1) The document discusses image segmentation in satellite images using optimal texture measures. It evaluates four texture measures from the gray-level co-occurrence matrix (GLCM) with six different window sizes.
2) Principal Component Analysis (PCA) is applied to reduce the texture measures to a manageable size while retaining discrimination information.
3) The methodology consists of selecting an optimal window size and optimal texture measure. A 7x7 window size provided superior performance for classification. PCA is used to analyze correlations between texture measures and window sizes.