This document discusses using data mining techniques like Naive Bayes and Weighted Associative Classifier (WAC) to predict heart disease. It analyzes a dataset containing factors like age, sex, medical history, and test results. Naive Bayes and WAC are used to generate rules for predicting whether a patient has heart disease risk. The system was able to indicate heart disease risk levels based on the patient's data. The document concludes the approach was effective for heart disease prediction and automation could further improve clinical decision making.