng cao. Điện tử tán xạ ngƣợc đƣợc dùng để ghi nhận ảnh nhiễu xạ điện tử tán xạ ngƣợc giúp cho việc phân tích cấu trúc tinh thể. Từ ảnh SEM kích thƣớc hạt trung bình có thể tính theo phƣơng pháp đơn giản nhƣ sau: trƣớc hết chọn một số hạt và đánh dấu thứ tự cho chúng; sau đó kẻ những đƣờng thẳng song song cách đều trên ảnh; khoảng cách giữa những đƣờng này đƣợc ấn định tùy thuộc vào độ lớn của hạt. Số đƣờng cắt qua hạt càng nhiều thì
  • 37. Luận văn thạc sĩ khoa học Vũ Thị Ngần 28 phép đo càng chính xác. Kích thƣớc trung bình d của hạt đƣợc xác định theo công thức : 1 n i i l d n    (2.10) Trong đó : l là độ dài các đoạn thẳng n là tổng số đoạn cắt 2.4 Nghiên cứu tính chất từ bằng từ kế mẫu rung Thiết bị từ kế mẫu rung ( VSM) là một thiết bị rất hiện đại, dùng để xác định từ độ hoạt động của mẫu hoạt động theo nguyên lý cảm ứng điện từ. Mẫu đƣợc rung với tần số xác định trong vùng từ trƣờng đồng nhất. Từ trƣờng sẽ từ hóa mẫu và khi mẫu rung sẽ sinh ra hiệu điện thế cảm ứng trên cuộn dây đặt cạnh mẫu. Tín hiệu này đƣợc thu nhận, khuếch đại và xử lý trên hệ thống máy tính sẽ cho ta biết giá trị từ độ của mẫu. Đặc trƣng từ của vật liệu làm điện cực đƣợc xác định bằng phép đo đƣờng cong từ hóa trên mẫu khối và mẫu bột sau khi nghiền ngoài không khí trong dải từ trƣờng -1.3 T đến 1,3 T tại nhiệt độ phòng. Và nhiệt độ tại nhiệt độ phòng tới 700K tại từ trƣờng không đổi là 1Koe trên từ kế mẫu rung tại viện ITIMS – Đại học BÁch Khoa Hà Nội. 2.5 Các phép đo điện hóa 2.5.1 Hệ đo điện hóa Các phép đo điện hóa đều sử dụng hệ 3 điện cực: điện cực làm việc, điện cực so sánh và điện cực đếm. Hình 2.8 : Hệ 3 điện cực trong phép đo điện hóa của pin Ni-MH
  • 38. Luận văn thạc sĩ khoa học Vũ Thị Ngần 29  Điện cực làm việc WE : đƣợc chế tạo từ vật liệu cần nghiên cứu (LaNi5- xGex).  Điện cực so sánh CRE : là thiết bị đo điện cực pH, điện cực này có thể làm việc với mọi giá trị pH khác nhau thông qua một cầu muối. Khi đƣợc nối với một máy đo thế, điện cực CRE sẽ cho giá trị thế chuẩn so với giá trị thế của điện cực làm việc.  Điện cực đếm CE : đƣợc chế tạo từ kim loại trơ với dung dịch điện li là platin. Điện cực làm việc WE và điện cực đếm CE đƣợc nhúng hoàn toàn trong dung dịch điện phân KOH 6M+ LiOH 1M. Điện cực so sánh CRE đƣợc nhúng trong dung dịch muối bão hòa. Hai loại dung dịch này đƣợc nối với nhau bằng một cầu muối. Cả 3 điện cực này đều đƣợc nối vào một thiết bị điều khiển điện thế gọi là Bi-Potentiostat. 2.5.2 Chế tạo điện cực âm Điện cực âm của pin Ni-MH đƣợc chế tạo từ 0,7g Ge và 0,298g Ni + 0,0938g Cu dạng bột ( nhằm tăng độ dẫn). Tiến hành chế tạo mẫu theo các bƣớc nhƣ sau: 1. Cân mẫu bột nghiên cứu và bột Ni, Cu bằng cân điện tử với độ chính xác tới 10-4 gram 2. Trộn hỗn hợp vật liệu vừa cân với nhau rồi cho vào cối mã não nghiền trong vòng 30 phút để trộn và làm đồng đều các bột thành phần. 3. Hỗn hợp mẫu đƣợc phết đều lên lƣới Ni hình tròn đƣờng kính 12mm và ép mẫu bằng máy ép Carver với áp suất 8000kg/cm2 ở nhiệt độ phòng trong 1 phút. 4. Khối mẫu đã ép đƣợc hàn lạnh bằng keo bạc với dây dẫn và nối ra ngoài.Dùng epoxy và chất đóng rắn để cố định điện cực và dây nối. 5. Sau đó mẫu đƣợc đƣa vào đo dung lƣợng.
  • 39. Luận văn thạc sĩ khoa học Vũ Thị Ngần 30 2.5.3 Đo chu kì phóng nạp Thiết bị Bi-Potentiostat 366A đƣợc dùng để thực hiện phép đo phóng nạp của các điện cực trong pin điện hóa. Đây là thiết bị có thể điều chỉnh dòng và thế. Trong luận văn này, tất cả các phép đo đƣợc chỉnh ở chế độ mode galvannostatic. Với mode này, dòng đi qua 2 điện cực của pin đƣợc giữ nguyên trong khi đó điện thế thay đổi theo thời gian hoặc theo dung lƣợng Q = I.t. Hai điện cực đƣợc sử dụng trong quá trình đo phóng nạp là cực dƣơng Ni(OH)2 và cực âm làm từ vật liệu nghiên cứu. Các điện cực đƣợc nạp với dòng -50mA trong 8h, sau đó phóng với dòng 50mA. Khi thế giữa 2 điện cực giảm xuống còn -0,8V thì dừng phóng. Các dữ liệu đƣợc truyền sang máy tính có phần mềm xử lý . Các kết quả đƣợc hiển thị bằng đồ thị và các file dữ liệu. Hình 2.9 : Sơ đồ nguyên lý của thiết bị đo phóng nạp Battery tester Hình 2.10: Hệ đo chu kỳ phóng nạp Battery tester
  • 40. Luận văn thạc sĩ khoa học Vũ Thị Ngần 31 2.5.4 Phƣơng pháp đo phổ tổng trở EIS Hiệu suất của pin nạp lại Ni-MH đƣợc điều chỉnh chủ yếu bởi cơ chế động học của quá trình chuyển điện tích trên bề mặt vật liệu cũng nhƣ chuyển khối lƣợng Hyđrô vào trong khối của vật liệu điện cực âm MH. Phổ tổng trở là một phƣơng pháp hiệu quả nghiên cứu các tính chất của vật liệu điện cực. 2.5.4.1 Nguyên lý chung Với kĩ thuật này, chúng ta áp đặt một dao động nhỏ của điện thế hoặc của dòng điện lên hệ thống nghiên cứu. Tín hiệu đáp ứng thƣờng có dạng sin và lệch pha với dao động đặt vào. Đo sự lệch pha và tổng trở của hệ thống điều hòa sẽ giúp phân tích sự đóng góp vai trò của khuếch tán, động học, lớp kép, phản ứng hóa học ...vào các quá trình của điện cực. Một trong những thuận tiện của EIS là có thể quan sát đƣợc các quá trình với các thời gian khác nhau. Do đó, chúng ta có thể dự đoán đƣợc nhiều quá trình liên quan đến một hệ riêng biệt. Một bình điện phân có thể coi nhƣ một mạch điện bao gồm những thành phần chủ yếu đó là : điện dung của lớp kép ( coi nhƣ một tụ điện Cd ), tổng trở của quá trình Faraday Zf, điện trở chƣa đƣợc bù RΩ ( là điện trở dung dịch giữa điện cực so sánh và điện cực nghiên cứu ). Hình 2.11: Mạch điện tương đương của bình điện phân Tổng trở Faraday Zf thƣờng đƣợc phân thành điện trở chuyển điện tích Rct nối tiếp với tổng trở khuyếch tán ZW ( tổng trở Warbug ). Nếu phản ứng chuyển điện tích dễ dàng thì Rct → 0 và ZW sẽ khống chế. Còn khi phản ứng chuyển điện tích khó khăn thì Rct → ∞ và lúc đó Rct khống chế. Để tính toán Rct, ZW, ZR ta sử dụng phƣơng pháp biên độ phức.
  • 41. Luận văn thạc sĩ khoa học Vũ Thị Ngần 32 Điện trở chuyển điện tích: (2.11) Tổng trở khuếch tán Warbug Zw: Rw = σω-1/2 (2.12) trong đó: là hằng số Warbug và ta có điện dung của tụ điện Warbug (2.13) Biểu diễn tổng trở trên mặt phẳng phức (đồ thị Nyquist). Tổng trở bình điện phân thể viết nhƣ sau: (2.14) Với và là phần thực và phần ảo của tổng trở. Phân li phần thực và phần ảo ta đƣợc: (2.15) (2.16) Khi ω → 0 thì : (2.17) (2.18) Đƣờng biểu diễn Z’ theo Z” sẽ là đƣờng thẳng với độ dốc bằng 1 và sẽ đƣợc ngoại suy để cắt trục thực Z’ tại ( . Đƣờng thẳng này tƣơng ứng với khống chế khuyếch tán và tổng trở Warbug, góc π/4 Hình 2.12: Tổng trở trên mặt phẳng phức
  • 42. Luận văn thạc sĩ khoa học Vũ Thị Ngần 33 Khi ω → ∞ thì ở tần số cao phản ứng chỉ bị khống chế động học và Rct >> Z Suy ra: (2.19) (2.20) Cuối cùng ta có: (2.21) Phƣơng trình (2.21) chính là biểu thức của vòng tròn bán kính là và cắt trục Z’ tại RΩ khi ω → ∞. Khi quá trình điện cực gồm nhiều giai đoạn thì ta có thể thấy các nửa vòng tròn liên tiếp xuất hiện (hình 2.13). Hình 2.13: Tổng trở của quá trình điện cực nhiều giai đoạn Khi có sự hấp phụ còn thấy nửa vòng tròn ở phía dƣới Z’ khi ω → ∞, và khi có sự thụ động còn thấy giá trị điện trở âm hình 2.22. Hình 2.14: Tổng trở khi có sự hấp phụ đặc biệt (a) và khi có sự thụ động (b)
  • 43. Luận văn thạc sĩ khoa học Vũ Thị Ngần 34 2.5.4.2 Phương pháp đo phổ tổng trở EIS nghiên cứu điện cực LaNi5 Theo mô hình tổng trở điện cực MH của Chunsheng Wang phản ứng hydrid hóa bao gồm bƣớc chuyển điện tích, tiếp theo là quá trình vận chuyển Hydro hấp thụ (Had) tới vị trí hấp thụ ở sát bề mặt, sau đó khuếch tán Hydro hấp thụ từ bề mặt vào trong khối vật liệu. Khi nồng độ Hab trong khối vật liệu vƣợt quá độ tan của H trong kim loại thì sẽ xảy ra hiện tƣợng chuyển pha. M + H2O +e-  MHad +OH- (2.22) MHad  MHab(bề mặt) (2.23) MHab(bề mặt) MHab(khối,) (2.24) MHab(khối,)  MHab(khối,) (2.25) Phổ tổng trở có thể đƣợc biểu diễn theo 2 dạng: phổ Nyquist hoặc phổ Bode. Phổ Nyquist của điện cực âm LaNi5 đƣợc thể hiện trên các hình 2.15. 0 5 10 15 20 25 30 35 40 0 2 4 6 8 10 12 -Z''() Z'() Hình 2.15: Phổ tổng trở Nyquist của điện cực LaNi5 tại E = -1,2 V/SCE Ta thấy phổ Nyquist chỉ có hình nửa vòng cung. Vì vậy sơ đồ mạch tƣơng đƣơng của điện cực gốc LaNi5 đƣợc biểu diễn nhƣ trên hình 2.16. Hình 2.16: Sơ đồ mạch tương đương của điện cực gốc LaNi5
  • 44. Luận văn thạc sĩ khoa học Vũ Thị Ngần 35 Trong đó : RS là điện trở dung dịch. Rct là điện trở dịch chuyển điện tích. Cdl là điện dung lớp điện kép. Zdi là tổng trở khuếch tán. Từ sơ đồ tƣơng đƣơng theo công thức : 1 ct dR C   có thể tính đƣợc điện dung của lớp điện tích kép ở mỗi thế điện cực, điện trở chuyển điện tích, sự phụ thuộc của điện trở Z’ vào nồng độ của các chất phụ gia đƣa vào điện cực và tần số quét. Từ đó có thể nghiên cứu về sự hấp thụ trên điện cực. Đây là cơ sở quan trọng để nghiên cứu cơ chế quá trình điện cực.
  • 45. Luận văn thạc sĩ khoa học Vũ Thị Ngần 36 CHƢƠNG III: KẾT QUẢ VÀ THẢO LUẬN 3.1 Kết quả phân tích nhiễu xạ tia X Đặc trƣng tinh thể của các mẫu LaNi4.5Ge0.5, LaNi4.6Ge0.4, LaNi4.7Ge0.3, LaNi4.8Ge0.2, LaNi4.9Ge0.1 đƣợc xác định và phân tích trên mẫu đại diện là LaNi4.5Ge0.5 và LaNi4.7Ge0.3. Hình 3.1 : Giản đồ nhiễu xạ tia X của mẫu LaNi4.5Ge0.5, LaNi4.7Ge0.3
  • 46. Luận văn thạc sĩ khoa học Vũ Thị Ngần 37 Tất cả các mẫu đƣợc đo ở trạng thái mẫu bột ban đầu và mẫu bột sau 10 chu kì phóng nạp. Từ giản đồ nhiễu xạ tia X của các mẫu ta có thể xác định đƣợc cấu trúc tinh thể, hằng số mạng và độ đơn pha. Từ đó so sánh với mẫu LaNi5 chuẩn. Từ hình vẽ 3.1 ta thấy, với mẫu bột chƣa phóng nạp thì giản đồ tia X xuất hiện các đỉnh có độ sắc nét cao, không có các vạch phổ ứng với pha lạ. Điều này chứng tỏ mẫu là hoàn toàn đơn pha. Trong mức độ chính xác của phép đo, cấu trúc tinh thể của các mẫu là loại lục giác xếp chặt kiểu CaCu5. Đối với mẫu bột đã phóng nạp 10 chu kì trong dung dịch điện phân (KOH 6M+LiOH 1M) thì khi phân tích phổ nhiễu xạ tia X ta thấy rằng các vạch đặc trƣng trên giản đồ tia X vẫn sắc nét và có sự dịch chuyển chút ít. Nhƣ vậy, việc hydro xâm nhập vào trong vật liệu không làm thay đổi cấu trúc tinh thể của mẫu. Các đỉnh nhiễu xạ bị dịch chuyển có thể giải thích là do trong quá trình phóng nạp các nguyên tử hydro đã điền kẽ vào các lỗ trống và sai hỏng mạng, làm thay đổi khoảng cách giữa các nguyên tử. Từ giản đồ tia X ta cũng tính đƣợc hằng số mạng của các mẫu. Các hằng số mạng này đƣợc so sánh với hằng số mạng của mẫu LaNi5. Kết quả đƣợc thể hiện trong bảng 3.1. Bảng 3.1: Các thông số mạng tinh thể TT Tên mẫu a0 ( A0 ) a1( A0 ) c0 ( A0 ) c1 ( A0 ) 1 LaNi5 5.01250 5.01510 3.98380 3.9840 2 LaNi4.7Ge0.3 5.02690 5.02697 3.99563 4.0003 3 LaNi4.5Ge0.5 5.02983 5.03057 4.01261 4.0164 Từ bảng 3.1 ta thấy tỷ lệ pha tạp Ge tăng lên thì các hằng số mạng cũng tăng lên. Đó là do bán kính nguyên tử Ge (1,22 Ao ) nhỏ hơn bán kính nguyên tử Ni (1,24 Ao ) nên cả hai thông số a, c đều tăng khi nồng độ Ge thay thế cho Ni tăng lên.
  • 47. Luận văn thạc sĩ khoa học Vũ Thị Ngần 38 3.2 Kết quả phép đo từ Tính chất từ của các mẫu LaNi4.6Ge0.4 và LaNi4.8Ge0.2 đƣợc xác định bằng phép đo đƣờng cong từ hóa theo từ trƣờng trong khoảng từ -1.3 T ÷ 1.3 T và đƣờng cong từ nhiệt thực hiện trên hệ từ kế mẫu rung (VSM) tại trung tâm ITIMS. Phép đo đƣờng cong từ hóa theo từ trƣờng đƣợc thực hiện trên các mẫu khối, mẫu bột sau khi nghiền và mẫu bột sau 10 chu kì phóng nạp. Các đƣờng cong từ hóa đƣợc thể hiện trên hình 3.2 ,3.3. Hình 3.2: Đường cong từ hóa của mẫu LaNi4.6Ge0.4
  • 48. Luận văn thạc sĩ khoa học Vũ Thị Ngần 39 Hình 3.3 : Đường cong từ hóa của mẫu LaNi4.8Ge0.2 Từ các hình vẽ trên ta thấy, đƣờng cong từ hóa của các mẫu bột sau khi nghiền đặc trƣng siêu thuận từ giống với đƣờng cong từ hóa của các mẫu sau khi phóng nạp. Nguyên nhân là sau khi nghiền các hạt Ni có kích thƣớc cỡ nanomet bị giải phóng ra bề mặt do La bị oxy hóa bởi oxy và hơi nƣớc trong không khí khi
  • 49. Luận văn thạc sĩ khoa học Vũ Thị Ngần 40 nghiền. Từ các đƣờng cong từ hóa của các mẫu ta có thể xác định đƣợc độ cảm từ χ của mẫu. Kết quả đƣợc thể hiện trong bảng 3.2. Bảng 3.2 : Độ cảm từ χ của các mẫu TT Tên mẫu  (10-6 ) 1 LaNi5 3.750 2 LaNi4.8Ge0.2 2.5442 4 LaNi4.6Ge0.4 1.7098 Ta nhận thấy rằng, khi hàm lƣợng Ge tăng thì độ cảm từ của hợp chất LaNi5- xGex giảm. Bởi vì Ge là nguyên tố không có từ tính trong khi LaNi5 có tính thuận từ nên khi Ge thay thế cho Ni đã làm giảm số nguyên tử từ dẫn tới độ cảm từ χ giảm. Kết quả hoàn toàn phù hợp với các nghiên cứu trƣớc đây. Đƣờng cong từ nhiệt của các mẫu LaNi4.6Ge0.4 và LaNi4.8Ge0.2 đƣợc thể hiện trên hình 3.4, 3.5. Hình 3.4 : Đường cong từ nhiệt của mẫu LaNi4.8Ge0.2
  • 50. Luận văn thạc sĩ khoa học Vũ Thị Ngần 41 Hình 3.5 : Đường cong từ nhiệt của mẫu LaNi4.6Ge0.4 Từ hình vẽ chúng ta thấy rằng,ở lần đo đầu tiên theo chiều tăng của nhiệt độ, đƣờng cong từ nhiệt xuất hiện các đỉnh dị thƣờng. Đó là do khi các nguyên tử giải phóng khỏi bề mặt hạt vật liệu, chúng tồn tại dƣới dạng các đám vi hạt hoặc trạng thái vô định hình. Khi nhiệt độ tăng thì mômen từ giảm. Sau đó, dƣới tác dụng của nhiệt độ, các đám vô định hình Ni ( hoặc các đám vi hạt Ni) tăng nhanh kích thƣớc thành tinh thể Ni dẫn đến mômen từ tăng đột ngột. Nhiệt độ tại đỉnh dị thƣờng có thể coi là nhiệt độ tái kết tinh của đám vi hạt Ni thành tinh thể Ni. Ở lần đo về, đƣờng cong từ nhiệt không thấy xuất hiện các đỉnh dị thƣờng. Nguyên nhân là do lúc này các đám hạt Ni đã trở thành các tinh thể Ni và đƣờng cong từ hóa phụ thuộc vào nhiệt độ có dạng nhƣ thông thƣờng. 3.3 Đặc trƣng phóng nạp của vật liệu Trong phép đo phóng nạp dòng tĩnh, hệ đƣợc phân cực bằng dòng điện không đổi 50mA. Điện thế đƣợc đo theo thời gian. Các đƣờng cong phóng nạp đƣợc thể hiện trên hình 3.6.
  • 51. Luận văn thạc sĩ khoa học Vũ Thị Ngần 42 Hình 3.6 : Đường cong phóng nạp của các mẫu LaNi4.6Ge0.4 và LaNi4.8Ge0.2 Từ hình 3.6 ta thấy : đối với các mẫu, ở các chu kì đầu hiệu suất phóng nạp còn nhỏ. Nhƣng ở các chu kì sau hiệu suất phóng nạp tăng dần. Đến chu kì thứ 7 -8 thì bắt đầu ổn định và đến chu kì thứ 10 thì hiệu suất có thể đạt tới 97 -99 %. Các thế phóng điện giảm ít . Ở cuối giai đoạn, thế phóng điện cực còn khoảng -0.8V.
  • 52. Luận văn thạc sĩ khoa học Vũ Thị Ngần 43 Thế ngắt mạch vẫn còn ở mức -1.040V. Nhƣ vậy, quá trình phóng điện nằm trong khoảng cho phép. Điện cực làm việc theo các chu kì phóng nạp một cách thuận lợi. Điều này phù hợp với chế độ làm việc lâu dài và không xảy ra hiện tƣợng phóng quá. Quá trình nạp diễn ra tƣơng tự nhƣ quá trình phóng. Giá trị thế nạp tƣơng đối thấp, không vƣợt quá -1250mV/VCE. Hình 3.7 : Đường cong phóng nạp của mẫu LaNi5 So sánh với đƣờng cong phóng nạp của LaNi5, ta thấy rằng quá trình phóng nạp của LaNi5 là kém ổn định. Quá trình không thể lặp lại, mặc dù chỉ trong 10 chu kì phóng nạp. Các mẫu pha tạp Ge có chất lƣợng chu kì phóng nạp tốt hơn. Quá trình phóng nạp nhanh chóng ổn định hơn. Chỉ trong vòng vài chu kì phóng nạp ban đầu, vật liệu đã trở nên ổn định bền vững hơn và có thể làm việc giống nhƣ một điện cực của pin. 3.4. Kết quả đo phổ tổng trờ Phổ tổng trở là một phƣơng pháp hiệu quả nghiên cứu các tính chất của vật liệu điện cực. Hiệu suất của pin nạp lại Ni-MH đƣợc điều chỉnh chủ yếu bởi cơ chế động học của quá trình chuyển điện tích trên bề mặt vật liệu cũng nhƣ chuyển khối lƣợng hyđrô vào trong khối của vật liệu điện cực âm MH.
  • 53. Luận văn thạc sĩ khoa học Vũ Thị Ngần 44 Phép đo phổ tổng trở đƣợc thực hiện trên các mẫu với thế phân cực E = -1,1 (V/SCE) với điện áp xoay chiều hình sin có biên độ 5 mV và ở các tần số khác nhau trong phạm vi từ 1 MHz tới 5 mHz. Các thí nghiệm đƣợc tiến hành trên hệ thống tự động AUTOLAB đƣợc điều khiển và xử lý kết quả bằng phƣơng pháp mạch điện tƣơng đƣơng và phần mềm FRA. Dƣới đây là các kết quả đo phổ tổng trở. 3.4.1 Phổ tổng trở của các mẫu nghiền thô Các mẫu LaNi5-xGex ở dạng nghiền thô đƣợc đo tại thế phân cực E= -1,1V. Đƣờng cong Nyquist của các mẫu LaNi5-xGex (x= 0.1 – 0.4) đƣợc thể hiện trên hình 3.8. Hình vẽ cho thấy đặc trƣng tổng trở của các mẫu LaNi5-xGex (x = 0.1; 0.2; 0.3 và 0.4) có dạng tƣơng tự nhƣ của mẫu LaNi5. Hình 3.8 : Đường cong Nyquist của mẫu LaNi5-xGex tại thế phân cực E = -1,1 V Đƣờng cong Nyquist của các mẫu chỉ gồm một hình bán nguyệt và có bán kính lớn dần lên khi nồng độ Ge tăng. Trong phổ tổng trở của điện cực âm MH, tại tần số cao phổ tổng trở đƣợc xác định bởi điện trở dung dịch điện ly Rs còn tại tần số rất thấp tổng trở đƣợc xác định bằng tổng điện trở dung dịch điện ly và điện trở chuyển dời điện tích Rct. Cả hai giới hạn này đều dịch chuyển về phía pha bằng 0o . Bán kính của đƣờng cong bán nguyệt liên quan đến điện trở chuyển điện tích. Điều
  • 54. Luận văn thạc sĩ khoa học Vũ Thị Ngần 45 này có nghĩa là khi bán kính đƣờng bán nguyệt nhỏ hơn thì quá trình chuyển điện tích diễn ra dễ dàng hơn. Hình 3.8 cũng cho thấy rằng khi nồng độ Ge tăng lên thì điện trở chuyển điện tích Rct cũng tăng lên. 3.4.2 Sự phụ thuộc của điện trở chuyển điện tích Rct và điện dung lớp điện tích kép Cdl vào hàm lƣợng thay thế Ni Chúng tôi đã sử dụng phần mềm FRA và phƣơng pháp mạch điện tƣơng đƣơng để tính toán điện trở chuyển điện tích Rct và điện dung lớp kép Cdl của điện cực. Từ đó thấy rõ hơn ảnh hƣởng lên phổ tổng trở của các điện cực LaNi5-xGex do sự thay thế một phần Ni bằng nguyên tố Ge. Hình 3.9: Sự phụ thuộc Rct và Cdl vào hàm lượng thay thế Ge cho Ni
  • 55. Luận văn thạc sĩ khoa học Vũ Thị Ngần 46 Từ hình 3.9 ta thấy, với tất cả các mẫu ở cùng thế phân cực E= -1,1V, tỷ lệ Ge thay thế cho Ni tăng lên thì Rct tăng và ngƣợc lại Cdl giảm. Chẳng hạn khi nồng độ Ge là 0,1 thì Rct và Cdl lần lƣợt có giá trị là 28 (Ohm/g) và 41 (µF/g). Còn khi nồng độ Ge tăng lên đến 0,4 thì Rct tăng tới 100 (Ohm/g) và Cdl giảm còn 18 (µF/g). Kết quả đƣợc giải thích nhƣ sau: khi tăng nồng độ của Ge, càng nhiều ion của lớp khuếch tán vào lớp điện tích kép. Sự thay đổi cấu trúc tinh thể này đã làm cho quá trình chuyển điện tích trở nên khó khăn hơn. Ngoài ra, giá trị Cdl giảm cũng cho thấy mật độ của các ion dẫn điện tại lớp kép giảm, dẫn đến khả năng trao đổi điện tích tại biên pha và bề mặt điện cực giảm. Ge pha tạp làm cho trở kháng của vật liệu tăng lên. Tuy nhiên, tuổi thọ và hiệu suất của pin cũng đƣợc tăng lên, đủ để có thể sử dụng làm điện cực âm cho pin sạc Ni-MH. Mặt khác, do điện trở suất của Ge (1 Ω.m) lớn hơn Ni (69,3 nΩ.m) nên khi pha tạp Ge vào vật liệu gốc LaNi5 đã làm cho tổng trở của vật liệu tăng lên. 3.4.3 Ảnh hƣởng của thời gian nghiền lên phổ tổng trở Đƣờng cong Nyquist của mẫu LaNi4.6Ge0.4 tƣơng ứng với các thời gian nghiền ( t = 0 ; 5; 10; 15; 20h ) thu đƣợc nhƣ hình 3.10. Hình 3.10: Đường cong Nyquist của mẫu LaNi4.6Ge0.4 với thời gian nghiền
  • 56. Luận văn thạc sĩ khoa học Vũ Thị Ngần 47 Hình 3.10 cho thấy phổ tổng trở của mẫu trƣớc và sau khi nghiền có dạng giống nhau, đồng thời có hình bán nguyệt. Nhƣ vậy, phổ tổng trở của LaNi4.6Ge0.4 giống với LaNi5. Điều đó cho thấy đặc tính dẫn của LaNi4.6Ge0.4 không thay đổi trong suốt quá trình nghiền và giống với LaNi5 ở dạng bột nghiền thô 50 m. Thời gian nghiền càng tăng thì giá trị của tổng trở càng giảm. Điều này sẽ làm quá trình nạp nhanh ổn định hơn. Đồng thời quá trình phóng cũng xảy ra ổn định và kéo dài hơn. Hình 3.11: Sự phụ thuộc của Rct và Cdl của LaNi4.6Ge0.4 theo thời gian nghiền
  • 57. Luận văn thạc sĩ khoa học Vũ Thị Ngần 48 Để thấy rõ hơn ảnh hƣởng của kích thƣớc hạt lên phổ tổng trở của điện cực vật liệu, chúng tôi tiếp tục sử dụng phƣơng pháp mạch điện tƣơng đƣơng kết hợp với phần mềm FRA để tính các thông số Rct và Cdl. Kết quả đƣợc thể hiện trong hình 3.11 ở trên. Hình 3.11 cho thấy rằng, sau khi nghiền điện trở chuyển điện tích giảm đi đồng thời điện dung lớp điện tích kép tăng lên so với trƣớc khi nghiền. Ví dụ, với thời gian nghiền 5h điện trở chuyển điện tích có giá trị là 50 (Ohm/g). Sau khi nghiền 20h Rct giảm xuống 20 (Ohm/g). Trong khi đó, với thời gian nghiền từ 5h – 20h, điện dung lớp điện tích kép đã tăng lên từ 19 – 95 (µF/g). Điều đó chứng tỏ sau khi nghiền diện tích tiếp xúc của của các hạt lớn hơn nhiều so với khi chƣa nghiền. Khi kích thƣớc hạt giảm làm cho khả năng hấp phụ hydro của khối vật liệu tăng lên . Dẫn tới nồng độ hydro hấp thụ trên bề mặt vật liệu tăng, quá trình động học khuyếch tán hydro cũng nhanh hơn ( do quãng đƣờng khuyếch tán ngắn hơn) . Các quá trình điện hóa xảy ra dễ dàng hơn. Do đó, sau khi nghiền mẫu có khả năng dẫn điện và chuyển điện tích dễ dàng hơn. Bên cạnh đó Cdl tăng lên chứng tỏ rằng sau khi nghiền các hạt có bề mặt hoạt hóa tốt hơn. Mật độ của các ion dẫn tại lớp điện tích kép lớn dẫn đến khả năng trao đổi điện tích tại biên pha dung dịch điện ly và bề mặt điện cực đƣợc thực hiện dễ dàng. Hay nói cách khác quá trình phóng nạp của điện cực sẽ xảy ra tốt hơn. Điều này hoàn toàn phù hợp với các nghiên cứu trƣớc đây về tính chất điện hóa của vật liệu điện cực âm dùng trong pin nạp lại Ni-MH .Khi thời gian nghiền tăng thì kích thƣớc của vật liệu giảm làm cho dung lƣợng của pin tăng lên. Ngoài ra khi kích thƣớc giảm các thông số khác của pin cũng đƣợc cải thiện.
  • 58. Luận văn thạc sĩ khoa học Vũ Thị Ngần 49 KẾT LUẬN Trong thời gian thực hiện luận văn này, chúng tôi đã thu đƣợc một số kết quả nhƣ sau:  Đã chế tạo thành công các mẫu : LaNi4.9Ge0.1, LaNi4.8Ge0.2, LaNi4.7Ge0.3, LaNi4.6Ge0.4 .  Các mẫu chế tạo đều thuận từ. Sau khi nghiền hoặc hydro hóa đều có từ tính.  Rút ra kết luận rằng, việc thay thế Ge cho Ni làm giãn mạng tinh thể nhƣng không làm thay đổi cấu trúc mạng tinh thể.  Khi nồng độ thay thế Ge cho Ni tăng lên thì tổng trở của mẫu tăng lên. Điều này dẫn đến dung lƣợng điện cực tăng đáng kể.  Khi thời gian nghiền tăng lên, kích thƣớc hạt vật liệu giảm thì tổng trở của mẫu LaNi4.6Ge0.4 giảm, điện dung lớp điện tích kép tăng lên. Do đó, trong chu kì phóng nạp, vật liệu có độ ổn định cao hơn và thời gian sống của pin đƣợc kéo dài hơn. Các kết quả trên đã đóng góp cái nhìn tổng quan hơn về vật liệu làm điện cực âm trong pin Ni-MH . Từ đó có thể thấy khả năng cải tiến dung lƣợng và thời gian sống của pin.
  • 59. Luận văn thạc sĩ khoa học Vũ Thị Ngần 50 TÀI LIỆU THAM KHẢO Tiếng Việt 1. Vũ Xuân Thăng, Thân Đức Hiền, Lƣu Tuấn Tài, Nguyễn Phúc Dƣơng (2005), “ Ảnh hƣởng của kích thƣớc hạt lên tính chất của vật liệu làm điện cực âm trong pin Ni – MH ”, Báo cáo Hội nghị vật lý toàn quốc lần thứ VI, 34(4). Tiếng Anh 2. Boonstra A. H., G. J. M. Lippits and T. N. M. Bernards, (1989), “Degradation processes in a LaNi5 electrode”, Journal of the Less Common Metals, Vol. 155, pp. 119 - 131. 3. Frand Kayzel (1997), “ Magnetic and thermodynamic properties of Rni5 compounds ” PhD. Thesis, Amterbam. 4. Heikonen J. M., Harry J. Ploehn and Ralph E. White, (1998), “The Effect of Particle Size on the Discharge Performance of a Nickel-Metal Hydride Cell”, Journal of The Electrochemical Society, Vol. 145, (6), pp.1840-1848. 5. Ise Tadashi, Tetsuyuki Murata, Yohei Hirota, Mitsuzo Nogami, Shinsuke Nakahori, (2000), “The effect of particle size on the electrochemical properties of hydrogen absorbing alloy electrodes”, Journal of Alloys and Compounds, Vol. 298, pp 310–318. 6. L.X. Que, L.T. Tai, N.p Thuy, B.T. Hang, N.T. Nu, D.M. Thanh and P.V. Tuyen (1999), “ Influence of some substitutes on the electrochemical properties of LaNi5” , In proceeding of the 3th International Workshop on Materials Science (IWOMS’99), Ha Noi. 7. M. Jurczyka, L. Smardzb, M. MakiWiecska, E. Jankowska, K. Smardz (2004), Journal of Physics and Chemistry of Solids, 65, 545 -548. 8. P.H.L Notten, “ Rechargeable Nickel – Metal Hydride Batteries: a successful new concep” , chapter 7 in NATO ASI Series E, Vol 281.
  • 60. Luận văn thạc sĩ khoa học Vũ Thị Ngần 51 9. P. Dantzer, M. Pons, A.Guillot, and J.Y. Cai (1992), “ Hydriding Kinetics in Intermetallic AB5 Hydrogen Storage Alloys ”, International Symposium on Metal – Hydrogen System, Uppsala, Sweden. 10. T. Sakai, T. Hazama, H. Miyamura, N. Kuriyama, A. Kato, H. Ishikawa, J. Less (1993), Common Met, 192, 173. 11. Z. Chen, Y. Su, M. Lu, D. Zhou, P. Huang (1998), Materials Research Bulletin, Vol.33, No. 10, 1449. 12. Uong van Vy (2005), Research of charge- discharge properties on LaNi5 type ingot electrodes, MSc thesis, ITIMS, Ha Noi.