This document presents a methodology for analyzing gene mutation data using ontologies and association rule mining. It aims to develop a common knowledge base for genomic and proteomic analysis by integrating multiple data sources. The methodology involves using k-nearest neighbors algorithm to find similar genes, an iterative multiplicative updating algorithm to solve optimization problems, and SNCoNMF to identify co-regulatory modules between genes, microRNAs and transcription factors. The results are represented using a Bayesian rose tree for efficient visualization of associations between genetic components and diseases.