Download free for 30 days
Sign in
Upload
Language (EN)
Support
Business
Mobile
Social Media
Marketing
Technology
Art & Photos
Career
Design
Education
Presentations & Public Speaking
Government & Nonprofit
Healthcare
Internet
Law
Leadership & Management
Automotive
Engineering
Software
Recruiting & HR
Retail
Sales
Services
Science
Small Business & Entrepreneurship
Food
Environment
Economy & Finance
Data & Analytics
Investor Relations
Sports
Spiritual
News & Politics
Travel
Self Improvement
Real Estate
Entertainment & Humor
Health & Medicine
Devices & Hardware
Lifestyle
Change Language
Language
English
Español
Português
Français
Deutsche
Cancel
Save
EN
Uploaded by
hamza dahoka
3,416 views
Green function
Green function
Engineering
◦
Read more
4
Save
Share
Embed
Embed presentation
Download
Downloaded 39 times
1
/ 25
2
/ 25
Most read
3
/ 25
Most read
4
/ 25
5
/ 25
6
/ 25
7
/ 25
8
/ 25
9
/ 25
10
/ 25
11
/ 25
12
/ 25
13
/ 25
14
/ 25
15
/ 25
16
/ 25
17
/ 25
18
/ 25
19
/ 25
20
/ 25
21
/ 25
22
/ 25
23
/ 25
24
/ 25
25
/ 25
More Related Content
PDF
34032 green func
by
ansarixxx
PPT
Cylindrical and Spherical Coordinates System
by
Jezreel David
PDF
Curve fitting - Lecture Notes
by
Dr. Nirav Vyas
PPT
CONVERGENCE.ppt
by
Dr. V. THIRUVENI
PDF
Group Theory
by
shinojmadhu
PPTX
Gaussian Elimination Method
by
Andi Firdaus
PPTX
Complex analysis
by
sujathavvv
PPTX
Gradient , Directional Derivative , Divergence , Curl
by
VishalVishwakarma59
34032 green func
by
ansarixxx
Cylindrical and Spherical Coordinates System
by
Jezreel David
Curve fitting - Lecture Notes
by
Dr. Nirav Vyas
CONVERGENCE.ppt
by
Dr. V. THIRUVENI
Group Theory
by
shinojmadhu
Gaussian Elimination Method
by
Andi Firdaus
Complex analysis
by
sujathavvv
Gradient , Directional Derivative , Divergence , Curl
by
VishalVishwakarma59
What's hot
PDF
Succesive differntiation
by
JaydevVadachhak
PPTX
Classical Mechanics-MSc
by
Dr.Pankaj Khirade
PPTX
Independence, basis and dimension
by
ATUL KUMAR YADAV
DOCX
B.tech ii unit-2 material beta gamma function
by
Rai University
PPT
Ph 101-9 QUANTUM MACHANICS
by
Chandan Singh
PPTX
Differential equations
by
Seyid Kadher
PPTX
ORDINARY DIFFERENTIAL EQUATION
by
LANKESH S S
PPT
Laplace transforms
by
Awais Chaudhary
PPTX
Complex analysis
by
anithaselvakumar271
PPT
Roll's theorem
by
Md. Mizanur Rahaman
PPT
Fdtd
by
physics Imposible
PPTX
Exact Differential Equations
by
Prasad Enagandula
PPTX
Stoke’s theorem
by
Abhishek Chauhan
PDF
Green’s Function Solution of Non-homogenous Singular Sturm-Liouville Problem
by
IJSRED
PDF
M.Sc. Phy SII UIII Quantum Mechanics
by
Pankaj Nagpure, Shri Shivaji Science College, Amravati
PPT
Mathematics and History of Complex Variables
by
Solo Hermelin
PDF
Jacobians new
by
Cyprian. Konyeha
PDF
Beta gamma functions
by
Dr. Nirav Vyas
PPTX
Sequences and Series (Mathematics)
by
Dhrumil Maniar
PDF
Interpolation of Cubic Splines
by
Sohaib H. Khan
Succesive differntiation
by
JaydevVadachhak
Classical Mechanics-MSc
by
Dr.Pankaj Khirade
Independence, basis and dimension
by
ATUL KUMAR YADAV
B.tech ii unit-2 material beta gamma function
by
Rai University
Ph 101-9 QUANTUM MACHANICS
by
Chandan Singh
Differential equations
by
Seyid Kadher
ORDINARY DIFFERENTIAL EQUATION
by
LANKESH S S
Laplace transforms
by
Awais Chaudhary
Complex analysis
by
anithaselvakumar271
Roll's theorem
by
Md. Mizanur Rahaman
Fdtd
by
physics Imposible
Exact Differential Equations
by
Prasad Enagandula
Stoke’s theorem
by
Abhishek Chauhan
Green’s Function Solution of Non-homogenous Singular Sturm-Liouville Problem
by
IJSRED
M.Sc. Phy SII UIII Quantum Mechanics
by
Pankaj Nagpure, Shri Shivaji Science College, Amravati
Mathematics and History of Complex Variables
by
Solo Hermelin
Jacobians new
by
Cyprian. Konyeha
Beta gamma functions
by
Dr. Nirav Vyas
Sequences and Series (Mathematics)
by
Dhrumil Maniar
Interpolation of Cubic Splines
by
Sohaib H. Khan
Viewers also liked
PPTX
Uni2go week4_interview summary
by
UNI2GO
PDF
Techniques for Developing Directory and Marketplace Sites with WordPress
by
onthegosystems
PDF
KIDS_Lookbook_EMAIL_FINAL
by
Derek Smith
PPT
That's me !!
by
Sameh Ezzat
PDF
UNI2GO Pitch Draft
by
UNI2GO
PDF
Rich Radka, Internet of Things at WSA-mobile Global Congress 2015
by
wsa-mobile
PPTX
Uni2 go week5
by
UNI2GO
DOCX
JMNeyrey CV 2015 - sales
by
John Michael Neyrey
PPTX
Uni2 go week3
by
UNI2GO
DOCX
Legal environtment
by
fawaidalvian
PDF
Kuivalainen_Miikka
by
Miikka Kuivalainen
PPTX
Lo8
by
Hayley Martin
PPS
0felicitari 8 martie
by
Violeta Gisculescu
PPT
How to Prevent an International Incident: Communicating with Global Teams
by
Meredith Kramer
Uni2go week4_interview summary
by
UNI2GO
Techniques for Developing Directory and Marketplace Sites with WordPress
by
onthegosystems
KIDS_Lookbook_EMAIL_FINAL
by
Derek Smith
That's me !!
by
Sameh Ezzat
UNI2GO Pitch Draft
by
UNI2GO
Rich Radka, Internet of Things at WSA-mobile Global Congress 2015
by
wsa-mobile
Uni2 go week5
by
UNI2GO
JMNeyrey CV 2015 - sales
by
John Michael Neyrey
Uni2 go week3
by
UNI2GO
Legal environtment
by
fawaidalvian
Kuivalainen_Miikka
by
Miikka Kuivalainen
Lo8
by
Hayley Martin
0felicitari 8 martie
by
Violeta Gisculescu
How to Prevent an International Incident: Communicating with Global Teams
by
Meredith Kramer
Green function
1.
ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka
1 GREEN FUNCTION Example 1:- 𝑥2 𝑦,𝑥𝑥 − 2𝑥𝑦,𝑥 + 2𝑦 = 𝑥3 𝑦(1) = 𝑦,𝑥(1) = 0 Solution (𝑎 𝑜(𝑥)) = 𝑥2 , (𝑎 𝑜(𝑥)),𝑥 = 2𝑥 , (𝑎1(𝑥)) = −2𝑥 (𝑎 𝑜(𝑥)),𝑥 ≠ (𝑎1(𝑥)) ∴ 𝑛𝑜𝑡 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑦,𝑥𝑥 − 2 𝑥 𝑦,𝑥 + 2 𝑥2 𝑦 = 𝑥 𝑃(𝑥) = 𝑒∫ − 2 𝑥 𝑑𝑥 = 1 𝑥2 1 𝑥2 𝑦,𝑥𝑥 − 2 𝑥3 𝑦,𝑥 + 2 𝑥4 𝑦 = 1 𝑥 (𝑎 𝑜(𝑥)),𝑥 = (𝑎1(𝑥)) ∴ 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑙𝑒𝑡: 𝑥 = 𝑒 𝑡 𝑅(𝑅 − 1) − 2𝑅 + 2 = 0 𝑅2 − 3𝑅 + 2 = 0 ⇒ { 𝑅1 = 1 𝑅2 = 2 𝑦(𝑡) = 𝐴𝑒 𝑡 + 𝐵𝑒2𝑡 𝐺(𝑡, 𝑧) = 𝐴(𝑧) 𝑒 𝑡 + 𝐵(𝑧) 𝑒2𝑡 𝐺(𝑧, 𝑧) = 𝐴(𝑧) 𝑒 𝑧 + 𝐵(𝑧) 𝑒2𝑧 = 0 ⇒ 𝐴(𝑧) = −𝐵(𝑧) 𝑒 𝑧 𝐺,𝑡(𝑧, 𝑧) = 𝐴(𝑧) 𝑒 𝑧 + 2𝐵(𝑧) 𝑒2𝑧 = 1 ⇒ − 𝐵(𝑧) 𝑒2𝑧 + 2𝐵(𝑧) 𝑒2𝑧 = 1 ∴ { 𝐴(𝑧) = −𝑒−𝑧 𝐵(𝑧) = 𝑒−2𝑧 𝐺(𝑡, 𝑧) = −𝑒−𝑧 𝑒 𝑡 + 𝑒−2𝑧 𝑒2𝑡 , 𝑓(𝑧) = 𝑒3𝑧
2.
ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka
2 𝑦(𝑡) = ∫ 𝐺(𝑡, 𝑧) 𝑓(𝑧) 𝑑𝑧 𝑡 0 𝑦(𝑡) = −𝑒 𝑡 ∫ 𝑒2𝑧 𝑑𝑧 𝑡 0 + 𝑒2𝑡 ∫ 𝑒 𝑧 𝑑𝑧 𝑡 0 𝑦(𝑡) = − 𝑒 𝑡 2 (𝑒2𝑧|0 𝑡 ) + 𝑒2𝑡(𝑒 𝑧|0 𝑡 ) 𝑦(𝑡) = 𝑒3𝑡 2 + 𝑒 𝑡 2 − 𝑒2𝑡 𝑙𝑒𝑡: 𝑡 = 𝑙𝑛(𝑥) 𝑦( 𝑥) = 𝑥3 2 + 𝑥 2 − 𝑥2
3.
ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka
3 Example1-1:- 𝑥2 𝑦,𝑥𝑥 − 2𝑥𝑦,𝑥 + 2𝑦 = 𝑥3 𝑦(1) = 𝑦,𝑥(1) = 0 Solution (𝑎 𝑜(𝑥)) = 𝑥2 , (𝑎 𝑜(𝑥)),𝑥 = 2𝑥 , (𝑎1(𝑥)) = −2𝑥 (𝑎 𝑜(𝑥)),𝑥 ≠ (𝑎1(𝑥)) ∴ 𝑛𝑜𝑡 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑦,𝑥𝑥 − 2 𝑥 𝑦,𝑥 + 2 𝑥2 𝑦 = 𝑥 𝑃(𝑥) = 𝑒∫ − 2 𝑥 𝑑𝑥 = 1 𝑥2 1 𝑥2 𝑦,𝑥𝑥 − 2 𝑥3 𝑦,𝑥 + 2 𝑥4 𝑦 = 1 𝑥 (𝑎 𝑜(𝑥)),𝑥 = (𝑎1(𝑥)) ∴ 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑙𝑒𝑡: 𝑥 = 𝑒 𝑡 𝑅(𝑅 − 1) − 2𝑅 + 2 = 0 𝑅2 − 3𝑅 + 2 = 0 ⇒ { 𝑅1 = 1 𝑅2 = 2 𝑦(𝑡) = 𝐴𝑒 𝑡 + 𝐵𝑒2𝑡 𝑙𝑒𝑡: 𝑡 = 𝑙𝑛(𝑥) 𝑦(𝑥) = 𝐴𝑥 + 𝐵𝑥2 𝐺(𝑥, 𝑧) = 𝐴(𝑧) 𝑥 + 𝐵(𝑧) 𝑥2 𝐺(𝑧, 𝑧) = 𝐴(𝑧) 𝑧 + 𝐵(𝑧) 𝑧2 = 0 ⇒ 𝐴(𝑧) = −𝐵(𝑧) 𝑧 𝐺,𝑥(𝑧, 𝑧) = 𝐴(𝑧) + 2𝐵(𝑧) 𝑧 = 1 ⇒ − 𝐵(𝑧) 𝑧 + 2𝐵(𝑧) 𝑧 = 1 ∴ { 𝐴(𝑧) = −1 𝐵(𝑧) = 1 𝑧
4.
ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka
4 𝐺(𝑡, 𝑧) = −𝑥 + 𝑥2 𝑧 , 𝑓(𝑧) = 𝑧 𝑦(𝑡) = ∫ 𝐺(𝑡, 𝑧) 𝑓(𝑧) 𝑑𝑧 𝑥 1 𝑦(𝑡) = −𝑥 ∫ 𝑧 𝑑𝑧 𝑥 1 + 𝑥2 ∫ 1 𝑑𝑧 𝑥 1 𝑦(𝑡) = − 𝑥 2 (𝑧2|0 𝑡 ) + 𝑥2(𝑧|0 𝑡 ) 𝑦( 𝑥) = 𝑥3 2 + 𝑥 2 − 𝑥2 𝑀𝐴𝑇𝐿𝐴𝐵 | ≫ 𝑦 = 𝑑𝑠𝑜𝑙𝑣𝑒( ′ 𝑥^2 ∗ 𝐷2𝑦 − 2 ∗ 𝑥 ∗ 𝐷𝑦 + 2 ∗ 𝑦 = 𝑥^2′ , ′ 𝑦(1) = 0′ , ′ 𝐷𝑦(1) = 0′ ,′ 𝑥′) ≫ 𝑦 = 𝑥^3 2⁄ + 𝑥 2⁄ − 𝑥^2 Example 2:- 𝑥2 𝑦,𝑥𝑥 + 𝑥𝑦,𝑥 − 𝑦 = 𝑥2 𝑦(1) = 𝑦,𝑥(1) = 0 Solution (𝑎 𝑜(𝑥)) = 𝑥2 , (𝑎 𝑜(𝑥)),𝑥 = 2𝑥 , (𝑎1(𝑥)) = 𝑥 (𝑎 𝑜(𝑥)),𝑥 ≠ (𝑎1(𝑥)) ∴ 𝑛𝑜𝑡 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑦,𝑥𝑥 + 1 𝑥 𝑦,𝑥 − 1 𝑥2 𝑦 = 1 𝑃(𝑥) = 𝑒∫ 1 𝑥 𝑑𝑥 = 𝑥 𝑥𝑦,𝑥𝑥 + 𝑦,𝑥 − 1 𝑥 𝑦 = 1 𝑥
5.
ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka
5 (𝑎 𝑜(𝑥)),𝑥 = (𝑎1(𝑥)) ∴ 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑙𝑒𝑡: 𝑥 = 𝑒 𝑡 𝑅(𝑅 − 1) + 𝑅 − 1 = 0 𝑅2 − 1 = 0 ⇒ { 𝑅1 = 1 𝑅2 = −1 𝑦(𝑡) = 𝐴𝑒 𝑡 + 𝐵𝑒−𝑡 𝐺(𝑡, 𝑧) = 𝐴(𝑧) 𝑒 𝑡 + 𝐵(𝑧) 𝑒−𝑡 𝐺(𝑧, 𝑧) = 𝐴(𝑧) 𝑒 𝑧 + 𝐵(𝑧) 𝑒−𝑧 = 0 ⇒ 𝐴(𝑧) = −𝐵(𝑧) 𝑒−2𝑧 𝐺,𝑡(𝑧, 𝑧) = 𝐴(𝑧) 𝑒 𝑧 − 𝐵(𝑧) 𝑒−𝑧 = 1 ⇒ − 𝐵(𝑧) 𝑒−𝑧 − 𝐵(𝑧) 𝑒−𝑧 = 1 ∴ { 𝐴(𝑧) = 𝑒−𝑧 2⁄ 𝐵(𝑧) = −𝑒 𝑧 2⁄ 𝐺(𝑡, 𝑧) = 1 2 𝑒−𝑧 𝑒 𝑡 − 1 2 𝑒 𝑧 𝑒−𝑡 , 𝑓(𝑧) = 𝑒2𝑧 𝑦(𝑡) = ∫ 𝐺(𝑡, 𝑧) 𝑓(𝑧) 𝑑𝑧 𝑡 0 𝑦(𝑡) = 𝑒 𝑡 2 ∫ 𝑒 𝑧 𝑑𝑧 𝑡 0 − 𝑒−𝑡 2 ∫ 𝑒3𝑧 𝑑𝑧 𝑡 0 𝑦(𝑡) = 𝑒 𝑡 2 (𝑒 𝑧|0 𝑡 ) − 𝑒−𝑡 6 (𝑒3𝑧|0 𝑡 ) 𝑦(𝑡) = 𝑒2𝑡 3 − 𝑒 𝑡 2 + 1 6𝑒 𝑡 𝑙𝑒𝑡: 𝑡 = 𝑙𝑛(𝑥) 𝑦(𝑥) = 𝑥2 3 + 1 6𝑥 − 𝑥 2 𝑦( 𝑥) = 𝑥 ( 𝑥 3 + 1 6𝑥2 ) − 𝑥 2
6.
ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka
6 Example 2-1:- 𝑥2 𝑦,𝑥𝑥 + 𝑥𝑦,𝑥 − 𝑦 = 𝑥2 𝑦(1) = 𝑦,𝑥(1) = 0 Solution (𝑎 𝑜(𝑥)) = 𝑥2 , (𝑎 𝑜(𝑥)),𝑥 = 2𝑥 , (𝑎1(𝑥)) = 𝑥 (𝑎 𝑜(𝑥)),𝑥 ≠ (𝑎1(𝑥)) ∴ 𝑛𝑜𝑡 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑦,𝑥𝑥 + 1 𝑥 𝑦,𝑥 − 1 𝑥2 𝑦 = 1 𝑃(𝑥) = 𝑒∫ 1 𝑥 𝑑𝑥 = 𝑥 𝑥𝑦,𝑥𝑥 + 𝑦,𝑥 − 1 𝑥 𝑦 = 1 𝑥 (𝑎 𝑜(𝑥)),𝑥 = (𝑎1(𝑥)) ∴ 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑙𝑒𝑡: 𝑥 = 𝑒 𝑡 𝑅(𝑅 − 1) + 𝑅 − 1 = 0 𝑅2 − 1 = 0 ⇒ { 𝑅1 = 1 𝑅2 = −1 𝑦(𝑡) = 𝐴𝑒 𝑡 + 𝐵𝑒−𝑡 𝑙𝑒𝑡: 𝑡 = 𝑙𝑛(𝑥) 𝑦(𝑥) = 𝐴𝑥 + 𝐵 𝑥 𝐺(𝑥, 𝑧) = 𝐴(𝑧) 𝑥 + 𝐵(𝑧) 𝑥 𝐺(𝑧, 𝑧) = 𝐴(𝑧) 𝑧 + 𝐵(𝑧) 𝑧 = 0 ⇒ 𝐴(𝑧) = − 𝐵(𝑧) 𝑧2 𝐺,𝑥(𝑧, 𝑧) = 𝐴(𝑧) − 𝐵(𝑧) 𝑧2 = 1 ⇒ − 𝐵(𝑧) 𝑧2 − 𝐵(𝑧) 𝑧2 = 1
7.
ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka
7 ∴ { 𝐴(𝑧) = 1 2 𝐵(𝑧) = − 𝑧2 2 𝐺(𝑡, 𝑧) = 𝑥 2 − 𝑧2 2𝑥 , 𝑓(𝑧) = 1 𝑦(𝑡) = ∫ 𝐺(𝑡, 𝑧) 𝑓(𝑧) 𝑑𝑧 𝑥 1 𝑦(𝑡) = 𝑥 2 ∫ 1 𝑑𝑧 𝑥 1 − 1 2𝑥 ∫ 𝑧2 𝑑𝑧 𝑥 1 𝑦(𝑡) = 𝑥 2 (𝑧|0 𝑡 ) − 1 6𝑥 (𝑧3|0 𝑡 ) 𝑦(𝑥) = 𝑥 2 (𝑥 − 1) − 1 6𝑥 (𝑥3 − 1) 𝑦(𝑥) = 𝑥2 3 + 1 6𝑥 − 𝑥 2 𝑦( 𝑥) = 𝑥 ( 𝑥 3 + 1 6𝑥2 ) − 𝑥 2 𝑀𝐴𝑇𝐿𝐴𝐵 | ≫ 𝑦 = 𝑑𝑠𝑜𝑙𝑣𝑒( ′ 𝑥^2 ∗ 𝐷2𝑦 + 𝑥 ∗ 𝐷𝑦 − 𝑦 = 𝑥^2′ , ′ 𝑦(1) = 0′ , ′ 𝐷𝑦(1) = 0′ ,′ 𝑥′) ≫ 𝑦 = 𝑥 ∗ (𝑥 3⁄ + 1 (6 ∗ 𝑥^2)⁄ ) − 𝑥 2⁄
8.
ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka
8 Example 3:- 𝑥2 𝑦,𝑥𝑥 − 2𝑥𝑦,𝑥 + 2𝑦 = 2 𝑦(1) = 𝑦(2) = 0 Solution (𝑎 𝑜(𝑥)) = 𝑥2 , (𝑎 𝑜(𝑥)),𝑥 = 2𝑥 , (𝑎1(𝑥)) = −2𝑥 (𝑎 𝑜(𝑥)),𝑥 ≠ (𝑎1(𝑥)) ∴ 𝑛𝑜𝑡 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑦,𝑥𝑥 − 2 𝑥 𝑦,𝑥 + 2 𝑥2 𝑦 = 2 𝑥2 𝑃(𝑥) = 𝑒∫ − 2 𝑥 𝑑𝑥 = 1 𝑥2 1 𝑥2 𝑦,𝑥𝑥 − 2 𝑥3 𝑦,𝑥 + 2 𝑥4 𝑦 = 1 𝑥4 (𝑎 𝑜(𝑥)),𝑥 = (𝑎1(𝑥)) ∴ 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑙𝑒𝑡: 𝑥 = 𝑒 𝑡 𝑅(𝑅 − 1) − 2𝑅 + 2 = 0 𝑅2 − 3𝑅 + 2 = 0 ⇒ { 𝑅1 = 1 𝑅2 = 2 𝑦ℎ(𝑡) = 𝐴𝑒 𝑡 + 𝐵𝑒2𝑡 𝐺(𝑡, 𝑧) = 𝐴(𝑧) 𝑒 𝑡 + 𝐵(𝑧) 𝑒2𝑡 𝐺(𝑧, 𝑧) = 𝐴(𝑧) 𝑒 𝑧 + 𝐵(𝑧) 𝑒2𝑧 = 0 ⇒ 𝐴(𝑧) = −𝐵(𝑧) 𝑒 𝑧 𝐺,𝑡(𝑧, 𝑧) = 𝐴(𝑧) 𝑒 𝑧 + 2𝐵(𝑧) 𝑒2𝑧 = 1 ⇒ − 𝐵(𝑧) 𝑒2𝑧 + 2𝐵(𝑧) 𝑒2𝑧 = 1 ∴ { 𝐴(𝑧) = −𝑒−𝑧 𝐵(𝑧) = 𝑒−2𝑧 𝐺(𝑡, 𝑧) = −𝑒−𝑧 𝑒 𝑡 + 𝑒−2𝑧 𝑒2𝑡 , 𝑓(𝑧) = 2
9.
ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka
9 𝑦(𝑡) = ∫ 𝐺(𝑡, 𝑧) 𝑓(𝑧) 𝑑𝑧 𝑡 0 𝑦(𝑡) = −2𝑒 𝑡 ∫ 𝑒−𝑧 𝑑𝑧 𝑡 0 + 2𝑒2𝑡 ∫ 𝑒−2𝑧 𝑑𝑧 𝑡 0 𝑦(𝑡) = 2𝑒 𝑡(𝑒−𝑧|0 𝑡 ) − 𝑒2𝑡(𝑒−2𝑧|0 𝑡 ) 2𝑒 𝑡(𝑒−𝑡 − 1) − 𝑒2𝑡(𝑒−2𝑡 − 1) 2 − 2𝑒 𝑡 − 1 + 𝑒2𝑡 𝑦𝑝(𝑡) = 𝑒2𝑡 − 2𝑒 𝑡 + 1 𝑦(𝑡) = 𝑦ℎ(𝑡) + 𝑦𝑝(𝑡) 𝑦(𝑡) = 𝐴𝑒 𝑡 + 𝐵𝑒2𝑡 + 𝑒2𝑡 − 2𝑒 𝑡 + 1 𝑙𝑒𝑡: 𝑡 = 𝑙𝑛(𝑥) 𝑦(𝑥) = 𝐴𝑥 + 𝐵𝑥2 + 𝑥2 − 2𝑥 + 1 𝑦(1) = 𝐴 + 𝐵 + 1 − 2 + 1 = 0 ⇒ 𝐴 = −𝐵 𝑦(2) = 2𝐴 + 4𝐵 + 4 − 4 + 1 = 0 −2𝐵 + 4𝐵 = −1 ⇒ 𝐵 = − 1 2 , 𝐴 = 1 2 𝑦(𝑥) = 1 2 𝑥 − 1 2 𝑥2 + 𝑥2 − 2𝑥 + 1 𝑦( 𝑥) = 𝑥2 2 − 3𝑥 2 + 1 𝑀𝐴𝑇𝐿𝐴𝐵 | ≫ 𝑦 = 𝑑𝑠𝑜𝑙𝑣𝑒( ′ 𝑥^2 ∗ 𝐷2𝑦 − 2 ∗ 𝑥 ∗ 𝐷𝑦 + 2 ∗ 𝑦 = 2′ , ′ 𝑦(1) = 0′ , ′ 𝑦(2) = 0′ ,′ 𝑥′) ≫ 𝑦 = 𝑥2 2⁄ − 3 ∗ 𝑥 2⁄ + 1
10.
ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka
10 Example 4:- 𝑥2 𝑦,𝑥𝑥 − 2𝑥𝑦,𝑥 + 2𝑦 = 2𝑥3 𝑦(2) = 0 , 𝑦(3) = 6 Solution (𝑎 𝑜(𝑥)) = 𝑥2 , (𝑎 𝑜(𝑥)),𝑥 = 2𝑥 , (𝑎1(𝑥)) = −2𝑥 (𝑎 𝑜(𝑥)),𝑥 ≠ (𝑎1(𝑥)) ∴ 𝑛𝑜𝑡 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑦,𝑥𝑥 − 2 𝑥 𝑦,𝑥 + 2 𝑥2 𝑦 = 2 𝑥2 𝑃(𝑥) = 𝑒∫ − 2 𝑥 𝑑𝑥 = 1 𝑥2 1 𝑥2 𝑦,𝑥𝑥 − 2 𝑥3 𝑦,𝑥 + 2 𝑥4 𝑦 = 1 𝑥4 (𝑎 𝑜(𝑥)),𝑥 = (𝑎1(𝑥)) ∴ 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑙𝑒𝑡: 𝑥 = 𝑒 𝑡 𝑅(𝑅 − 1) − 2𝑅 + 2 = 0 𝑅2 − 3𝑅 + 2 = 0 ⇒ { 𝑅1 = 1 𝑅2 = 2 𝑦ℎ(𝑡) = 𝐴𝑒 𝑡 + 𝐵𝑒2𝑡 𝐺(𝑡, 𝑧) = 𝐴(𝑧) 𝑒 𝑡 + 𝐵(𝑧) 𝑒2𝑡 𝐺(𝑧, 𝑧) = 𝐴(𝑧) 𝑒 𝑧 + 𝐵(𝑧) 𝑒2𝑧 = 0 ⇒ 𝐴(𝑧) = −𝐵(𝑧) 𝑒 𝑧 𝐺,𝑡(𝑧, 𝑧) = 𝐴(𝑧) 𝑒 𝑧 + 2𝐵(𝑧) 𝑒2𝑧 = 1 ⇒ − 𝐵(𝑧) 𝑒2𝑧 + 2𝐵(𝑧) 𝑒2𝑧 = 1 ∴ { 𝐴(𝑧) = −𝑒−𝑧 𝐵(𝑧) = 𝑒−2𝑧 𝐺(𝑡, 𝑧) = −𝑒−𝑧 𝑒 𝑡 + 𝑒−2𝑧 𝑒2𝑡 , 𝑓(𝑧) = 2𝑒3𝑧
11.
ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka
11 𝑦(𝑡) = ∫ 𝐺(𝑡, 𝑧) 𝑓(𝑧) 𝑑𝑧 𝑡 0 𝑦𝑝(𝑡) = −2𝑒 𝑡 ∫ 𝑒2𝑧 𝑑𝑧 𝑡 0 + 2𝑒2𝑡 ∫ 𝑒 𝑧 𝑑𝑧 𝑡 0 𝑦𝑝(𝑡) = −𝑒 𝑡(𝑒2𝑧|0 𝑡 ) + 2𝑒2𝑡(𝑒 𝑧|0 𝑡 ) 𝑦𝑝(𝑡) = −𝑒 𝑡(𝑒2𝑡 − 1) + 2𝑒2𝑡(𝑒 𝑡 − 1) 𝑦𝑝(𝑡) = −𝑒3𝑡 + 𝑒 𝑡 + 2𝑒3𝑡 − 2𝑒2𝑡 𝑦𝑝(𝑡) = 𝑒3𝑡 − 2𝑒2𝑡 + 𝑒 𝑡 𝑦(𝑡) = 𝑦ℎ(𝑡) + 𝑦𝑝(𝑡) 𝑦(𝑡) = 𝐴𝑒 𝑡 + 𝐵𝑒2𝑡 + 𝑒3𝑡 − 2𝑒2𝑡 + 𝑒 𝑡 𝑙𝑒𝑡: 𝑡 = 𝑙𝑛(𝑥) 𝑦(𝑥) = 𝐴𝑥 + 𝐵𝑥2 + 𝑥3 − 2𝑥2 + 𝑥 𝑦(2) = 2𝐴 + 4𝐵 + 8 − 8 + 2 = 0 ⇒ 2𝐴 + 4𝐵 = −2 → (1) 𝑦(3) = 3𝐴 + 9𝐵 + 27 − 18 + 3 = 6 ⇒ 3𝐴 + 9𝐵 = −6 → (2) ∴ 𝐴 = 1 , 𝐵 = −1 𝑦(𝑥) = 𝑥 − 𝑥2 + 𝑥3 − 2𝑥2 + 𝑥 𝑦( 𝑥) = 𝑥3 − 3𝑥2 + 2𝑥 𝑀𝐴𝑇𝐿𝐴𝐵 | ≫ 𝑦 = 𝑑𝑠𝑜𝑙𝑣𝑒( ′ 𝑥^2 ∗ 𝐷2𝑦 − 2 ∗ 𝑥 ∗ 𝐷𝑦 + 2 ∗ 𝑦 = 2𝑥^3′ , ′ 𝑦(2) = 0′ , ′ 𝑦(3) = 6′ ,′ 𝑥′) ≫ 𝑦 = 𝑥^3 − 3 ∗ 𝑥^2 + 2 ∗ 𝑥
12.
ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka
12 Example 5:- 𝑥2 𝑦,𝑥𝑥 − 6 = 6𝑥 𝑦(1) = −1 , 𝑦(2) = 29 Solution 𝑙𝑒𝑡: 𝑥 = 𝑒 𝑡 𝑅(𝑅 − 1) − 6 = 0 𝑅2 − 𝑅 − 6 = 0 ⇒ { 𝑅1 = 3 𝑅2 = −2 𝑦ℎ(𝑡) = 𝐴𝑒3𝑡 + 𝐵𝑒−2𝑡 𝐺(𝑡, 𝑧) = 𝐴(𝑧) 𝑒3𝑡 + 𝐵(𝑧) 𝑒−2𝑡 𝐺(𝑧, 𝑧) = 𝐴(𝑧) 𝑒3𝑧 + 𝐵(𝑧) 𝑒−2𝑧 = 0 ⇒ 𝐴(𝑧) = −𝐵(𝑧) 𝑒−5𝑧 𝐺,𝑡(𝑧, 𝑧) = 3𝐴(𝑧) 𝑒3𝑧 − 2𝐵(𝑧) 𝑒−2𝑧 = 1 = −𝐵(𝑧) 𝑒2𝑧 + 2𝐵(𝑧) 𝑒2𝑧 = 1 ∴ { 𝐴(𝑧) = 𝑒−3𝑧 5 𝐵(𝑧) = − 𝑒2𝑧 5 𝐺(𝑡, 𝑧) = 𝑒−3𝑧 5 𝑒3𝑡 − 𝑒2𝑧 5 𝑒−2𝑡 , 𝑓(𝑧) = 6𝑒 𝑧 𝑦(𝑡) = ∫ 𝐺(𝑡, 𝑧) 𝑓(𝑧) 𝑑𝑧 𝑡 0 𝑦𝑝(𝑡) = 6 5 𝑒3𝑡 ∫ 𝑒−2𝑧 𝑑𝑧 𝑡 0 − 6 5 𝑒−2𝑡 ∫ 𝑒3𝑧 𝑑𝑧 𝑡 0 𝑦𝑝(𝑡) = − 6 10 𝑒3𝑡(𝑒−2𝑧|0 𝑡 ) − 6 15 𝑒−2𝑡(𝑒3𝑧|0 𝑡 )
13.
ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka
13 𝑦𝑝(𝑡) = − 6 10 𝑒3𝑡(𝑒−2𝑡 − 1) − 6 15 𝑒−2𝑡(𝑒3𝑡 − 1) 𝑦𝑝(𝑡) = − 3 5 𝑒 𝑡 − 3 5 𝑒3𝑡 + 2 5 𝑒 𝑡 + 2 5 𝑒−2𝑡 𝑦𝑝(𝑡) = −𝑒 𝑡 − 3 5 𝑒3𝑡 + 2 5 𝑒−2𝑡 𝑦(𝑡) = 𝑦ℎ(𝑡) + 𝑦𝑝(𝑡) 𝑦(𝑡) = 𝐴𝑒3𝑡 + 𝐵𝑒−2𝑡 − 𝑒 𝑡 − 3 5 𝑒3𝑡 + 2 5 𝑒−2𝑡 𝑙𝑒𝑡: 𝑡 = 𝑙𝑛(𝑥) 𝑦(𝑥) = 𝐴𝑥3 + 𝐵 𝑥2 − 𝑥 − 3 5 𝑥3 + 2 5𝑥2 𝑦(1) = 𝐴 + 𝐵 − 1 − 3 5 + 2 5 = −1 ⇒ 𝐴 = 1 5 − 𝐵 → (1) 𝑦(2) = 8𝐴 + 𝐵 4 − 2 − 24 5 + 2 20 = 29 = 8 ( 1 5 − 𝐵) + 𝐵 4 − 2 − 24 5 + 2 20 = 29 → × 20 ∴ 𝐵 = − 682 155 ⇒ 𝐴 = 713 155 𝑦(𝑥) = 713 155 𝑥3 − 682 155𝑥2 − 𝑥 − 3 5 𝑥3 + 2 5𝑥2 𝑦( 𝑥) = 4𝑥3 − 4 𝑥2 − 𝑥 𝑀𝐴𝑇𝐿𝐴𝐵 | ≫ 𝑦 = 𝑑𝑠𝑜𝑙𝑣𝑒( ′ 𝑥^2 ∗ 𝐷2𝑦 − 6 ∗ 𝑦 = 6 ∗ 𝑥′ , ′ 𝑦(2) = 0′ , ′ 𝑦(3) = 6′ ,′ 𝑥′) ≫ 𝑦 = 4 ∗ 𝑥^3 − 4 𝑥^2⁄ − 𝑥
14.
ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka
14 Example 6:- 𝑥2 𝑦,𝑥𝑥 − 2𝑥𝑦,𝑥 + 2𝑦 = 6 𝑥 𝑦(1) = 1 , 𝑦(2) = 1 2 Solution (𝑎 𝑜(𝑥)) = 𝑥2 , (𝑎 𝑜(𝑥)),𝑥 = 2𝑥 , (𝑎1(𝑥)) = −2𝑥 (𝑎 𝑜(𝑥)),𝑥 ≠ (𝑎1(𝑥)) ∴ 𝑛𝑜𝑡 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑦,𝑥𝑥 − 2 𝑥 𝑦,𝑥 + 2 𝑥2 𝑦 = 2 𝑥2 𝑃(𝑥) = 𝑒∫ − 2 𝑥 𝑑𝑥 = 1 𝑥2 1 𝑥2 𝑦,𝑥𝑥 − 2 𝑥3 𝑦,𝑥 + 2 𝑥4 𝑦 = 1 𝑥4 (𝑎 𝑜(𝑥)),𝑥 = (𝑎1(𝑥)) ∴ 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑙𝑒𝑡: 𝑥 = 𝑒 𝑡 𝑅(𝑅 − 1) − 2𝑅 + 2 = 0 𝑅2 − 3𝑅 + 2 = 0 ⇒ { 𝑅1 = 2 𝑅2 = 1 𝑦ℎ(𝑡) = 𝐴𝑒 𝑡 + 𝐵𝑒2𝑡 𝐺(𝑡, 𝑧) = 𝐴(𝑧) 𝑒 𝑡 + 𝐵(𝑧) 𝑒2𝑡 𝐺(𝑧, 𝑧) = 𝐴(𝑧) 𝑒2𝑧 + 𝐵(𝑧) 𝑒 𝑧 = 0 ⇒ 𝐴(𝑧) = −𝐵(𝑧) 𝑒−𝑧 𝐺,𝑡(𝑧, 𝑧) = 2𝐴(𝑧) 𝑒 𝑧 + 𝐵(𝑧) 𝑒2𝑧 = 1 ⇒ − 2𝐵(𝑧) 𝑒 𝑧 + 𝐵(𝑧) 𝑒 𝑧 = 1 ∴ { 𝐴(𝑧) = 𝑒−2𝑧 𝐵(𝑧) = −𝑒−𝑧 𝐺(𝑡, 𝑧) = 𝑒−2𝑧 𝑒2𝑡 − 𝑒−𝑧 𝑒 𝑡 , 𝑓(𝑧) = 6𝑒−𝑧
15.
ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka
15 𝑦(𝑡) = ∫ 𝐺(𝑡, 𝑧) 𝑓(𝑧) 𝑑𝑧 𝑡 0 𝑦𝑝(𝑡) = 6𝑒2𝑡 ∫ 𝑒−3𝑧 𝑑𝑧 𝑡 0 − 6𝑒 𝑡 ∫ 𝑒−2𝑧 𝑑𝑧 𝑡 0 𝑦𝑝(𝑡) = −2𝑒2𝑡(𝑒−3𝑧|0 𝑡 ) − 3𝑒 𝑡(𝑒−2𝑧|0 𝑡 ) 𝑦𝑝(𝑡) = −2𝑒−2𝑡(𝑒−3𝑡 − 1) + 𝑒 𝑡(𝑒2𝑡 − 1) 𝑦𝑝(𝑡) = −2𝑒−𝑡 + 2𝑒2𝑡 + 3𝑒−𝑡 + 3𝑒 𝑡 𝑦𝑝(𝑡) = 2𝑒2𝑡 + 𝑒−𝑡 + 3𝑒 𝑡 𝑦(𝑡) = 𝑦ℎ(𝑡) + 𝑦𝑝(𝑡) 𝑦(𝑡) = 𝐴𝑒2𝑡 + 𝐵𝑒 𝑡 + 2𝑒2𝑡 + 𝑒−𝑡 + 3𝑒 𝑡 𝑙𝑒𝑡: 𝑡 = 𝑙𝑛(𝑥) 𝑦(𝑥) = 𝐴𝑥2 + 𝐵𝑥 + 2𝑥2 + 1 𝑥 + 3𝑥 𝑦(1) = 𝐴 + 𝐵 + 2 + 1 + 3 = 1 ⇒ 𝐴 + 𝐵 = −5 → (1) 𝑦(2) = 4𝐴 + 2𝐵 + 8 + 1 2 + 6 = 0 ⇒ 2𝐴 + 4𝐵 = −14 → (2) ∴ 𝐴 = −2 , 𝐵 = −3 𝑦( 𝑥) = 1 𝑥 𝑀𝐴𝑇𝐿𝐴𝐵 | ≫ 𝑦 = 𝑑𝑠𝑜𝑙𝑣𝑒( ′ 𝑥^2 ∗ 𝐷2𝑦 − 2 ∗ 𝑥 ∗ 𝐷𝑦 + 2 ∗ 𝑦 = 6 𝑥⁄ ′ , ′ 𝑦(1) = 1′ , ′ 𝑦(2) = 0.5′ ,′ 𝑥′ ) ≫ 𝑦 = 1 𝑥⁄
16.
ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka
16 Use Laplace transform 𝑥2 𝑦,𝑥𝑥 − 2𝑥𝑦,𝑥 + 2𝑦 = 6 𝑥 𝑦(1) = 1 , 𝑦(2) = 1 2 Solution 𝑙𝑒𝑡: 𝑥 = 𝑒 𝑡 𝑅(𝑅 − 1) − 2𝑅 + 2 = 0 𝑅2 − 3𝑅 + 2 = 0 ⇒ { 𝑅1 = 2 𝑅2 = 1 𝑦ℎ(𝑡) = 𝐴𝑒 𝑡 + 𝐵𝑒2𝑡 𝑦,𝑡𝑡 − 3𝑦,𝑡 + 2𝑦 = 6𝑒−𝑡 (𝑠2 − 3𝑠 + 2)𝑦(𝑠) = 6 (𝑠 + 1) 𝑦(𝑠) = 6 (𝑠 + 1)(𝑠 − 2)(𝑠 − 1) 6 (𝑠 + 1)(𝑠 − 2)(𝑠 − 1) = 𝐴 (𝑠 + 1) + 𝐵 (𝑠 − 2) + 𝐶 (𝑠 − 1) 𝐴𝑠2 − 3𝐴𝑠 + 2𝐴 + 𝐵𝑠2 − 𝐵 + 𝐶𝑠2 − 𝐶𝑠 − 2𝑐 = 6 𝐴 = 1 , 𝐵 = 2 , 𝐶 = −3 𝑦(𝑠) = 1 (𝑠 + 1) + 2 (𝑠 − 2) − 3 (𝑠 − 1) 𝑦(𝑡) = 𝑒−𝑡 + 2𝑒2𝑡 − 3𝑒 𝑡 𝑙𝑒𝑡: 𝑡 = 𝑙𝑛(𝑥) 𝑦𝑝(𝑥) = 2𝑥2 + 1 𝑥 − 3𝑥
17.
ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka
17 𝑦(𝑥) = 𝑦ℎ(𝑥) + 𝑦𝑝(𝑥) 𝑦(𝑥) = 𝐴𝑥2 + 𝐵𝑥 + 2𝑥2 + 1 𝑥 − 3𝑥 𝑦(1) = 1 ⇒ 𝐴 + 𝐵 = 1 𝑦(2) = 1 2 ⇒ 4𝐴 + 2𝐵 = −2 𝐴 = −2 , 𝐵 = 3 𝑦( 𝑥) = 1 𝑥 Use variation of parameter method 𝑥2 𝑦,𝑥𝑥 − 2𝑥𝑦,𝑥 + 2𝑦 = 6 𝑥 𝑦(1) = 1 , 𝑦(2) = 1 2 Solution 𝑙𝑒𝑡: 𝑥 = 𝑒 𝑡 𝑅(𝑅 − 1) − 2𝑅 + 2 = 0 𝑅2 − 3𝑅 + 2 = 0 ⇒ { 𝑅1 = 2 𝑅2 = 1 𝑦ℎ(𝑡) = 𝐴𝑒 𝑡 + 𝐵𝑒2𝑡 𝑤 = | 𝑒 𝑡 𝑒2𝑡 𝑒 𝑡 2𝑒2𝑡| = 𝑒3𝑡 𝑢1̀ = | 0 𝑒2𝑡 6𝑒−𝑡 2𝑒2𝑡| 𝑒3𝑡 = −6𝑒−2𝑡 𝑢1 = ∫ −6𝑒−2𝑡 𝑑𝑡 = 3𝑒−2𝑡
18.
ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka
18 𝑢2̀ = | 𝑒 𝑡 0 𝑒 𝑡 6𝑒−𝑡| 𝑒3𝑡 = 6𝑒−3𝑡 𝑢2 = ∫ 6𝑒−3𝑡 𝑑𝑡 = −2𝑒−3𝑡 𝑦𝑝(𝑡) = 𝑢1 𝑦1 + 𝑢2 𝑦2 = 𝑒−𝑡 𝑦(𝑡) = 𝑦ℎ(𝑡) + 𝑦𝑝(𝑡) 𝑦(𝑡) = 𝐴𝑒 𝑡 + 𝐵𝑒2𝑡 + 𝑒−𝑡 𝑙𝑒𝑡 𝑡 = ln(𝑥) 𝑦(𝑥) = 𝐴𝑥 + 𝐵𝑥2 + 1 𝑥 𝑦(1) ⇒ 𝐴 = −𝐵 𝑦(2) ⇒ 𝐵 = 0 ∴ 𝐴 = 0 𝑦( 𝑥) = 1 𝑥
19.
ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka
19 Example 7:- 𝑥2 𝑦,𝑥𝑥 − 2𝑥𝑦,𝑥 + 2𝑦 = 12𝑥5 𝑦(1) = 0 , 𝑦(2) = 0 Solution (𝑎 𝑜(𝑥)) = 𝑥2 , (𝑎 𝑜(𝑥)),𝑥 = 2𝑥 , (𝑎1(𝑥)) = −2𝑥 (𝑎 𝑜(𝑥)),𝑥 ≠ (𝑎1(𝑥)) ∴ 𝑛𝑜𝑡 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑦,𝑥𝑥 − 2 𝑥 𝑦,𝑥 + 2 𝑥2 𝑦 = 2 𝑥2 𝑃(𝑥) = 𝑒∫ − 2 𝑥 𝑑𝑥 = 1 𝑥2 1 𝑥2 𝑦,𝑥𝑥 − 2 𝑥3 𝑦,𝑥 + 2 𝑥4 𝑦 = 1 𝑥4 (𝑎 𝑜(𝑥)),𝑥 = (𝑎1(𝑥)) ∴ 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑙𝑒𝑡: 𝑥 = 𝑒 𝑡 𝑅(𝑅 − 1) − 2𝑅 + 2 = 0 𝑅2 − 3𝑅 + 2 = 0 ⇒ { 𝑅1 = 1 𝑅2 = 2 𝑦ℎ(𝑡) = 𝐴𝑒 𝑡 + 𝐵𝑒2𝑡 𝐺(𝑡, 𝑧) = 𝐴(𝑧) 𝑒 𝑡 + 𝐵(𝑧) 𝑒2𝑡 𝐺(𝑧, 𝑧) = 𝐴(𝑧) 𝑒 𝑧 + 𝐵(𝑧) 𝑒2𝑧 = 0 ⇒ 𝐴(𝑧) = −𝐵(𝑧) 𝑒 𝑧 𝐺,𝑡(𝑧, 𝑧) = 𝐴(𝑧) 𝑒 𝑧 + 2𝐵(𝑧) 𝑒2𝑧 = 1 ⇒ − 𝐵(𝑧) 𝑒2𝑧 + 2𝐵(𝑧) 𝑒2𝑧 = 1 ∴ { 𝐴(𝑧) = −𝑒−𝑧 𝐵(𝑧) = 𝑒−2𝑧 𝐺(𝑡, 𝑧) = −𝑒−𝑧 𝑒 𝑡 + 𝑒−2𝑧 𝑒2𝑡 , 𝑓(𝑧) = 12𝑒5𝑧
20.
ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka
20 𝑦(𝑡) = ∫ 𝐺(𝑡, 𝑧) 𝑓(𝑧) 𝑑𝑧 𝑡 0 𝑦𝑝(𝑡) = −12𝑒 𝑡 ∫ 𝑒4𝑧 𝑑𝑧 𝑡 0 + 12𝑒2𝑡 ∫ 𝑒3𝑧 𝑑𝑧 𝑡 0 𝑦𝑝(𝑡) = −3𝑒 𝑡(𝑒4𝑧|0 𝑡 ) + 4𝑒2𝑡(𝑒3𝑧|0 𝑡 ) 𝑦𝑝(𝑡) = −3𝑒 𝑡(𝑒4𝑡 − 1) + 4𝑒2𝑡(𝑒3𝑡 − 1) 𝑦𝑝(𝑡) = −3𝑒5𝑡 + 3𝑒 𝑡 + 4𝑒5𝑡 + 4𝑒2𝑡 𝑦𝑝(𝑡) = 𝑒5𝑡 + 4𝑒2𝑡 + 3𝑒 𝑡 𝑦(𝑡) = 𝑦ℎ(𝑡) + 𝑦𝑝(𝑡) 𝑦(𝑡) = 𝐴𝑒 𝑡 + 𝐵𝑒2𝑡 + 𝑒5𝑡 + 4𝑒2𝑡 + 3𝑒 𝑡 𝑙𝑒𝑡: 𝑡 = 𝑙𝑛(𝑥) 𝑦(𝑥) = 𝐴𝑥 + 𝐵𝑥2 + 𝑥5 + 4𝑥2 + 3𝑥 𝑦(1) = 2𝐴 + 4𝐵 + 1 + 4 + 3 = 0 ⇒ 𝐴 + 𝐵 = −8 → (1) 𝑦(2) = 2𝐴 + 4𝐵 + 32 + 16 + 6 = 0 ⇒ 2𝐴 + 4𝐵 = −54 → (2) ∴ 𝐴 = 11 , 𝐵 = −19 𝑦(𝑥) = 11𝑥 − 19𝑥2 + 𝑥5 + 4𝑥2 + 3𝑥 𝑦( 𝑥) = 𝑥5 − 15𝑥2 + 14𝑥 𝑀𝐴𝑇𝐿𝐴𝐵 | ≫ 𝑦 = 𝑑𝑠𝑜𝑙𝑣𝑒( ′ 𝑥^2 ∗ 𝐷2𝑦 − 2 ∗ 𝑥 ∗ 𝐷𝑦 + 2 ∗ 𝑦 = 2 ∗ 𝑥^3′ , ′ 𝑦(2) = 0′ , ′ 𝑦(3) = 6′ ,′ 𝑥′) ≫ 𝑦 = 𝑥^5 − 15 ∗ 𝑥^2 + 14 ∗ 𝑥
21.
ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka
21 Use Laplace transform 𝑥2 𝑦,𝑥𝑥 − 2𝑥𝑦,𝑥 + 2𝑦 = 12𝑥5 𝑦(1) = 0 , 𝑦(2) = 0 Solution 𝑙𝑒𝑡: 𝑥 = 𝑒 𝑡 𝑅(𝑅 − 1) − 2𝑅 + 2 = 0 𝑅2 − 3𝑅 + 2 = 0 ⇒ { 𝑅1 = 2 𝑅2 = 1 𝑦ℎ(𝑡) = 𝐴𝑒 𝑡 + 𝐵𝑒2𝑡 𝑦,𝑡𝑡 − 3𝑦,𝑡 + 2𝑦 = 𝑒5𝑡 (𝑠2 − 3𝑠 + 2)𝑦(𝑠) = 12 (𝑠 − 5) 𝑦(𝑠) = 6 (𝑠 − 5)(𝑠 − 2)(𝑠 − 1) 6 (𝑠 − 5)(𝑠 − 2)(𝑠 − 1) = 𝐴 (𝑠 − 5) + 𝐵 (𝑠 − 2) + 𝐶 (𝑠 − 1) 𝐴𝑠2 − 3𝐴𝑠 + 2𝐴 + 𝐵𝑠2 − 6𝐵𝑠 + 𝐵 + 𝐶𝑠2 − 7𝐶𝑠 + 10𝑐 = 12 𝐴 = 1 , 𝐵 = −4 , 𝐶 = 3 𝑦(𝑠) = 1 (𝑠 − 5) − 4 (𝑠 − 2) + 3 (𝑠 − 1) 𝑦(𝑡) = 𝑒5𝑡 − 4𝑒2𝑡 + 3𝑒 𝑡 𝑙𝑒𝑡: 𝑡 = 𝑙𝑛(𝑥) 𝑦𝑝(𝑥) = 𝑥5 − 4𝑥2 + 3𝑥 𝑦(𝑥) = 𝑦ℎ(𝑥) + 𝑦𝑝(𝑥) 𝑦(𝑥) = 𝐴𝑥2 + 𝐵𝑥 + 𝑥5 − 4𝑥2 + 3𝑥 𝑦(1) = 0 ⇒ 𝐴 + 𝐵 = 0
22.
ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka
22 𝑦(2) = 0 ⇒ 4𝐴 + 2𝐵 = −22 𝐴 = −11 , 𝐵 = 11 𝑦( 𝑥) = 𝑥5 − 15𝑥2 + 14𝑥 Example 8:- 𝑥2 𝑦,𝑥𝑥 − 2𝑥𝑦,𝑥 + 2𝑦 = 6𝑥4 𝑦(1) = 𝑦(2) = 0 Solution (𝑎 𝑜(𝑥)) = 𝑥2 , (𝑎 𝑜(𝑥)),𝑥 = 2𝑥 , (𝑎1(𝑥)) = −2𝑥 (𝑎 𝑜(𝑥)),𝑥 ≠ (𝑎1(𝑥)) ∴ 𝑛𝑜𝑡 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑦,𝑥𝑥 − 2 𝑥 𝑦,𝑥 + 2 𝑥2 𝑦 = 2 𝑥2 𝑃(𝑥) = 𝑒∫ − 2 𝑥 𝑑𝑥 = 1 𝑥2 1 𝑥2 𝑦,𝑥𝑥 − 2 𝑥3 𝑦,𝑥 + 2 𝑥4 𝑦 = 1 𝑥4 (𝑎 𝑜(𝑥)),𝑥 = (𝑎1(𝑥)) ∴ 𝑠𝑒𝑙𝑓 𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑙𝑒𝑡: 𝑥 = 𝑒 𝑡 𝑅(𝑅 − 1) − 2𝑅 + 2 = 0 𝑅2 − 3𝑅 + 2 = 0 ⇒ { 𝑅1 = 1 𝑅2 = 2 𝑦ℎ(𝑡) = 𝐴𝑒 𝑡 + 𝐵𝑒2𝑡 𝐺(𝑡, 𝑧) = 𝐴(𝑧) 𝑒 𝑡 + 𝐵(𝑧) 𝑒2𝑡 𝐺(𝑧, 𝑧) = 𝐴(𝑧) 𝑒 𝑧 + 𝐵(𝑧) 𝑒2𝑧 = 0 ⇒ 𝐴(𝑧) = −𝐵(𝑧) 𝑒 𝑧 𝐺,𝑡(𝑧, 𝑧) = 𝐴(𝑧) 𝑒 𝑧 + 2𝐵(𝑧) 𝑒2𝑧 = 1 ⇒ − 𝐵(𝑧) 𝑒2𝑧 + 2𝐵(𝑧) 𝑒2𝑧 = 1
23.
ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka
23 ∴ { 𝐴(𝑧) = −𝑒−𝑧 𝐵(𝑧) = 𝑒−2𝑧 𝐺(𝑡, 𝑧) = −𝑒−𝑧 𝑒 𝑡 + 𝑒−2𝑧 𝑒2𝑡 , 𝑓(𝑧) = 6𝑒4𝑡 𝑦(𝑡) = ∫ 𝐺(𝑡, 𝑧) 𝑓(𝑧) 𝑑𝑧 𝑡 0 𝑦(𝑡) = −6𝑒 𝑡 ∫ 𝑒3𝑧 𝑑𝑧 𝑡 0 + 6𝑒2𝑡 ∫ 𝑒2𝑧 𝑑𝑧 𝑡 0 𝑦(𝑡) = −2𝑒 𝑡(𝑒3𝑧|0 𝑡 ) + 3𝑒2𝑡(𝑒2𝑧|0 𝑡 ) 𝑦(𝑡) = −2𝑒 𝑡(𝑒3𝑡 − 1) + 3𝑒2𝑡(𝑒2𝑡 − 1) 𝑦(𝑡) = −2𝑒4𝑡 − 2𝑒 𝑡 + 3𝑒4𝑡 − 3𝑒2𝑡 𝑦𝑝(𝑡) = 𝑒4𝑡 − 3𝑒2𝑡 − 2𝑒 𝑡 𝑦(𝑡) = 𝑦ℎ(𝑡) + 𝑦𝑝(𝑡) 𝑦(𝑡) = 𝐴𝑒 𝑡 + 𝐵𝑒2𝑡 + 𝑒4𝑡 − 3𝑒2𝑡 − 2𝑒 𝑡 𝑙𝑒𝑡: 𝑡 = 𝑙𝑛(𝑥) 𝑦(𝑥) = 𝐴𝑥 + 𝐵𝑥2 + 𝑥4 − 3𝑥2 − 2𝑥 𝑦(1) = 0 ⇒ 𝐴 + 𝐵 = 4 𝑦(2) = 0 ⇒ 2𝐵 + 4𝐵 = 0 𝐴 = 8 , 𝐵 = −4 𝑦(𝑥) = 8𝑥 − 4𝑥2 + 𝑥4 − 3𝑥2 − 2𝑥 𝑦( 𝑥) = 𝑥4 − 7𝑥2 + 6𝑥 𝑀𝐴𝑇𝐿𝐴𝐵 | ≫ 𝑦 = 𝑑𝑠𝑜𝑙𝑣𝑒( ′ 𝑥^2 ∗ 𝐷2𝑦 − 2 ∗ 𝑥 ∗ 𝐷𝑦 + 2 ∗ 𝑦 = 2′ , ′ 𝑦(1) = 0′ , ′ 𝑦(2) = 0′ ,′ 𝑥′) ≫ 𝑦 = 𝑥^2 2⁄ − 3 ∗ 𝑥 2⁄ + 1
24.
ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka
24 Use Laplace transform 𝑥2 𝑦,𝑥𝑥 − 2𝑥𝑦,𝑥 + 2𝑦 = 6𝑥4 𝑦(1) = 0 , 𝑦(2) = 0 Solution 𝑙𝑒𝑡: 𝑥 = 𝑒 𝑡 𝑅(𝑅 − 1) − 2𝑅 + 2 = 0 𝑅2 − 3𝑅 + 2 = 0 ⇒ { 𝑅1 = 2 𝑅2 = 1 𝑦ℎ(𝑡) = 𝐴𝑒 𝑡 + 𝐵𝑒2𝑡 𝑦,𝑡𝑡 − 3𝑦,𝑡 + 2𝑦 = 6𝑒4𝑡 (𝑠2 − 3𝑠 + 2)𝑦(𝑠) = 6 (𝑠 − 4) 𝑦(𝑠) = 6 (𝑠 − 4)(𝑠 − 2)(𝑠 − 1) 6 (𝑠 − 4)(𝑠 − 2)(𝑠 − 1) = 𝐴 (𝑠 − 4) + 𝐵 (𝑠 − 2) + 𝐶 (𝑠 − 1) 𝐴𝑠2 − 3𝐴𝑠 + 2𝐴 + 𝐵𝑠2 − 5𝐵𝑠 + 4𝐵 + 𝐶𝑠2 − 6𝐶𝑠 + 8𝑐 = 6 𝐴 = 1 , 𝐵 = −3 , 𝐶 = 2 𝑦(𝑠) = 1 (𝑠 − 4) − 3 (𝑠 − 2) + 2 (𝑠 − 1) 𝑦(𝑡) = 𝑒4𝑡 − 3𝑒2𝑡 + 2𝑒 𝑡 𝑙𝑒𝑡: 𝑡 = 𝑙𝑛(𝑥) 𝑦𝑝(𝑥) = 𝑥4 − 3𝑥2 + 2𝑥 𝑦(𝑥) = 𝑦ℎ(𝑥) + 𝑦𝑝(𝑥) 𝑦(𝑥) = 𝐴𝑥2 + 𝐵𝑥 + 𝑥4 − 3𝑥2 + 2𝑥 𝑦(1) = 0 ⇒ 𝐴 + 𝐵 = 0
25.
ADVANCED MATHEMATICS By.Eng. Hamza-Mahmoud-Dahoka
25 𝑦(2) = 0 ⇒ 4𝐴 + 2𝐵 = −8 𝐴 = −4 , 𝐵 = 4 𝑦( 𝑥) = 𝑥4 − 7𝑥2 + 6𝑥
Download