This document presents a study on using color texture feature analysis to detect surface defects on pomegranates. The researchers developed a method involving cropping images of pomegranates, converting them to HSI color space, generating SGDM matrices to extract 18 texture features for each image, and using support vector machines (SVM) classification to identify the best features for detecting infections. The optimal features identified were cluster shade, product moment, and mean intensity, achieving classification accuracy of 99.88%, 99.88%, and 99.81% respectively.