SlideShare a Scribd company logo
Industrial production of chemical acids: glutamine acid
Background
Proteins are large, complex molecules that are critical for the normal functioning of the human
body. They are essential for the structure, function, and regulation of the body’s tissues and organs.
Proteins are made up of hundreds of smaller units called amino acids that are attached to one
another by peptide bonds, forming a long chain. You can think of a protein as a string of beads
where each bead is an amino acid. Amino acids are biologically important organic compounds
containing amine (-NH2) and carboxyl (-COOH) functional groups, along with a side-chain (R
group) specific to each amino acid. The key elements of an amino acid are carbon, hydrogen,
oxygen, and nitrogen, though other elements are found in the side-chains of certain amino acids.
About 500 amino acids are known (though only 20 appear in the genetic code) and can be classified
in many ways. They can be classified according to the core structural functional groups' locations
as alpha- (α-), beta- (β-), gamma- (γ-) or delta- (δ-) amino acids; other categories relate to polarity,
pH level, and side-chain group type (aliphatic, acyclic, aromatic, containing hydroxyl or sulfur,
etc.). In the form of proteins, amino acids comprise the second-largest component (water is the
largest) of human muscles, cells and other tissues. Outside proteins, amino acids perform critical
roles in processes such as neurotransmitter transport and biosynthesis.
In biochemistry, amino acids having both the amine and the carboxylic acid groups attached to
the first (alpha-) carbon atom have particular importance. They are known as alpha or α-amino
acids (generic formula H2NCHRCOOH in most cases, where R is an organic substituent known
as a "side-chain"); often the term "amino acid" is used to refer specifically to these. They include
the protein-genic ("protein-building") amino acids, which combine into peptide chains
polypeptides to form the building-blocks of a vast array of proteins. These are all L-stereoisomers
("left-handed" isomers), although a few D-amino acids ("right-handed") occur in bacterial
envelopes, as a neuromodulator (D-serine), and in some antibiotics. Twenty of the proteinogenic
amino acids are encoded directly by triplet codons in the genetic code and are known as "standard"
amino acids. The other three "non-standard" or "non-canonical" are selenocysteine (present in
many noneukaryotes as well as most eukaryotes, but not coded directly by DNA), pyrrolysine
(found only in some archea and one bacterium) and N-formylmethionine (which is often the initial
amino acid of proteins in bacteria, mitochondria, and chloroplasts). Pyrrolysine and selenocysteine
are encoded via variant codons; ex, seleno-cysteine is encoded by stop codon and SECIS element.
Codon–tRNA combinations not found in nature can also be used to "expand" the genetic code and
create novel proteins known as alloproteins incorporating non-proteinogenic amino acids.
The amino acid business is a multi-billion dollar enterprise. All twenty amino acids are sold,
albeiteach in greatly different quantities (Table 1). Amino acids are used as animal feed additives
(lysine,methionine, threonine), flavor enhancers (monosodium glutamic, serine, aspartic acid) and
asspecialty nutrients in the medical field. Glutamic acid, lysine and methionine account for the
majority, by weight, of amino acids sold. Glutamic acid and lysine are made by fermentation;
methionine is made by chemical synthesis. The major producers of amino acids are based in Japan,
the US, South Korea, China and Europe. Many microbe-based industries have their origins in
traditions that go back hundreds or thousands of years. The amino acid industry has its roots in
food preparation practices in Japan. Seaweeds had been used for centuries there and in other Asian
countries as a flavoring ingredient. In1908, Kikunae Ikeda of Tokyo Imperial University isolated
the flavor enhancing principle from the seaweed konbu (also spelled kombu, Laminaria japonica;
related to kelp) as crystals of monosodium glutamate (MSG). Adding MSG to meat, vegetables
and just about any other type of prepared food makes it savory, a property referred to as umami.
Soon after Ikeda’s discovery, and recognizing the market potential of MSG, Ajinomoto Co. in
Japan began extracting MSG from acid-hydrolyzed wheat gluten or defatted soybean and selling
it as a flavor enhancer.
Production of MSG via “fermentation” grew out of the ashes of WWII in Japan. Around 1957,
Japanese researchers led by S. Kinoshita at Kyowa Hakko Kogyo Co. isolated soil bacteria that
produced large amounts of glutamic acid. Producing strains were found by inoculating soil isolates
in a grid pattern on duplicate Petri plates. The colonies were allowed to grow and one set of
duplicates was killed with UV irradiation. The killed plate was overlaid with soft agar containing
a Leuconostoc mesenteroides. Since L. mesenteroides required glutamic acid for growth, it only
grew in the vicinity of colonies that had excreted glutamate. Potential glutamate producers were
then picked from the duplicate, unkilled, plate. Members of the Actinobacteria in the genus
Corynebacterium (originally named Micrococcus glutamicus) were the most effective producers.
Over the years, various glutamate-producing bacteria have been isolated and classified as
Arthrobacter, Brevibacterium, or as members of other genera, but recent work has shown that
almost all of these strains belong to the genus Corynebacterium. Wild-type cultures produced up
to 10 g/l glutamic acid. Yields were quickly improved by process engineering and by developing
over-producing mutants. Yields are now in excess of 100 g per liter. The isolation of bacterial
glutamate-producers led to the development of large-scale manufacture of MSG from cheap sugar
and ammonia rather than from more expensive extracts of plants or animals. In the early 1960s,
workers at the same company found that C. glutamicum homoserine auxotrophs (see below)
produced lysine thus providing the first viable fermentation process for lysine production. Today
these bacteria produce well over 1,000,000 metric tons of MSG and 600,000 metric tons of lysine
annually.
Importance of Amino acids
- Active Pharmaceutical Ingredients (APIs), there are pharmaceutical products that make use of
amino acids themselves, and products that are synthesized and manufactured using amino acids
as starting materials. Amino Acids are also used in infusion solutions, in addition to tablet and
granulated forms, and are an essential part of modern medical treatments.
- Medical Foods / Medical Nutrition, amino Acids are used as a way to provide a concentrated,
specific and efficient intake of required nutrient components in medical foods for malnourished
patients, elderly people with lower digestive capabilities, as well as in other uses.
- Dietary Supplement / Health Foods / Functional Foods & Beverages, amino Acids are used for
compensating amino acid deficiencies, as well as in supplements that make use of the specific
function of amino acids. Products are sold in tablet, granular and capsule forms. These products
were once mostly used by athletes, but they are now popular among the wider public for
everyday workout and health maintenance.There are also functional food and beverage
products that contain amino acids for functions similar to those found in health foods.
- Cosmetics, amino Acids are used in cosmetics for their unique moisturizing effect and pH
levels. Amino acid derivatives are also used for their stability and absorbency.
- Culture Medium, recently, pharmaceutical products research and manufacture using cell
culture process have become very popular. Amino Acids are essential components of cell
culture medium. Amino Acids are considered to be indispensable to cell growth and production
of antibodies and proteins.
Glutamic acid
Glutamic acid, also referred to as glutamate (the salt of glutamic acid), is an acidic, α-amino
acid that is found in many proteins, and that in free form functions as an important
neurotransmitter, a metabolic intermediate in the Krebs cycle, and a compound that can
combine with an help in the elimination of toxic ammonia from the body. The salt monosodium
glutamate (MSG) is a common food additive and flavor enhancer. Along with aspartic acid, to
which is behaves similarly, glutamic acid is classified as an acidic amino acid. The L-isomer,
which is the only form that is involved in protein synthesis, is one of the 20 standard amino
acids common in animal proteins and required for normal functioning in humans. However, it
is not considered to be an "essential" amino acid since it does not have to be taken in with the
diet, but can be synthesized by the human body from other compounds through chemical
reactions. Glutamic acid is responsible for one of the human senses of taste, termed umami,
adding to the classical taste sensations of sweet, salty, sour, and bitter. Umami applies to the
sensation of savoriness, the detection of glutamates in such foods as meats, cheese, and other
protein-heavy foods. Beyond its practical value, taste adds to the human enjoyment of creation,
joining such diverse senses as being able to see various colors, hear different sounds, smell a
vast array of odors, and so forth. Such senses allow interaction with nature and touch upon the
inner aspect of people. As a source for umami, MSG, the sodium salt of glutamic acid, is used
to enhance the flavor of foods. Glutamic acid's three letter code is Glu, its one letter code is E,
and its systematic name is 2-Aminopentanedioic acid (IUPAC-IUB 1983). A three-letter
designation for either glutamic acid (Glu) or the amino acid glutamine (Gln) is Glx—this is
often used in cases in which peptide sequencing reactions may convert glutamine to glutamate
(or vice versa), leaving the original identity of the amino acid in doubt.
Chemical Structure
In biochemistry, the term amino acid is frequently used to refer specifically to alpha amino
acids: those amino acids in which the amino and carboxylate groups are attached to the same
carbon, the so-called α–carbon (alpha carbon). The general structure of these amino acids is:
Most amino acids occur in two possible optical isomers, called D and L. The L amino acids
represent the vast majority of amino acids found in proteins. They are called proteinogenic
amino acids. As the name "proteinogenic" (literally, protein building) suggests, these amino
acid are encoded by the standard genetic code and participate in the process of protein
synthesis. In glutamic acid, only the L-stereoisomer is involved in protein synthesis in
mammals. Glutamic acid's chemical formula is HOOC-CH(NH2)-(CH2)2-COOH (very
similar to aspartic acid's formula, HOOC-CH(NH2)-CH2-COOH), but with an extra CH2), or
more generally C5H9NO4. (Aspartic acid's general forumula is C4H7NO4.) Glutamic acid
behaves similar to aspartic acid, but has a longer, slightly more flexible side chain. As its name
indicates, it is acidic, with a carboxylic acid component to its side chain. Generally either the
amino group will be protonated or one or both of the carboxylic groups will be deprotonated.
At neutral pH all three groups are ionized and the species has a charge of -1. The pKa value
for Glutamic acid is 4.1. This means that at pH below this value it will be protonated (COOH)
and at pH above this value it will be deprotonated (COO-).
Application of glutamic acid
Food Production
- L-Glutamic Acid is widely used as nutritional supplement in food production.
- As flavor enhancer: in MSG and spices to improve flavor.
- As nutritional supplement: in food industries to provide amino acids.
Beverage
- L-Glutamic Acid is widely used as flavor enhancer in beverage.
- As flavor enhancer: in soft drink and wine to improve flavor.
Pharmaceutical
- Not enough is known about application of L-Glutamic Acid in Pharmaceutical.
Cosmetics
- L-Glutamic Acid is widely used as Hair restorer in Cosmetics.
- As Hair restorer: in treatment of Hair Loss.
- As Wrinkle: in preventing aging.
Agriculture/Animal Feed
- L-Glutamic Acid is widely used as nutritional supplement in Agriculture/Animal Feed.
- As nutritional supplement: in feed additive to enhance nutrition.
Other Industries
- L-Glutamic Acid is widely used as intermediate in various other industries.
- As intermediate: in manufacturing of various organic chemicals.
Biosynthesis of Glutamic acid
An amino acid precursor is converted to the target amino acid using 1 or 2 enzymes, allows the
conversion to a specific amino acid without microbial growth, thus eliminating the long process
from glucose. Raw materials for the enzymatic step are supplied by chemical synthesis the enzyme
itself is either in isolated or whole cell form which is prepared by microbial fermentation, as
following:-
Reactants Products Enzymes
Glutamine + H2O → Glu + NH3 GLS, GLS2
NAcGlu + H2O → Glu + Acetate (unknown)
α-ketoglutarate + NADPH + NH4+ → Glu + NADP+ + H2O GLUD1, GLUD2
α-ketoglutarate + α-amino acid → Glu + α-oxo acid transaminase
1-pyrroline-5-carboxylate + NAD+ + H2O → Glu + NADH ALDH4A1
N-formimino-L-glutamate + FH4 ⇌ Glu + 5-formimino-FH4 FTCD
Industrial Production and use of Microorganisms
L-amino acids are major biological components commercially used as additives in food, feed
supplements, infusion compounds, thera-peutic agents and precursors for peptides synthesis or
agriculture based chemicals. The amino acids are the second most important category, after
antibiotics, with fermentation products exhibiting the highest growth rates. L-glutamic acid was
the first amino acid produced commercially. The substance was discovered and identified in the
year 1866 by the German chemist Karl Heinrich Leopold Ritt-hausen. L-glutamic acid was mainly
produced by microbial fermentations and the chemical mode of synthesis is not widely preferred
due to the formation of racemic mixture.
Corynebacterium glutamicum is a very important fermentative bacteria most widely know for
its role in the production of monosodium glutamate, or MSG. Discovered in 1957 in Japan as a
natural producer of glutamic acid, C. glutamicum is a Gram positive, facultatively anaerobic,
heterotrophic bacterium with an irregular rod shape in a V-formation. It is non-pathogenic and is
found in soil, animal feces, fruits and vegetables. Though it was originally isolated for its ability
to produce massive amounts of glutamic acid, C. glutamicum and closely related organisms have
been developed for the production of most of the biogene amino acids, nucleotides, and vitamins.
Because of this ability it has undergone extensive genetic study to understand its production
pathways.The isolation of C. glutamicum as a producer of glatamic acid and sequentially for the
large-scale production of MSG was achieved in post WWII Japan by Japanese researchers led by
S. Kinoshita at Kyowa Hakko Kogyo Co. They found soil bacteria that produced large amounts of
glutamic acid. They made two duplicate plates and after letting them grow for awhile, they killed
the bacterium on one plate by UV irradiation. They then inoculated that plate with Leuconostoc
mesenteroides, a bacteria that will only grow in the presence of glutamic acid. By looking at the
locations of the L. mesenteroides colonies and comparing to the duplicate plate, they isolated the
glutamic acid producing bacteria, C. glutamicum. Wild-type strains of this bacterium were found
to produce about 10 g/L glutamic acid, and with genetic engineering yields are now upwards of
100g/L. The thing that distinguishes C. glutamicum from similar bacteria that produce the glutamic
acid is the amount that is produced. Glutamic acid is made by extracting alpha-ketogluterate from
the TCA cycle by way a reductive amination by NADP+ specific glutamate dehydrogenase. The
reason that C. glutamicum produces so much more than similar bacteria is not known for sure. A
widely accepted theory used to be that C. glutamicum had very little alpha-ketogluterate
dehydrogenase, the enzyme needed to continue the TCA cycle, so it was forced to produce
glutamic acid.
Corynebacterium glutamicum
That was not necessarily disproved because of the difficulty of isolating alpha-ketogluterate
dehydragenase, but it is now thought to have more to do with concentrations of glutamic acid
inside the cell. In biotechnological processes, Corynebacterium species are used for economic
production of glutamic acid by submerged fermentation. L-glutamic acid is produced per year
using coryneform bacteria. A number of fermentation techniques have been used for the
production of glutamic acid. Glucose is one of the major carbon sources for production of glutamic
acid. Glutamic acid was produced with various kinds of raw materials using sub-merged
fermentation of palm waste hydrolysate, cassava starch, sugar cane bagasse, date waste.Properties
of a useful industrial microbe include
- Produces spores or can be easily inoculated.
- Grows rapidly on a large scale in inexpensive medium.
- Produces desired product quickly.
- Should not be pathogenic.
- Amenable to genetic manipulation.
Industrial production of glutamic acid
The manufacturing process of glutamic acid by fermentation comprises :- fermentation, crude
isolation, and purification processes.
The fermentation unit in industrial microbiology is analogous to a chemical plant in the chemical
industry. A fermentation process is a biological process and, therefore, has requirements of sterility
and use of cellular enzymic reactions instead of chemical reactions aided by inanimate catalysts,
sometimes operating at elevated temperature and pressure. Industrial fermentation processes may
be divided into two main types, with various combinations and modifications.
1- Batch culture
Batch fermentation widely use in production of most of amino acids. refers to a partially closed
system in which most of the materials required are loaded onto the fermentor, decontaminated
before the process starts and then, removed at the end. The only material added and removed during
the course of a batch fermentation is the gas exchange and pH control solutions. In this mode of
operation, conditions are continuously changing with time, and the fermentor is an unsteady-state
system, although in a well-mixed reactor, conditions are supposed to be uniform throughout the
reactor at any instant time. The principal disadvantage of batch processing is the high proportion
of unproductive time (down-time) between batches, comprising the charge and discharge of the
fermentor vessel, the cleaning, sterilization and re-start process
2- Fed-batch fermentation
The fed-batch technique was originally devised by yeast producers in the early 1900s to regulate
the growth in batch culture of Saccharomyces cerevisiae18. Yeast producers observed that in the
presence of high concentrations of malt, a by-product - ethanol - was produced, while in low
concentrations of malt, the yeast growth was restricted. The problem was then solved by a
controlled feeding regime, so that yeast growth remained substrate limited. The concept was then
extended to the production of other products, such as some enzymes, antibiotics, growth hormones,
microbial cells, vitamins, amino acids and other organic acids. Basically, cells are grown under a
batch regime for some time, usually until close to the end of the exponential growth phase. At this
point, the reactor is fed with a solution of substrates, without the removal of culture fluid. This
feed should be balanced enough to keep the growth of the microorganisms at a desired specific
growth rate and reducing simultaneously the production of by-products (that can be growth or
product production inhibitory and make the system not as effective). These by-products may also
affect the culture environment in such a way that might lead to early cell death even though
sufficient nutrients are available or are still being provided.
A fed-batch is useful in achieving high concentration of products as a result of high concentration
of cells for a relative large span of time. Two cases can be considered: the production of a growth
associated product and the production of a non-growth associated product. In the first case, it is
desirable to extend the growth phase as much as possible, minimizing the changes in the fermentor
as far as specific growth rate, production of the product of interest and avoiding the production of
by-products. For non-growth associated products, the fed-batch would be having two phases: a
growth phase in which the cells are grown to the required concentration and then a production
phase in which carbon source and other requirements for production are fed to the fermentor. This
case is also of particular interest for recombinant inducible systems: the cells are grown to high
concentrations and then induced to express the recombinant product. Also, considering that
plasmid stability is very often guaranteed by the presence of an antibiotic marker gene and that the
lifetime of this antibiotic in a fermentor can be limited, it might be of interest to use the fed-batch
concept to feed this same antibiotic continuously so that the presence of the plasmid in the cells is
more of a reliable fact. Fed-batch fermentations can be the best option for some systems in which
the nutrients or any other substrates are only sparingly soluble or are too toxic to add the whole
requirement for a batch process at the start, in fermentations such as mycelial culture the increase
of viscosity with time can be compensated by the addition of relatively small quantity of water
during the fermentation time, although the efficacy of this protocol is controversial among
reserachers. Many factors are involved in the regulation of a fed-batch reactor. As an example,
however, the feed rate can be varied to control the concentrations of nutrients in the bioreactor.
3- Continuous fermentation
Continuous culture is a technique involving feeding the microorganism used for the fermentation
with fresh nutrients and, at the same time, removing spent medium plus cells from the system1.
An unique feature of the continuous culture is that a time-independent steady-state can be attained
which enables one to determine the relations between microbial behavior (genetic and phenotypic
expression) and the environmental conditions.
Industrial production of glutamic acid
- Natural product such as sugar cane is used.
- Then, the sugar cane is squeezed to make molasses.
- The heat sterilize raw material and other nutrient are put in the tank of the fermenter.
- The microorganism (Corynebacterium glutamicum) producing glutamic acid is added to the
fermentation broth.
- The microorganism reacts with sugar to produce glutamic acid.
- Then, the fermentation broth is acidified and the glutamic acid is crystallized.
Separation and purification
- After the fermentation process, specific method is require to separate and purify the amino acid
produced from its contaminant products, which include:
Centrifugation. Common method used in industry, can be operate semi-continuous or continuous
basis, large scale tests have to performed to choose a suitable centrifuge, poor centrifugation can
be improved by adding flocculation agent. This agent will neutralize the anionic charges on the
surface of microbial cells.
Filtration. Also widely use in industrial, based on a few factors : Properties of the filtrate, nature
of the solid particles, Adequate pressure to obtain adequate flow rate, negative effects of
antifoaming agents on filtration, filtration can be improved by using filteraids, filteraids improved
the porosity of a resulting filter cake leading to a faster flow rates.
Crystallisation. Method to recover amino acid, because of the amphoteric character of amino acid,
their solubility are greatly influenced by the pH of a solution, temperature also influence the
solubility of amino acid and their salts, thus, lowering the temperature can be used to obtain the
required product, precipitation of amino acid with salts are commonly used
Ion exchange. Used for the extraction and purification of amino acids form the fermentation broth,
strongly affected by pH of the solutions and the present of contaminant ions. There are two types
of ion exchange resins, cation exchange resins, anion exchange resins. cation exchange resins, bind
with positively charged amino acids, Anion exchange resins, bind with negatively charged amino
acid. Anion exchange resins are generally lower in their exchange capacity and durability than
cation exchange resins, ion exchange as a tool for separation is only used when other steps fail,
because of its tedious operation, small capacity and high costs.
Electro-dialysis. Based on the principle that charged particles move towards the electrodes in the
electric field, a mixture of the required amino acid and contaminant salts can be separated at a pH
where the amino acid has a net zero charge. The salt ions are captured by the ion exchange
membranes that are present, the applications are limited to desalting amino acid solutions.
Solvent extraction. Has only limited applications. The distribution coefficients of amino acids
between organic solvent and water phases are generally small. Some possibilities based on
alteration of amino acid, cyclisation of L-glutamic acid and extraction with alkyl and aromatic
alcohols, conversion of contaminant organic acids (like acetic acid) to the ester form and extraction
of the ester, extraction of basic amino acids (like L-lysine) from aqueous solution with water
immiscible solvents containing higher fatty acids;
Decolorisation. Performed to get rid of the colored impurities in the fermentation broth. based on
the fact that amino acids (especially the non-aromatic amino acids) do not adsorb onto activated
charcoal. Although the treatment is very effective, some of the amino acid is lost during this step.
Alternative ways: addition of cationic surfactants, high molecular synthetic coagulants or some
phenolic compounds, washing of crystals with weakly alkaline water as in the case of glutamic
acid.
Evaporation. Evaporation of the amino acid containing solution is a quick but commercially
unattractive way (high energy costs) to obtain amino acids from solution, used when the total
amount of contaminant products is very low, since these compounds are not removed and appear
in a concentrated form in the product.
After undergo to the suitable method of separation and purification, the glutamic acid crystal cake
is then separated from the acidified fermentation broth. The glutamic acid crystal is added to the
sodium hydroxide solution and converted into monosodium glutamate (MSG), which is more
soluble in water, less likely absorb moisture and has strong umami taste. The MSG is cleaned by
using active carbon, which has many micro holes on their surface, the clean MSG solution is
concentrated by heating and the monosodium glutamate crystal is formed. The crystal produce are
dried with a hot air in a closed system. Then, the crystal is packed in the packaging and ready to
be sold.
Advantages of amino acid fermentation
- Normally the production strain is constructed in such a way that overproduction of the desired
amino acid is obtained and no, or only minor concentrations of, unwanted contaminants appear.
- Optical resolution steps are not necessary (as in the case of most chemical-processes) since
only the L-form is synthesised.
- The required amino acid can be relatively easily separated from cells and protein impurities.
References
1. Masato Ikeda, Microbial Production of l-Amino Acids Advances in Biochemical
Engineering/Biotechnology.Amino Acid Production Processes, 79, pp. 1-35, 2003.
2. Hidehiko Kumagai. Amino Acid Production the Prokaryotes 3rd edition, pp. 169-177, 2013.
3. Chibata, I., T. Kakimoto, and J. Kato. Enzymatic production of L-alanine by Pseudomonas
dachnae Appl. Microbiol. 13, pp. 638–645, 1965.
4. Sano K, Mitsugi K, Enzymatic production of L-cysteine from DL-2-amino-Δ2-thiazoline-4-
carboxylic acid by Pseudomonas thiazolinohilum: optimal conditions for the enzyme formation
and enzymatic reaction. Agric Biol Chem (42), pp. 2315–2321, 1978.
5. Sano K, Eguchi NY, Mitsugi K Metabolic pathway of L-cysteine formation from DL-2-amino-
Δ2-thiazoline- 4-carboxylic acid by Pseudomonas. Agric Biol Chem 43:2373–2374, (1979).
6. Terasawa M, Yukawa H, Takayama Y, Production of Laspartic acid from Brevibacterium by
the cell re-using process. Process Biochem 20:124–128, (1985).
7. Takamatsu S, Umemura I, Yamamoto K, Sato T, Chibata I, Production of L-alanine from
ammonium fumarate using two immobilized microorganisms. Eur J Appl Microbiol Biotechnol
15:147–152, (1982).
8. Srinivasan VR, Summers RJ, Continuous culture in the fermentation industry. In: Calcott PH
(ed) Continuous cultures of cells. CRC Press, Florida, 97, (1981).
9. Kinoshita S, Taxonomic position of glutamic acid producing bacteria. In: Flickinger MC, Drew
SW (eds) Encyclopedia of bioprocess technology: fermentation, biocatalysis, and bioseparation.
Wiley, 1330, (1999).
10. Kinoshita S, Tanaka K, Glutamic acid. In: Yamada K (ed) The microbial production of amino
acids. Wiley, 263, (1972)
11. Y Anzai, H Kim, J Y Park, H Wakabayashi and H Oyaizu, Phylogenetic affiliation of the
pseudomonads based on 16S rRNA sequence. IJSEM, 50 (4): 1563- 1589, (2000).
12- Kimura, E., C. Yagoshi, Y. Kawahara, T. Ohsumi, T. Nakamatsu, and H. Tokuda, Glutamate
overproduction in Corynebacterium glutamicum triggered by a decrease in the level of a complex
comprising dtsR and a biotincontaining subunit Biosci. Biotechnol. Biochem. 63: 1274–1278,
(1999).
13. Yamada, H., and H. Kumagai, Synthesis of L-tyrosine related amino acids by β-tyrosinase In:
D. Perlman (Ed.) Advances in Applied Microbiology Academic Press New York NY 19: 249–
288, (1975).
14. Katsumata R, Mizukami T, Kikuchi Y, Kino K, Threonine production by the lysine producing
strain of Corynebacterium glutamicum with amplified threonine biosynthetic operon. Genetics of
industrial microorganisms, 21(1): 217, (1986).

More Related Content

What's hot

Ames test
Ames testAmes test
Ames test
krupa sagar
 
Strain development techniques of industrially important microorganisms
Strain development techniques of industrially important microorganismsStrain development techniques of industrially important microorganisms
Strain development techniques of industrially important microorganisms
Microbiology
 
Media for industrial fermentation
Media for industrial fermentationMedia for industrial fermentation
Media for industrial fermentation
NithyaNandapal
 
L -glutamic_fermentation
L  -glutamic_fermentationL  -glutamic_fermentation
L -glutamic_fermentation
Akshitakapadia
 
Production of protease and amylase
Production of protease and amylaseProduction of protease and amylase
Production of protease and amylase
Krishna Moorthy
 
Lactic acid production
Lactic acid productionLactic acid production
Lactic acid production
HARINATHA REDDY ASWARTHA
 
Amylase (Production and application0
Amylase (Production and application0Amylase (Production and application0
Amylase (Production and application0
Arun Kumar Gupta
 
Acetic acid fermentation[1]
Acetic acid fermentation[1]Acetic acid fermentation[1]
Acetic acid fermentation[1]
Akshitakapadia
 
Bioproduction of Glutamic Acid
Bioproduction of Glutamic AcidBioproduction of Glutamic Acid
Bioproduction of Glutamic Acid
Pratik Parikh
 
Insulin and HGH production using rDNA technology
Insulin and HGH production using rDNA technologyInsulin and HGH production using rDNA technology
Insulin and HGH production using rDNA technology
Mrinal Vashisth
 
Single Cell Protein - Slideshare PPT
Single Cell Protein - Slideshare PPTSingle Cell Protein - Slideshare PPT
Single Cell Protein - Slideshare PPT
Priyabrata Karmakar
 
Microbial enzymes
Microbial enzymesMicrobial enzymes
Microbial enzymes
Mai M.Elfouly
 
Enzymes and its applications
Enzymes and its applicationsEnzymes and its applications
Enzymes and its applications
eswar1810
 
Production of amino acid by microorganisms.
Production of amino acid by microorganisms. Production of amino acid by microorganisms.
Production of amino acid by microorganisms.
Tahir Ali,Punjab University Lahore
 
Screening of industrial microorganisms
Screening of industrial microorganismsScreening of industrial microorganisms
Screening of industrial microorganisms
Dr NEETHU ASOKAN
 
Citric Acid Production
Citric Acid ProductionCitric Acid Production
Citric Acid Production
Dinesh S
 
Production of amylase
Production of amylase Production of amylase
Production of amylase
ROHINI YADAV
 
Industrial production of penicillin
Industrial production of penicillinIndustrial production of penicillin
Industrial production of penicillin
Nischitha R
 
Development of inoculum buildup
Development of inoculum buildup Development of inoculum buildup
Development of inoculum buildup
School of Studies in Microbiology
 
Inoculum build up for fermentation
Inoculum build up for fermentationInoculum build up for fermentation
Inoculum build up for fermentation
HARINATHA REDDY ASWARTHA
 

What's hot (20)

Ames test
Ames testAmes test
Ames test
 
Strain development techniques of industrially important microorganisms
Strain development techniques of industrially important microorganismsStrain development techniques of industrially important microorganisms
Strain development techniques of industrially important microorganisms
 
Media for industrial fermentation
Media for industrial fermentationMedia for industrial fermentation
Media for industrial fermentation
 
L -glutamic_fermentation
L  -glutamic_fermentationL  -glutamic_fermentation
L -glutamic_fermentation
 
Production of protease and amylase
Production of protease and amylaseProduction of protease and amylase
Production of protease and amylase
 
Lactic acid production
Lactic acid productionLactic acid production
Lactic acid production
 
Amylase (Production and application0
Amylase (Production and application0Amylase (Production and application0
Amylase (Production and application0
 
Acetic acid fermentation[1]
Acetic acid fermentation[1]Acetic acid fermentation[1]
Acetic acid fermentation[1]
 
Bioproduction of Glutamic Acid
Bioproduction of Glutamic AcidBioproduction of Glutamic Acid
Bioproduction of Glutamic Acid
 
Insulin and HGH production using rDNA technology
Insulin and HGH production using rDNA technologyInsulin and HGH production using rDNA technology
Insulin and HGH production using rDNA technology
 
Single Cell Protein - Slideshare PPT
Single Cell Protein - Slideshare PPTSingle Cell Protein - Slideshare PPT
Single Cell Protein - Slideshare PPT
 
Microbial enzymes
Microbial enzymesMicrobial enzymes
Microbial enzymes
 
Enzymes and its applications
Enzymes and its applicationsEnzymes and its applications
Enzymes and its applications
 
Production of amino acid by microorganisms.
Production of amino acid by microorganisms. Production of amino acid by microorganisms.
Production of amino acid by microorganisms.
 
Screening of industrial microorganisms
Screening of industrial microorganismsScreening of industrial microorganisms
Screening of industrial microorganisms
 
Citric Acid Production
Citric Acid ProductionCitric Acid Production
Citric Acid Production
 
Production of amylase
Production of amylase Production of amylase
Production of amylase
 
Industrial production of penicillin
Industrial production of penicillinIndustrial production of penicillin
Industrial production of penicillin
 
Development of inoculum buildup
Development of inoculum buildup Development of inoculum buildup
Development of inoculum buildup
 
Inoculum build up for fermentation
Inoculum build up for fermentationInoculum build up for fermentation
Inoculum build up for fermentation
 

Viewers also liked

Industrial processing of amino acid slide
Industrial processing of amino acid slideIndustrial processing of amino acid slide
Industrial processing of amino acid slide
Muhammad Haqim
 
Industrial Production of L-Lysine by Fermentation
Industrial Production of L-Lysine by FermentationIndustrial Production of L-Lysine by Fermentation
Industrial Production of L-Lysine by Fermentation
Kuldeep Sharma
 
Penicillin Production
Penicillin ProductionPenicillin Production
Penicillin Production
Huda Nazeer
 
amino acids
amino acidsamino acids
amino acids
Ameenah
 
metabolites : antibiotics by fermentation
metabolites : antibiotics by fermentationmetabolites : antibiotics by fermentation
metabolites : antibiotics by fermentationMinhaz Ahmed
 
Production of lactic acid and acidic acid
Production of lactic acid and acidic acidProduction of lactic acid and acidic acid
Production of lactic acid and acidic acid
THILAKAR MANI
 
Crystallization of L-Glutamic Acid: Mechanism of Heterogeneous β -Form Nuclea...
Crystallization of L-Glutamic Acid: Mechanism of Heterogeneous β -Form Nuclea...Crystallization of L-Glutamic Acid: Mechanism of Heterogeneous β -Form Nuclea...
Crystallization of L-Glutamic Acid: Mechanism of Heterogeneous β -Form Nuclea...
inventy
 
Glutamate production and regulation of ionotropic glutamate receptors.pptx+ f...
Glutamate production and regulation of ionotropic glutamate receptors.pptx+ f...Glutamate production and regulation of ionotropic glutamate receptors.pptx+ f...
Glutamate production and regulation of ionotropic glutamate receptors.pptx+ f...
dariush Gholami
 
Aminoacid
AminoacidAminoacid
Aminoacid
SureshG V.
 
upstream & downstream process of antibiotics
upstream & downstream process of antibioticsupstream & downstream process of antibiotics
upstream & downstream process of antibiotics
Anil Kollur
 
Msg2
Msg2Msg2
Msg2Eriko
 
China
China China
Ingles proyecto
Ingles proyectoIngles proyecto
Ingles proyecto
Marta Martín
 
Fireworks!
Fireworks!Fireworks!
Fireworks!
bridgetmw
 
Brewery Process Design
Brewery Process DesignBrewery Process Design
Brewery Process Design
Ashleigh Hough
 

Viewers also liked (20)

Industrial processing of amino acid slide
Industrial processing of amino acid slideIndustrial processing of amino acid slide
Industrial processing of amino acid slide
 
Industrial Production of L-Lysine by Fermentation
Industrial Production of L-Lysine by FermentationIndustrial Production of L-Lysine by Fermentation
Industrial Production of L-Lysine by Fermentation
 
Penicillin Production
Penicillin ProductionPenicillin Production
Penicillin Production
 
amino acids
amino acidsamino acids
amino acids
 
metabolites : antibiotics by fermentation
metabolites : antibiotics by fermentationmetabolites : antibiotics by fermentation
metabolites : antibiotics by fermentation
 
Production of lactic acid and acidic acid
Production of lactic acid and acidic acidProduction of lactic acid and acidic acid
Production of lactic acid and acidic acid
 
Crystallization of L-Glutamic Acid: Mechanism of Heterogeneous β -Form Nuclea...
Crystallization of L-Glutamic Acid: Mechanism of Heterogeneous β -Form Nuclea...Crystallization of L-Glutamic Acid: Mechanism of Heterogeneous β -Form Nuclea...
Crystallization of L-Glutamic Acid: Mechanism of Heterogeneous β -Form Nuclea...
 
Glutamate production and regulation of ionotropic glutamate receptors.pptx+ f...
Glutamate production and regulation of ionotropic glutamate receptors.pptx+ f...Glutamate production and regulation of ionotropic glutamate receptors.pptx+ f...
Glutamate production and regulation of ionotropic glutamate receptors.pptx+ f...
 
Aminoacid
AminoacidAminoacid
Aminoacid
 
penicillin
penicillinpenicillin
penicillin
 
Antibiotics
AntibioticsAntibiotics
Antibiotics
 
upstream & downstream process of antibiotics
upstream & downstream process of antibioticsupstream & downstream process of antibiotics
upstream & downstream process of antibiotics
 
Lysine
LysineLysine
Lysine
 
Antibiotics ppt
Antibiotics pptAntibiotics ppt
Antibiotics ppt
 
My Book Polyglutamic acid
My Book Polyglutamic acidMy Book Polyglutamic acid
My Book Polyglutamic acid
 
Msg2
Msg2Msg2
Msg2
 
China
China China
China
 
Ingles proyecto
Ingles proyectoIngles proyecto
Ingles proyecto
 
Fireworks!
Fireworks!Fireworks!
Fireworks!
 
Brewery Process Design
Brewery Process DesignBrewery Process Design
Brewery Process Design
 

Similar to Industrial production of chemical acids glutamic acid 2

Amino acid pathway
Amino acid pathwayAmino acid pathway
Amino acid pathway
Dipali Kulkarni
 
Amino acids
Amino acidsAmino acids
Classification and Structure of Standard Amino Acids
Classification and Structure of Standard Amino AcidsClassification and Structure of Standard Amino Acids
Classification and Structure of Standard Amino Acids
PalakAgrawal97
 
Proteins.pptx
Proteins.pptxProteins.pptx
Proteins.pptx
Ebot Walter Ojong
 
Protein Introduction
Protein  IntroductionProtein  Introduction
Protein Introduction
Pharmacy Universe
 
Amino acids
Amino acidsAmino acids
Amino acids
Priyanka Kujur
 
Glutamte biosynthesis
Glutamte biosynthesisGlutamte biosynthesis
Glutamte biosynthesis
Kaushal Pradhan
 
B.Sc. Biochem II Biomolecule I U 3.2 Classification of Protein & Denaturation
B.Sc. Biochem II Biomolecule I U 3.2 Classification of Protein & DenaturationB.Sc. Biochem II Biomolecule I U 3.2 Classification of Protein & Denaturation
B.Sc. Biochem II Biomolecule I U 3.2 Classification of Protein & Denaturation
Rai University
 
Amino Acids-1.pptx
Amino Acids-1.pptxAmino Acids-1.pptx
Amino Acids-1.pptx
farman77mhamad
 
Ionization and Ph of Amino Acid
Ionization and Ph of Amino AcidIonization and Ph of Amino Acid
Ionization and Ph of Amino Acid
Anm Sharif
 
Proteins 1.pptx
Proteins 1.pptxProteins 1.pptx
Proteins 1.pptx
AsmatAli34
 
Amino Acid Functions
Amino Acid FunctionsAmino Acid Functions
Amino Acid FunctionsJVGAJJAR
 
Lec.1 aminoacid.chem
Lec.1 aminoacid.chemLec.1 aminoacid.chem
Lec.1 aminoacid.chem
Shamim Akram
 
Lec.1 a.a.chem
Lec.1 a.a.chemLec.1 a.a.chem
Lec.1 a.a.chem
DrShamimAkram
 
Chapter 2 (1).ppt
Chapter 2 (1).pptChapter 2 (1).ppt
Chapter 2 (1).ppt
Dawitashebr
 
Chemical Composition of micro and macro Algae
Chemical Composition of micro and macro AlgaeChemical Composition of micro and macro Algae
Chemical Composition of micro and macro Algae
Kamaraj College of Engineering & Technology, Virudhunagar
 
Biochemistry sec2 aa.pdf
Biochemistry sec2 aa.pdfBiochemistry sec2 aa.pdf
Biochemistry sec2 aa.pdf
TeshaleTekle1
 
Proteins lecture 10
Proteins lecture 10Proteins lecture 10
Proteins lecture 10
Ashfaq Ahmad
 
Amino Acid METABOLISM presentation slid.ppt
Amino Acid METABOLISM presentation slid.pptAmino Acid METABOLISM presentation slid.ppt
Amino Acid METABOLISM presentation slid.ppt
tpsubng
 

Similar to Industrial production of chemical acids glutamic acid 2 (20)

Amino acid pathway
Amino acid pathwayAmino acid pathway
Amino acid pathway
 
Amino acids
Amino acidsAmino acids
Amino acids
 
Classification and Structure of Standard Amino Acids
Classification and Structure of Standard Amino AcidsClassification and Structure of Standard Amino Acids
Classification and Structure of Standard Amino Acids
 
Proteins.pptx
Proteins.pptxProteins.pptx
Proteins.pptx
 
Protein Introduction
Protein  IntroductionProtein  Introduction
Protein Introduction
 
Amino acids
Amino acidsAmino acids
Amino acids
 
Glutamte biosynthesis
Glutamte biosynthesisGlutamte biosynthesis
Glutamte biosynthesis
 
B.Sc. Biochem II Biomolecule I U 3.2 Classification of Protein & Denaturation
B.Sc. Biochem II Biomolecule I U 3.2 Classification of Protein & DenaturationB.Sc. Biochem II Biomolecule I U 3.2 Classification of Protein & Denaturation
B.Sc. Biochem II Biomolecule I U 3.2 Classification of Protein & Denaturation
 
Amino Acids-1.pptx
Amino Acids-1.pptxAmino Acids-1.pptx
Amino Acids-1.pptx
 
Ionization and Ph of Amino Acid
Ionization and Ph of Amino AcidIonization and Ph of Amino Acid
Ionization and Ph of Amino Acid
 
Proteins 1.pptx
Proteins 1.pptxProteins 1.pptx
Proteins 1.pptx
 
Amino Acid Functions
Amino Acid FunctionsAmino Acid Functions
Amino Acid Functions
 
Lec.1 aminoacid.chem
Lec.1 aminoacid.chemLec.1 aminoacid.chem
Lec.1 aminoacid.chem
 
Lec.1 a.a.chem
Lec.1 a.a.chemLec.1 a.a.chem
Lec.1 a.a.chem
 
Chapter 2 (1).ppt
Chapter 2 (1).pptChapter 2 (1).ppt
Chapter 2 (1).ppt
 
Chemical Composition of micro and macro Algae
Chemical Composition of micro and macro AlgaeChemical Composition of micro and macro Algae
Chemical Composition of micro and macro Algae
 
Biochemistry sec2 aa.pdf
Biochemistry sec2 aa.pdfBiochemistry sec2 aa.pdf
Biochemistry sec2 aa.pdf
 
Proteins lecture 10
Proteins lecture 10Proteins lecture 10
Proteins lecture 10
 
Amino acids
Amino acidsAmino acids
Amino acids
 
Amino Acid METABOLISM presentation slid.ppt
Amino Acid METABOLISM presentation slid.pptAmino Acid METABOLISM presentation slid.ppt
Amino Acid METABOLISM presentation slid.ppt
 

More from Esam Yahya

USE OF MICROBES IN MINERAL BENEFICIATION AND OIL RECOVERY A
USE OF MICROBES IN MINERAL BENEFICIATION AND OIL RECOVERY AUSE OF MICROBES IN MINERAL BENEFICIATION AND OIL RECOVERY A
USE OF MICROBES IN MINERAL BENEFICIATION AND OIL RECOVERY AEsam Yahya
 
USE OF MICROBES IN MINERAL BENEFICIATION AND OIL RECOVERY p
USE OF MICROBES IN MINERAL BENEFICIATION AND OIL RECOVERY pUSE OF MICROBES IN MINERAL BENEFICIATION AND OIL RECOVERY p
USE OF MICROBES IN MINERAL BENEFICIATION AND OIL RECOVERY pEsam Yahya
 
Industrial production of chemical solvents “Acetone”
Industrial production of chemical solvents “Acetone”Industrial production of chemical solvents “Acetone”
Industrial production of chemical solvents “Acetone”Esam Yahya
 
Industrial production of chemical solvents “Acetone” 2
Industrial production of chemical solvents “Acetone” 2Industrial production of chemical solvents “Acetone” 2
Industrial production of chemical solvents “Acetone” 2Esam Yahya
 
Enzyme Immobilization_ 2
Enzyme Immobilization_ 2Enzyme Immobilization_ 2
Enzyme Immobilization_ 2Esam Yahya
 
Enzyme immobilization 1
Enzyme immobilization 1Enzyme immobilization 1
Enzyme immobilization 1Esam Yahya
 
Enzyme immobilization 1
Enzyme immobilization 1Enzyme immobilization 1
Enzyme immobilization 1Esam Yahya
 
ANTIBIOTICS (Tetracycline)
ANTIBIOTICS (Tetracycline)ANTIBIOTICS (Tetracycline)
ANTIBIOTICS (Tetracycline)Esam Yahya
 

More from Esam Yahya (8)

USE OF MICROBES IN MINERAL BENEFICIATION AND OIL RECOVERY A
USE OF MICROBES IN MINERAL BENEFICIATION AND OIL RECOVERY AUSE OF MICROBES IN MINERAL BENEFICIATION AND OIL RECOVERY A
USE OF MICROBES IN MINERAL BENEFICIATION AND OIL RECOVERY A
 
USE OF MICROBES IN MINERAL BENEFICIATION AND OIL RECOVERY p
USE OF MICROBES IN MINERAL BENEFICIATION AND OIL RECOVERY pUSE OF MICROBES IN MINERAL BENEFICIATION AND OIL RECOVERY p
USE OF MICROBES IN MINERAL BENEFICIATION AND OIL RECOVERY p
 
Industrial production of chemical solvents “Acetone”
Industrial production of chemical solvents “Acetone”Industrial production of chemical solvents “Acetone”
Industrial production of chemical solvents “Acetone”
 
Industrial production of chemical solvents “Acetone” 2
Industrial production of chemical solvents “Acetone” 2Industrial production of chemical solvents “Acetone” 2
Industrial production of chemical solvents “Acetone” 2
 
Enzyme Immobilization_ 2
Enzyme Immobilization_ 2Enzyme Immobilization_ 2
Enzyme Immobilization_ 2
 
Enzyme immobilization 1
Enzyme immobilization 1Enzyme immobilization 1
Enzyme immobilization 1
 
Enzyme immobilization 1
Enzyme immobilization 1Enzyme immobilization 1
Enzyme immobilization 1
 
ANTIBIOTICS (Tetracycline)
ANTIBIOTICS (Tetracycline)ANTIBIOTICS (Tetracycline)
ANTIBIOTICS (Tetracycline)
 

Industrial production of chemical acids glutamic acid 2

  • 1. Industrial production of chemical acids: glutamine acid Background Proteins are large, complex molecules that are critical for the normal functioning of the human body. They are essential for the structure, function, and regulation of the body’s tissues and organs. Proteins are made up of hundreds of smaller units called amino acids that are attached to one another by peptide bonds, forming a long chain. You can think of a protein as a string of beads where each bead is an amino acid. Amino acids are biologically important organic compounds containing amine (-NH2) and carboxyl (-COOH) functional groups, along with a side-chain (R group) specific to each amino acid. The key elements of an amino acid are carbon, hydrogen, oxygen, and nitrogen, though other elements are found in the side-chains of certain amino acids. About 500 amino acids are known (though only 20 appear in the genetic code) and can be classified in many ways. They can be classified according to the core structural functional groups' locations as alpha- (α-), beta- (β-), gamma- (γ-) or delta- (δ-) amino acids; other categories relate to polarity, pH level, and side-chain group type (aliphatic, acyclic, aromatic, containing hydroxyl or sulfur, etc.). In the form of proteins, amino acids comprise the second-largest component (water is the largest) of human muscles, cells and other tissues. Outside proteins, amino acids perform critical roles in processes such as neurotransmitter transport and biosynthesis. In biochemistry, amino acids having both the amine and the carboxylic acid groups attached to the first (alpha-) carbon atom have particular importance. They are known as alpha or α-amino acids (generic formula H2NCHRCOOH in most cases, where R is an organic substituent known as a "side-chain"); often the term "amino acid" is used to refer specifically to these. They include the protein-genic ("protein-building") amino acids, which combine into peptide chains polypeptides to form the building-blocks of a vast array of proteins. These are all L-stereoisomers ("left-handed" isomers), although a few D-amino acids ("right-handed") occur in bacterial envelopes, as a neuromodulator (D-serine), and in some antibiotics. Twenty of the proteinogenic amino acids are encoded directly by triplet codons in the genetic code and are known as "standard" amino acids. The other three "non-standard" or "non-canonical" are selenocysteine (present in many noneukaryotes as well as most eukaryotes, but not coded directly by DNA), pyrrolysine
  • 2. (found only in some archea and one bacterium) and N-formylmethionine (which is often the initial amino acid of proteins in bacteria, mitochondria, and chloroplasts). Pyrrolysine and selenocysteine are encoded via variant codons; ex, seleno-cysteine is encoded by stop codon and SECIS element. Codon–tRNA combinations not found in nature can also be used to "expand" the genetic code and create novel proteins known as alloproteins incorporating non-proteinogenic amino acids. The amino acid business is a multi-billion dollar enterprise. All twenty amino acids are sold, albeiteach in greatly different quantities (Table 1). Amino acids are used as animal feed additives (lysine,methionine, threonine), flavor enhancers (monosodium glutamic, serine, aspartic acid) and asspecialty nutrients in the medical field. Glutamic acid, lysine and methionine account for the majority, by weight, of amino acids sold. Glutamic acid and lysine are made by fermentation; methionine is made by chemical synthesis. The major producers of amino acids are based in Japan, the US, South Korea, China and Europe. Many microbe-based industries have their origins in traditions that go back hundreds or thousands of years. The amino acid industry has its roots in food preparation practices in Japan. Seaweeds had been used for centuries there and in other Asian countries as a flavoring ingredient. In1908, Kikunae Ikeda of Tokyo Imperial University isolated the flavor enhancing principle from the seaweed konbu (also spelled kombu, Laminaria japonica; related to kelp) as crystals of monosodium glutamate (MSG). Adding MSG to meat, vegetables and just about any other type of prepared food makes it savory, a property referred to as umami. Soon after Ikeda’s discovery, and recognizing the market potential of MSG, Ajinomoto Co. in Japan began extracting MSG from acid-hydrolyzed wheat gluten or defatted soybean and selling it as a flavor enhancer. Production of MSG via “fermentation” grew out of the ashes of WWII in Japan. Around 1957, Japanese researchers led by S. Kinoshita at Kyowa Hakko Kogyo Co. isolated soil bacteria that produced large amounts of glutamic acid. Producing strains were found by inoculating soil isolates in a grid pattern on duplicate Petri plates. The colonies were allowed to grow and one set of duplicates was killed with UV irradiation. The killed plate was overlaid with soft agar containing a Leuconostoc mesenteroides. Since L. mesenteroides required glutamic acid for growth, it only grew in the vicinity of colonies that had excreted glutamate. Potential glutamate producers were then picked from the duplicate, unkilled, plate. Members of the Actinobacteria in the genus Corynebacterium (originally named Micrococcus glutamicus) were the most effective producers.
  • 3. Over the years, various glutamate-producing bacteria have been isolated and classified as Arthrobacter, Brevibacterium, or as members of other genera, but recent work has shown that almost all of these strains belong to the genus Corynebacterium. Wild-type cultures produced up to 10 g/l glutamic acid. Yields were quickly improved by process engineering and by developing over-producing mutants. Yields are now in excess of 100 g per liter. The isolation of bacterial glutamate-producers led to the development of large-scale manufacture of MSG from cheap sugar and ammonia rather than from more expensive extracts of plants or animals. In the early 1960s, workers at the same company found that C. glutamicum homoserine auxotrophs (see below) produced lysine thus providing the first viable fermentation process for lysine production. Today these bacteria produce well over 1,000,000 metric tons of MSG and 600,000 metric tons of lysine annually.
  • 4. Importance of Amino acids - Active Pharmaceutical Ingredients (APIs), there are pharmaceutical products that make use of amino acids themselves, and products that are synthesized and manufactured using amino acids as starting materials. Amino Acids are also used in infusion solutions, in addition to tablet and granulated forms, and are an essential part of modern medical treatments. - Medical Foods / Medical Nutrition, amino Acids are used as a way to provide a concentrated, specific and efficient intake of required nutrient components in medical foods for malnourished patients, elderly people with lower digestive capabilities, as well as in other uses. - Dietary Supplement / Health Foods / Functional Foods & Beverages, amino Acids are used for compensating amino acid deficiencies, as well as in supplements that make use of the specific function of amino acids. Products are sold in tablet, granular and capsule forms. These products were once mostly used by athletes, but they are now popular among the wider public for everyday workout and health maintenance.There are also functional food and beverage products that contain amino acids for functions similar to those found in health foods. - Cosmetics, amino Acids are used in cosmetics for their unique moisturizing effect and pH levels. Amino acid derivatives are also used for their stability and absorbency. - Culture Medium, recently, pharmaceutical products research and manufacture using cell culture process have become very popular. Amino Acids are essential components of cell culture medium. Amino Acids are considered to be indispensable to cell growth and production of antibodies and proteins. Glutamic acid Glutamic acid, also referred to as glutamate (the salt of glutamic acid), is an acidic, α-amino acid that is found in many proteins, and that in free form functions as an important neurotransmitter, a metabolic intermediate in the Krebs cycle, and a compound that can combine with an help in the elimination of toxic ammonia from the body. The salt monosodium glutamate (MSG) is a common food additive and flavor enhancer. Along with aspartic acid, to which is behaves similarly, glutamic acid is classified as an acidic amino acid. The L-isomer, which is the only form that is involved in protein synthesis, is one of the 20 standard amino acids common in animal proteins and required for normal functioning in humans. However, it
  • 5. is not considered to be an "essential" amino acid since it does not have to be taken in with the diet, but can be synthesized by the human body from other compounds through chemical reactions. Glutamic acid is responsible for one of the human senses of taste, termed umami, adding to the classical taste sensations of sweet, salty, sour, and bitter. Umami applies to the sensation of savoriness, the detection of glutamates in such foods as meats, cheese, and other protein-heavy foods. Beyond its practical value, taste adds to the human enjoyment of creation, joining such diverse senses as being able to see various colors, hear different sounds, smell a vast array of odors, and so forth. Such senses allow interaction with nature and touch upon the inner aspect of people. As a source for umami, MSG, the sodium salt of glutamic acid, is used to enhance the flavor of foods. Glutamic acid's three letter code is Glu, its one letter code is E, and its systematic name is 2-Aminopentanedioic acid (IUPAC-IUB 1983). A three-letter designation for either glutamic acid (Glu) or the amino acid glutamine (Gln) is Glx—this is often used in cases in which peptide sequencing reactions may convert glutamine to glutamate (or vice versa), leaving the original identity of the amino acid in doubt. Chemical Structure In biochemistry, the term amino acid is frequently used to refer specifically to alpha amino acids: those amino acids in which the amino and carboxylate groups are attached to the same carbon, the so-called α–carbon (alpha carbon). The general structure of these amino acids is: Most amino acids occur in two possible optical isomers, called D and L. The L amino acids represent the vast majority of amino acids found in proteins. They are called proteinogenic amino acids. As the name "proteinogenic" (literally, protein building) suggests, these amino acid are encoded by the standard genetic code and participate in the process of protein synthesis. In glutamic acid, only the L-stereoisomer is involved in protein synthesis in
  • 6. mammals. Glutamic acid's chemical formula is HOOC-CH(NH2)-(CH2)2-COOH (very similar to aspartic acid's formula, HOOC-CH(NH2)-CH2-COOH), but with an extra CH2), or more generally C5H9NO4. (Aspartic acid's general forumula is C4H7NO4.) Glutamic acid behaves similar to aspartic acid, but has a longer, slightly more flexible side chain. As its name indicates, it is acidic, with a carboxylic acid component to its side chain. Generally either the amino group will be protonated or one or both of the carboxylic groups will be deprotonated. At neutral pH all three groups are ionized and the species has a charge of -1. The pKa value for Glutamic acid is 4.1. This means that at pH below this value it will be protonated (COOH) and at pH above this value it will be deprotonated (COO-). Application of glutamic acid Food Production - L-Glutamic Acid is widely used as nutritional supplement in food production. - As flavor enhancer: in MSG and spices to improve flavor. - As nutritional supplement: in food industries to provide amino acids. Beverage - L-Glutamic Acid is widely used as flavor enhancer in beverage. - As flavor enhancer: in soft drink and wine to improve flavor. Pharmaceutical - Not enough is known about application of L-Glutamic Acid in Pharmaceutical. Cosmetics - L-Glutamic Acid is widely used as Hair restorer in Cosmetics. - As Hair restorer: in treatment of Hair Loss. - As Wrinkle: in preventing aging. Agriculture/Animal Feed - L-Glutamic Acid is widely used as nutritional supplement in Agriculture/Animal Feed. - As nutritional supplement: in feed additive to enhance nutrition. Other Industries - L-Glutamic Acid is widely used as intermediate in various other industries. - As intermediate: in manufacturing of various organic chemicals.
  • 7. Biosynthesis of Glutamic acid An amino acid precursor is converted to the target amino acid using 1 or 2 enzymes, allows the conversion to a specific amino acid without microbial growth, thus eliminating the long process from glucose. Raw materials for the enzymatic step are supplied by chemical synthesis the enzyme itself is either in isolated or whole cell form which is prepared by microbial fermentation, as following:- Reactants Products Enzymes Glutamine + H2O → Glu + NH3 GLS, GLS2 NAcGlu + H2O → Glu + Acetate (unknown) α-ketoglutarate + NADPH + NH4+ → Glu + NADP+ + H2O GLUD1, GLUD2 α-ketoglutarate + α-amino acid → Glu + α-oxo acid transaminase 1-pyrroline-5-carboxylate + NAD+ + H2O → Glu + NADH ALDH4A1 N-formimino-L-glutamate + FH4 ⇌ Glu + 5-formimino-FH4 FTCD Industrial Production and use of Microorganisms L-amino acids are major biological components commercially used as additives in food, feed supplements, infusion compounds, thera-peutic agents and precursors for peptides synthesis or agriculture based chemicals. The amino acids are the second most important category, after antibiotics, with fermentation products exhibiting the highest growth rates. L-glutamic acid was the first amino acid produced commercially. The substance was discovered and identified in the year 1866 by the German chemist Karl Heinrich Leopold Ritt-hausen. L-glutamic acid was mainly produced by microbial fermentations and the chemical mode of synthesis is not widely preferred due to the formation of racemic mixture. Corynebacterium glutamicum is a very important fermentative bacteria most widely know for its role in the production of monosodium glutamate, or MSG. Discovered in 1957 in Japan as a natural producer of glutamic acid, C. glutamicum is a Gram positive, facultatively anaerobic, heterotrophic bacterium with an irregular rod shape in a V-formation. It is non-pathogenic and is found in soil, animal feces, fruits and vegetables. Though it was originally isolated for its ability
  • 8. to produce massive amounts of glutamic acid, C. glutamicum and closely related organisms have been developed for the production of most of the biogene amino acids, nucleotides, and vitamins. Because of this ability it has undergone extensive genetic study to understand its production pathways.The isolation of C. glutamicum as a producer of glatamic acid and sequentially for the large-scale production of MSG was achieved in post WWII Japan by Japanese researchers led by S. Kinoshita at Kyowa Hakko Kogyo Co. They found soil bacteria that produced large amounts of glutamic acid. They made two duplicate plates and after letting them grow for awhile, they killed the bacterium on one plate by UV irradiation. They then inoculated that plate with Leuconostoc mesenteroides, a bacteria that will only grow in the presence of glutamic acid. By looking at the locations of the L. mesenteroides colonies and comparing to the duplicate plate, they isolated the glutamic acid producing bacteria, C. glutamicum. Wild-type strains of this bacterium were found to produce about 10 g/L glutamic acid, and with genetic engineering yields are now upwards of 100g/L. The thing that distinguishes C. glutamicum from similar bacteria that produce the glutamic acid is the amount that is produced. Glutamic acid is made by extracting alpha-ketogluterate from the TCA cycle by way a reductive amination by NADP+ specific glutamate dehydrogenase. The reason that C. glutamicum produces so much more than similar bacteria is not known for sure. A widely accepted theory used to be that C. glutamicum had very little alpha-ketogluterate dehydrogenase, the enzyme needed to continue the TCA cycle, so it was forced to produce glutamic acid. Corynebacterium glutamicum
  • 9. That was not necessarily disproved because of the difficulty of isolating alpha-ketogluterate dehydragenase, but it is now thought to have more to do with concentrations of glutamic acid inside the cell. In biotechnological processes, Corynebacterium species are used for economic production of glutamic acid by submerged fermentation. L-glutamic acid is produced per year using coryneform bacteria. A number of fermentation techniques have been used for the production of glutamic acid. Glucose is one of the major carbon sources for production of glutamic acid. Glutamic acid was produced with various kinds of raw materials using sub-merged fermentation of palm waste hydrolysate, cassava starch, sugar cane bagasse, date waste.Properties of a useful industrial microbe include - Produces spores or can be easily inoculated. - Grows rapidly on a large scale in inexpensive medium. - Produces desired product quickly. - Should not be pathogenic. - Amenable to genetic manipulation. Industrial production of glutamic acid The manufacturing process of glutamic acid by fermentation comprises :- fermentation, crude isolation, and purification processes. The fermentation unit in industrial microbiology is analogous to a chemical plant in the chemical industry. A fermentation process is a biological process and, therefore, has requirements of sterility and use of cellular enzymic reactions instead of chemical reactions aided by inanimate catalysts, sometimes operating at elevated temperature and pressure. Industrial fermentation processes may be divided into two main types, with various combinations and modifications. 1- Batch culture Batch fermentation widely use in production of most of amino acids. refers to a partially closed system in which most of the materials required are loaded onto the fermentor, decontaminated before the process starts and then, removed at the end. The only material added and removed during the course of a batch fermentation is the gas exchange and pH control solutions. In this mode of operation, conditions are continuously changing with time, and the fermentor is an unsteady-state system, although in a well-mixed reactor, conditions are supposed to be uniform throughout the
  • 10. reactor at any instant time. The principal disadvantage of batch processing is the high proportion of unproductive time (down-time) between batches, comprising the charge and discharge of the fermentor vessel, the cleaning, sterilization and re-start process 2- Fed-batch fermentation The fed-batch technique was originally devised by yeast producers in the early 1900s to regulate the growth in batch culture of Saccharomyces cerevisiae18. Yeast producers observed that in the presence of high concentrations of malt, a by-product - ethanol - was produced, while in low concentrations of malt, the yeast growth was restricted. The problem was then solved by a controlled feeding regime, so that yeast growth remained substrate limited. The concept was then extended to the production of other products, such as some enzymes, antibiotics, growth hormones, microbial cells, vitamins, amino acids and other organic acids. Basically, cells are grown under a
  • 11. batch regime for some time, usually until close to the end of the exponential growth phase. At this point, the reactor is fed with a solution of substrates, without the removal of culture fluid. This feed should be balanced enough to keep the growth of the microorganisms at a desired specific growth rate and reducing simultaneously the production of by-products (that can be growth or product production inhibitory and make the system not as effective). These by-products may also affect the culture environment in such a way that might lead to early cell death even though sufficient nutrients are available or are still being provided. A fed-batch is useful in achieving high concentration of products as a result of high concentration of cells for a relative large span of time. Two cases can be considered: the production of a growth associated product and the production of a non-growth associated product. In the first case, it is desirable to extend the growth phase as much as possible, minimizing the changes in the fermentor as far as specific growth rate, production of the product of interest and avoiding the production of by-products. For non-growth associated products, the fed-batch would be having two phases: a growth phase in which the cells are grown to the required concentration and then a production phase in which carbon source and other requirements for production are fed to the fermentor. This case is also of particular interest for recombinant inducible systems: the cells are grown to high concentrations and then induced to express the recombinant product. Also, considering that plasmid stability is very often guaranteed by the presence of an antibiotic marker gene and that the lifetime of this antibiotic in a fermentor can be limited, it might be of interest to use the fed-batch
  • 12. concept to feed this same antibiotic continuously so that the presence of the plasmid in the cells is more of a reliable fact. Fed-batch fermentations can be the best option for some systems in which the nutrients or any other substrates are only sparingly soluble or are too toxic to add the whole requirement for a batch process at the start, in fermentations such as mycelial culture the increase of viscosity with time can be compensated by the addition of relatively small quantity of water during the fermentation time, although the efficacy of this protocol is controversial among reserachers. Many factors are involved in the regulation of a fed-batch reactor. As an example, however, the feed rate can be varied to control the concentrations of nutrients in the bioreactor. 3- Continuous fermentation Continuous culture is a technique involving feeding the microorganism used for the fermentation with fresh nutrients and, at the same time, removing spent medium plus cells from the system1. An unique feature of the continuous culture is that a time-independent steady-state can be attained which enables one to determine the relations between microbial behavior (genetic and phenotypic expression) and the environmental conditions. Industrial production of glutamic acid - Natural product such as sugar cane is used. - Then, the sugar cane is squeezed to make molasses. - The heat sterilize raw material and other nutrient are put in the tank of the fermenter.
  • 13. - The microorganism (Corynebacterium glutamicum) producing glutamic acid is added to the fermentation broth. - The microorganism reacts with sugar to produce glutamic acid. - Then, the fermentation broth is acidified and the glutamic acid is crystallized. Separation and purification - After the fermentation process, specific method is require to separate and purify the amino acid produced from its contaminant products, which include: Centrifugation. Common method used in industry, can be operate semi-continuous or continuous basis, large scale tests have to performed to choose a suitable centrifuge, poor centrifugation can be improved by adding flocculation agent. This agent will neutralize the anionic charges on the surface of microbial cells. Filtration. Also widely use in industrial, based on a few factors : Properties of the filtrate, nature of the solid particles, Adequate pressure to obtain adequate flow rate, negative effects of antifoaming agents on filtration, filtration can be improved by using filteraids, filteraids improved the porosity of a resulting filter cake leading to a faster flow rates. Crystallisation. Method to recover amino acid, because of the amphoteric character of amino acid, their solubility are greatly influenced by the pH of a solution, temperature also influence the solubility of amino acid and their salts, thus, lowering the temperature can be used to obtain the required product, precipitation of amino acid with salts are commonly used Ion exchange. Used for the extraction and purification of amino acids form the fermentation broth, strongly affected by pH of the solutions and the present of contaminant ions. There are two types
  • 14. of ion exchange resins, cation exchange resins, anion exchange resins. cation exchange resins, bind with positively charged amino acids, Anion exchange resins, bind with negatively charged amino acid. Anion exchange resins are generally lower in their exchange capacity and durability than cation exchange resins, ion exchange as a tool for separation is only used when other steps fail, because of its tedious operation, small capacity and high costs. Electro-dialysis. Based on the principle that charged particles move towards the electrodes in the electric field, a mixture of the required amino acid and contaminant salts can be separated at a pH where the amino acid has a net zero charge. The salt ions are captured by the ion exchange membranes that are present, the applications are limited to desalting amino acid solutions.
  • 15. Solvent extraction. Has only limited applications. The distribution coefficients of amino acids between organic solvent and water phases are generally small. Some possibilities based on alteration of amino acid, cyclisation of L-glutamic acid and extraction with alkyl and aromatic alcohols, conversion of contaminant organic acids (like acetic acid) to the ester form and extraction of the ester, extraction of basic amino acids (like L-lysine) from aqueous solution with water immiscible solvents containing higher fatty acids; Decolorisation. Performed to get rid of the colored impurities in the fermentation broth. based on the fact that amino acids (especially the non-aromatic amino acids) do not adsorb onto activated charcoal. Although the treatment is very effective, some of the amino acid is lost during this step. Alternative ways: addition of cationic surfactants, high molecular synthetic coagulants or some phenolic compounds, washing of crystals with weakly alkaline water as in the case of glutamic acid. Evaporation. Evaporation of the amino acid containing solution is a quick but commercially unattractive way (high energy costs) to obtain amino acids from solution, used when the total amount of contaminant products is very low, since these compounds are not removed and appear in a concentrated form in the product.
  • 16. After undergo to the suitable method of separation and purification, the glutamic acid crystal cake is then separated from the acidified fermentation broth. The glutamic acid crystal is added to the sodium hydroxide solution and converted into monosodium glutamate (MSG), which is more soluble in water, less likely absorb moisture and has strong umami taste. The MSG is cleaned by using active carbon, which has many micro holes on their surface, the clean MSG solution is concentrated by heating and the monosodium glutamate crystal is formed. The crystal produce are dried with a hot air in a closed system. Then, the crystal is packed in the packaging and ready to be sold. Advantages of amino acid fermentation - Normally the production strain is constructed in such a way that overproduction of the desired amino acid is obtained and no, or only minor concentrations of, unwanted contaminants appear. - Optical resolution steps are not necessary (as in the case of most chemical-processes) since only the L-form is synthesised. - The required amino acid can be relatively easily separated from cells and protein impurities. References 1. Masato Ikeda, Microbial Production of l-Amino Acids Advances in Biochemical Engineering/Biotechnology.Amino Acid Production Processes, 79, pp. 1-35, 2003. 2. Hidehiko Kumagai. Amino Acid Production the Prokaryotes 3rd edition, pp. 169-177, 2013. 3. Chibata, I., T. Kakimoto, and J. Kato. Enzymatic production of L-alanine by Pseudomonas dachnae Appl. Microbiol. 13, pp. 638–645, 1965. 4. Sano K, Mitsugi K, Enzymatic production of L-cysteine from DL-2-amino-Δ2-thiazoline-4- carboxylic acid by Pseudomonas thiazolinohilum: optimal conditions for the enzyme formation and enzymatic reaction. Agric Biol Chem (42), pp. 2315–2321, 1978. 5. Sano K, Eguchi NY, Mitsugi K Metabolic pathway of L-cysteine formation from DL-2-amino- Δ2-thiazoline- 4-carboxylic acid by Pseudomonas. Agric Biol Chem 43:2373–2374, (1979).
  • 17. 6. Terasawa M, Yukawa H, Takayama Y, Production of Laspartic acid from Brevibacterium by the cell re-using process. Process Biochem 20:124–128, (1985). 7. Takamatsu S, Umemura I, Yamamoto K, Sato T, Chibata I, Production of L-alanine from ammonium fumarate using two immobilized microorganisms. Eur J Appl Microbiol Biotechnol 15:147–152, (1982). 8. Srinivasan VR, Summers RJ, Continuous culture in the fermentation industry. In: Calcott PH (ed) Continuous cultures of cells. CRC Press, Florida, 97, (1981). 9. Kinoshita S, Taxonomic position of glutamic acid producing bacteria. In: Flickinger MC, Drew SW (eds) Encyclopedia of bioprocess technology: fermentation, biocatalysis, and bioseparation. Wiley, 1330, (1999). 10. Kinoshita S, Tanaka K, Glutamic acid. In: Yamada K (ed) The microbial production of amino acids. Wiley, 263, (1972) 11. Y Anzai, H Kim, J Y Park, H Wakabayashi and H Oyaizu, Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. IJSEM, 50 (4): 1563- 1589, (2000). 12- Kimura, E., C. Yagoshi, Y. Kawahara, T. Ohsumi, T. Nakamatsu, and H. Tokuda, Glutamate overproduction in Corynebacterium glutamicum triggered by a decrease in the level of a complex comprising dtsR and a biotincontaining subunit Biosci. Biotechnol. Biochem. 63: 1274–1278, (1999). 13. Yamada, H., and H. Kumagai, Synthesis of L-tyrosine related amino acids by β-tyrosinase In: D. Perlman (Ed.) Advances in Applied Microbiology Academic Press New York NY 19: 249– 288, (1975). 14. Katsumata R, Mizukami T, Kikuchi Y, Kino K, Threonine production by the lysine producing strain of Corynebacterium glutamicum with amplified threonine biosynthetic operon. Genetics of industrial microorganisms, 21(1): 217, (1986).