This document discusses using a convolutional neural network (CNN) to classify brain tumor MRI images. It begins with an introduction to brain tumors and MRI as a diagnostic tool. It then reviews related work applying deep learning to medical image classification tasks. The proposed CNN model contains convolutional and max pooling layers for feature extraction, and fully connected layers for classification. The model is trained on a dataset of 253 MRI brain images from Kaggle to classify images as containing a tumor or being tumor-free. Experimental results show the CNN achieving 98.5% accuracy in classification, demonstrating the feasibility of the approach.