This document summarizes an image segmentation algorithm called Modified MAP-ML Estimations. It begins with an abstract describing the algorithm and its benefits of faster execution time compared to existing algorithms. It then reviews related work in image segmentation techniques and their limitations. The document describes the probabilistic model used in the algorithm, which formulates segmentation as a labeling problem. It explains the MAP estimation approach used to estimate label configurations, defining energy functions minimized through graph cuts. ML estimation is then used to update the region feature estimates in an iterative process. In summary, this algorithm modifies an existing MAP-ML approach to achieve comparable segmentation results to other algorithms, but in a faster execution time without human intervention.