This document presents research on fruit recognition using machine learning approaches. The researchers used the fruit-360 dataset containing 74,572 images of 109 fruit classes. They applied feature extraction techniques including HU moments, Haralick texture, and color histogram. Several machine learning classifiers were then trained on the extracted features, including decision tree, K-nearest neighbors, linear discriminant analysis, logistic regression, naive Bayes, random forest, and support vector machine. The models were evaluated using metrics like sensitivity, specificity, precision, F1-score, and accuracy. The results found that K-nearest neighbors and random forest classifiers achieved the best performance with a false positive rate of 0% and high accuracy, outperforming previous fruit recognition studies.