SlideShare a Scribd company logo
Tim Horner
CSUS Geology Department
Glaciers and Glaciation
Physical Geology, Chapter 12
Glaciers and Earth’s Systems
• A glacier is a large, long-lasting mass
of ice, formed on land, that moves
downhill under its own weight
• Glaciers are part of Earth’s hydrosphere
• Along with sea ice, glaciers are known
as the cryosphere
• About 75% of the world’s supply of
fresh water is locked up in glacial ice
Formation of
Glaciers
• Glaciers develop as snow is compacted
and recrystallized, first into firn and then
glacial ice
• A glacier can only form where more snow
accumulates during the winter than melts
away during the spring and summer
• Two types of glaciated terrains on Earth:
– Alpine glaciation occurs in mountainous
regions in the form of valley glaciers
– Continental glaciation covers large land masses
in Earth’s polar regions in the form of ice sheets
– Glaciation occurs in areas cold enough to allow
accumulated snow to persist from year to year
Anatomy of a Glacier
• An advancing glacier gains more snow
than it loses, has a positive budget
– End or terminus of glacier advances downslope
• A receding glacier has a negative budget
– Terminus of glacier shrinks back upslope
• Snow is added in the zone of accumulation of glaciers, whereas
melting (and calving of icebergs) occurs in the zone of ablation
• The equilibrium line, which separates accumulation and
ablation zones, will advance or retreat depending on climate
Movement of Glaciers
• Valley glaciers and ice sheets
move downslope under the force
of gravity
• Movement occurs by basal sliding
and plastic flow of the lower part
of the glacier, and passive “riding
along” of an overlying rigid zone
– Crevasses are fractures formed in the
upper rigid zone during glacier flow
• Due to friction, glacier flow is
fastest at the top center of a glacier
and slowest along its margins
Glacial Erosion
• Glaciers erode underlying
rock by plucking of rock
fragments and abrasion as
they are dragged along
– Basal abrasion polishes and
striates the underlying rock
surface and produces
abundant fine rock powder
known as rock flour
Erosional
Landscapes
• Erosional landforms produced by
valley glaciers include:
– U-shaped valleys
– Hanging valleys
• Smaller tributary glacial valleys left
stranded above more quickly eroded
central valleys
– Cirques
• Steep-sided, half-bowl-shaped recesses
carved into mountains at the heads of
glacial valleys
– Arêtes
• Sharp ridges separating glacial valleys
– Horns
• Sharp peaks remaining after cirques have
cut back into a mountain on 3+ sides
Erosional Landscapes
• Erosional landforms produced by
valley glaciers include:
– U-shaped valleys
– Hanging valleys
• Smaller tributary glacial valleys left
stranded above more quickly eroded
central valleys
Erosional Landscapes
• Erosional landforms produced by
valley glaciers include:
– Cirques
• Steep-sided, half-bowl-shaped
recesses carved into mountains
at the heads of glacial valley
Erosional Landscapes
• Erosional landforms produced by valley
glaciers include:
– Arêtes
• Sharp ridges separating glacial valleys
– Horns
• Sharp peaks remaining after cirques have cut back
into a mountain on 3+ sides
Glacial
Deposition
• General name for unsorted,
unlayered glacial sediment is
till
– Deposits of till left behind at the
sides and end of a glacier are
called lateral, medial and end
moraines, respectively
• Lateral moraines are
elongate, low mounds of till
along sides of valley glaciers
Glacial
Deposition
• Medial moraines are lateral
moraines trapped between adjacent
ice streams
• End moraines are ridges of till
piled up along the front end of a
glacier
• Successive end moraines left behind
by a retreating glacier are called
recessional moraines
Glacial Deposition
• Large amounts of liquid water flow
over, beneath and away from the ice at
the end of a glacier
• Sediment deposited by this water is
known as glacial outwash
• Sediment-laden streams emerging
from ends of glaciers have braided
channel drainage patterns
• Outwash landforms include drumlins,
eskers, kettles and kames
• Annual sediment deposition in glacial
lakes produces varves, which can be
counted like tree rings
Glacial Deposition
• Large amounts of liquid water flow
over, beneath and away from the ice at
the end of a glacier
• Sediment deposited by this water is
known as glacial outwash
• Sediment-laden streams emerging
from ends of glaciers have braided
channel drainage patterns
• Outwash landforms include drumlins,
eskers, kettles and kames
• Annual sediment deposition in glacial
lakes produces varves, which can be
counted like tree rings
Direct Effects of
Past Glaciation
• Large-scale glaciation of North
America during the most recent ice
age produced the following effects:
– Most of the soil and sedimentary
rocks were scraped off underlying
crystalline rock in northern and
eastern Canada, and lake basins
were gouged out of the bedrock
– Extensive sets of recessional
moraines were left behind by
retreating ice sheets in the upper
midwestern U.S. and Canada
Indirect Effects of Past Glaciation
• Large pluvial lakes (formed in a period
of abundant rainfall) existed in closed
basins in Utah, Nevada and eastern
California
– Great Salt Lake is remnant of much larger
pluvial Lake Bonneville
– Huge floods emanated as ice-dammed lakes
(e.g., Lake Missoula) drained catastrophically
• Sea level was significantly lowered by
large amounts of water locked up into ice
sheets, allowing stream channels and
glaciers to erode valleys below present-
day sea level
– Fiords are coastal inlets formed by drowning
of glacially carved valleys by rising sea level
Evidence for Older Glaciation
• Rocks called tillites, lithified glacial till, have distinctive
textures that suggest emplacement of sediments by glaciers
– Unsorted rock particles including angular, faceted and striated boulders
• In some areas, old tillites directly overlie polished and striated
crystalline rocks
• Tillites formed during late
Paleozoic era in portions of
the southern continents indicate
that these landmasses were once
joined
– strong evidence supporting
Theory of Plate Tectonics
Glaceirs 2

More Related Content

What's hot

Geology lecture 18
Geology lecture 18Geology lecture 18
Geology lecture 18
Lauren Adams
 
Glaciated Landforms
Glaciated LandformsGlaciated Landforms
Glaciated Landforms
ktburndred
 
Glaciers and Glaciation
Glaciers and GlaciationGlaciers and Glaciation
Glaciers and Glaciation
tcooper66
 
Sec 2 rivers 2013
Sec 2 rivers 2013Sec 2 rivers 2013
Sec 2 rivers 2013
MissST
 
Glacial ice powerpoint
Glacial ice powerpointGlacial ice powerpoint
Glacial ice powerpoint
zbmamnnyl
 
Revision Document - Glaciation
Revision Document - GlaciationRevision Document - Glaciation
Revision Document - Glaciation
Keith Phipps
 

What's hot (19)

Glaciers
GlaciersGlaciers
Glaciers
 
Glaciers
GlaciersGlaciers
Glaciers
 
Geology lecture 18
Geology lecture 18Geology lecture 18
Geology lecture 18
 
Glaciated Landforms
Glaciated LandformsGlaciated Landforms
Glaciated Landforms
 
Erosional & depositional glacial landforms
Erosional & depositional glacial landformsErosional & depositional glacial landforms
Erosional & depositional glacial landforms
 
Glacial processes and their land forms.
Glacial processes and their land forms.Glacial processes and their land forms.
Glacial processes and their land forms.
 
Glaciers and Glaciation
Glaciers and GlaciationGlaciers and Glaciation
Glaciers and Glaciation
 
Oceans
OceansOceans
Oceans
 
GLACIATION
GLACIATIONGLACIATION
GLACIATION
 
Glaciers
GlaciersGlaciers
Glaciers
 
Sec 2 rivers 2013
Sec 2 rivers 2013Sec 2 rivers 2013
Sec 2 rivers 2013
 
Glacial landforms
Glacial landformsGlacial landforms
Glacial landforms
 
Glacier
GlacierGlacier
Glacier
 
Rivers
RiversRivers
Rivers
 
Geography - Landforms, water, Glacier, Wind - Pragnya IAS Academy - Civil Ser...
Geography - Landforms, water, Glacier, Wind - Pragnya IAS Academy - Civil Ser...Geography - Landforms, water, Glacier, Wind - Pragnya IAS Academy - Civil Ser...
Geography - Landforms, water, Glacier, Wind - Pragnya IAS Academy - Civil Ser...
 
Glacial ice powerpoint
Glacial ice powerpointGlacial ice powerpoint
Glacial ice powerpoint
 
Revision Document - Glaciation
Revision Document - GlaciationRevision Document - Glaciation
Revision Document - Glaciation
 
Major landforms
Major landformsMajor landforms
Major landforms
 
Lesson 2 past and present distribution of ice
Lesson 2   past and present distribution of iceLesson 2   past and present distribution of ice
Lesson 2 past and present distribution of ice
 

Similar to Glaceirs 2

Education 87_18G5EC3_2020121104273423.ppt
Education 87_18G5EC3_2020121104273423.pptEducation 87_18G5EC3_2020121104273423.ppt
Education 87_18G5EC3_2020121104273423.ppt
jaysonoliva1
 
GEOG 100 lecture 10--Water Resources (ground water and ice)
GEOG 100 lecture 10--Water Resources (ground water and ice)GEOG 100 lecture 10--Water Resources (ground water and ice)
GEOG 100 lecture 10--Water Resources (ground water and ice)
angelaorr
 
Revision Document - Glaciation
Revision Document - GlaciationRevision Document - Glaciation
Revision Document - Glaciation
Keith Phipps
 
Periglacia processes and their landscapes and landforms
Periglacia processes and their landscapes and landformsPeriglacia processes and their landscapes and landforms
Periglacia processes and their landscapes and landforms
James Foster
 
A untold story of Milancovitch theory and Glaciers
A untold story of Milancovitch theory and GlaciersA untold story of Milancovitch theory and Glaciers
A untold story of Milancovitch theory and Glaciers
brucewayne4530
 
Chapter 9 Erosion PowerPoint
Chapter 9 Erosion PowerPointChapter 9 Erosion PowerPoint
Chapter 9 Erosion PowerPoint
nilsona
 

Similar to Glaceirs 2 (20)

Chapter 12 graphics- glaciers (1) [Autosaved].ppt
Chapter 12 graphics- glaciers (1) [Autosaved].pptChapter 12 graphics- glaciers (1) [Autosaved].ppt
Chapter 12 graphics- glaciers (1) [Autosaved].ppt
 
slide 4.ppt
slide 4.pptslide 4.ppt
slide 4.ppt
 
Education 87_18G5EC3_2020121104273423.ppt
Education 87_18G5EC3_2020121104273423.pptEducation 87_18G5EC3_2020121104273423.ppt
Education 87_18G5EC3_2020121104273423.ppt
 
Glaciers
GlaciersGlaciers
Glaciers
 
GEOG 100 lecture 10--Water Resources (ground water and ice)
GEOG 100 lecture 10--Water Resources (ground water and ice)GEOG 100 lecture 10--Water Resources (ground water and ice)
GEOG 100 lecture 10--Water Resources (ground water and ice)
 
Streams and Floods
Streams and FloodsStreams and Floods
Streams and Floods
 
Lesson 8 periglacial processes and their landscapes and landforms
Lesson 8   periglacial processes and their landscapes and landformsLesson 8   periglacial processes and their landscapes and landforms
Lesson 8 periglacial processes and their landscapes and landforms
 
Revision Document - Glaciation
Revision Document - GlaciationRevision Document - Glaciation
Revision Document - Glaciation
 
Periglacia processes and their landscapes and landforms
Periglacia processes and their landscapes and landformsPeriglacia processes and their landscapes and landforms
Periglacia processes and their landscapes and landforms
 
A untold story of Milancovitch theory and Glaciers
A untold story of Milancovitch theory and GlaciersA untold story of Milancovitch theory and Glaciers
A untold story of Milancovitch theory and Glaciers
 
Glacier formation and landforms
Glacier formation and landformsGlacier formation and landforms
Glacier formation and landforms
 
Physical Geography Lecture 09 - Water Resources (Ground water and ice) 110716
Physical Geography Lecture 09 - Water Resources (Ground water and ice) 110716Physical Geography Lecture 09 - Water Resources (Ground water and ice) 110716
Physical Geography Lecture 09 - Water Resources (Ground water and ice) 110716
 
Lesson 5 glacial features
Lesson 5    glacial featuresLesson 5    glacial features
Lesson 5 glacial features
 
Lesson 7 glacial hydrology
Lesson 7   glacial hydrology Lesson 7   glacial hydrology
Lesson 7 glacial hydrology
 
Chapter 9 Erosion PowerPoint
Chapter 9 Erosion PowerPointChapter 9 Erosion PowerPoint
Chapter 9 Erosion PowerPoint
 
Weathering and Erosion.ppt science 5 wea
Weathering and Erosion.ppt science 5 weaWeathering and Erosion.ppt science 5 wea
Weathering and Erosion.ppt science 5 wea
 
Landforms associated with Glacier
Landforms associated with GlacierLandforms associated with Glacier
Landforms associated with Glacier
 
Our glaciers.ppt
Our glaciers.pptOur glaciers.ppt
Our glaciers.ppt
 
Our changing earth
Our changing earthOur changing earth
Our changing earth
 
External geological agents sheila
External geological agents sheilaExternal geological agents sheila
External geological agents sheila
 

Recently uploaded

Digital Signal Processing Lecture notes n.pdf
Digital Signal Processing Lecture notes n.pdfDigital Signal Processing Lecture notes n.pdf
Digital Signal Processing Lecture notes n.pdf
AbrahamGadissa
 
Fruit shop management system project report.pdf
Fruit shop management system project report.pdfFruit shop management system project report.pdf
Fruit shop management system project report.pdf
Kamal Acharya
 
Online blood donation management system project.pdf
Online blood donation management system project.pdfOnline blood donation management system project.pdf
Online blood donation management system project.pdf
Kamal Acharya
 

Recently uploaded (20)

A CASE STUDY ON ONLINE TICKET BOOKING SYSTEM PROJECT.pdf
A CASE STUDY ON ONLINE TICKET BOOKING SYSTEM PROJECT.pdfA CASE STUDY ON ONLINE TICKET BOOKING SYSTEM PROJECT.pdf
A CASE STUDY ON ONLINE TICKET BOOKING SYSTEM PROJECT.pdf
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
 
Toll tax management system project report..pdf
Toll tax management system project report..pdfToll tax management system project report..pdf
Toll tax management system project report..pdf
 
Explosives Industry manufacturing process.pdf
Explosives Industry manufacturing process.pdfExplosives Industry manufacturing process.pdf
Explosives Industry manufacturing process.pdf
 
Arduino based vehicle speed tracker project
Arduino based vehicle speed tracker projectArduino based vehicle speed tracker project
Arduino based vehicle speed tracker project
 
WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
 
ENERGY STORAGE DEVICES INTRODUCTION UNIT-I
ENERGY STORAGE DEVICES  INTRODUCTION UNIT-IENERGY STORAGE DEVICES  INTRODUCTION UNIT-I
ENERGY STORAGE DEVICES INTRODUCTION UNIT-I
 
Digital Signal Processing Lecture notes n.pdf
Digital Signal Processing Lecture notes n.pdfDigital Signal Processing Lecture notes n.pdf
Digital Signal Processing Lecture notes n.pdf
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
 
Fruit shop management system project report.pdf
Fruit shop management system project report.pdfFruit shop management system project report.pdf
Fruit shop management system project report.pdf
 
shape functions of 1D and 2 D rectangular elements.pptx
shape functions of 1D and 2 D rectangular elements.pptxshape functions of 1D and 2 D rectangular elements.pptx
shape functions of 1D and 2 D rectangular elements.pptx
 
Introduction to Machine Learning Unit-5 Notes for II-II Mechanical Engineering
Introduction to Machine Learning Unit-5 Notes for II-II Mechanical EngineeringIntroduction to Machine Learning Unit-5 Notes for II-II Mechanical Engineering
Introduction to Machine Learning Unit-5 Notes for II-II Mechanical Engineering
 
Scaling in conventional MOSFET for constant electric field and constant voltage
Scaling in conventional MOSFET for constant electric field and constant voltageScaling in conventional MOSFET for constant electric field and constant voltage
Scaling in conventional MOSFET for constant electric field and constant voltage
 
Democratizing Fuzzing at Scale by Abhishek Arya
Democratizing Fuzzing at Scale by Abhishek AryaDemocratizing Fuzzing at Scale by Abhishek Arya
Democratizing Fuzzing at Scale by Abhishek Arya
 
Courier management system project report.pdf
Courier management system project report.pdfCourier management system project report.pdf
Courier management system project report.pdf
 
A case study of cinema management system project report..pdf
A case study of cinema management system project report..pdfA case study of cinema management system project report..pdf
A case study of cinema management system project report..pdf
 
Online blood donation management system project.pdf
Online blood donation management system project.pdfOnline blood donation management system project.pdf
Online blood donation management system project.pdf
 
fluid mechanics gate notes . gate all pyqs answer
fluid mechanics gate notes . gate all pyqs answerfluid mechanics gate notes . gate all pyqs answer
fluid mechanics gate notes . gate all pyqs answer
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
 
Natalia Rutkowska - BIM School Course in Kraków
Natalia Rutkowska - BIM School Course in KrakówNatalia Rutkowska - BIM School Course in Kraków
Natalia Rutkowska - BIM School Course in Kraków
 

Glaceirs 2

  • 1. Tim Horner CSUS Geology Department Glaciers and Glaciation Physical Geology, Chapter 12
  • 2. Glaciers and Earth’s Systems • A glacier is a large, long-lasting mass of ice, formed on land, that moves downhill under its own weight • Glaciers are part of Earth’s hydrosphere • Along with sea ice, glaciers are known as the cryosphere • About 75% of the world’s supply of fresh water is locked up in glacial ice
  • 3. Formation of Glaciers • Glaciers develop as snow is compacted and recrystallized, first into firn and then glacial ice • A glacier can only form where more snow accumulates during the winter than melts away during the spring and summer • Two types of glaciated terrains on Earth: – Alpine glaciation occurs in mountainous regions in the form of valley glaciers – Continental glaciation covers large land masses in Earth’s polar regions in the form of ice sheets – Glaciation occurs in areas cold enough to allow accumulated snow to persist from year to year
  • 4. Anatomy of a Glacier • An advancing glacier gains more snow than it loses, has a positive budget – End or terminus of glacier advances downslope • A receding glacier has a negative budget – Terminus of glacier shrinks back upslope • Snow is added in the zone of accumulation of glaciers, whereas melting (and calving of icebergs) occurs in the zone of ablation • The equilibrium line, which separates accumulation and ablation zones, will advance or retreat depending on climate
  • 5. Movement of Glaciers • Valley glaciers and ice sheets move downslope under the force of gravity • Movement occurs by basal sliding and plastic flow of the lower part of the glacier, and passive “riding along” of an overlying rigid zone – Crevasses are fractures formed in the upper rigid zone during glacier flow • Due to friction, glacier flow is fastest at the top center of a glacier and slowest along its margins
  • 6. Glacial Erosion • Glaciers erode underlying rock by plucking of rock fragments and abrasion as they are dragged along – Basal abrasion polishes and striates the underlying rock surface and produces abundant fine rock powder known as rock flour
  • 7. Erosional Landscapes • Erosional landforms produced by valley glaciers include: – U-shaped valleys – Hanging valleys • Smaller tributary glacial valleys left stranded above more quickly eroded central valleys – Cirques • Steep-sided, half-bowl-shaped recesses carved into mountains at the heads of glacial valleys – Arêtes • Sharp ridges separating glacial valleys – Horns • Sharp peaks remaining after cirques have cut back into a mountain on 3+ sides
  • 8. Erosional Landscapes • Erosional landforms produced by valley glaciers include: – U-shaped valleys – Hanging valleys • Smaller tributary glacial valleys left stranded above more quickly eroded central valleys
  • 9. Erosional Landscapes • Erosional landforms produced by valley glaciers include: – Cirques • Steep-sided, half-bowl-shaped recesses carved into mountains at the heads of glacial valley
  • 10. Erosional Landscapes • Erosional landforms produced by valley glaciers include: – Arêtes • Sharp ridges separating glacial valleys – Horns • Sharp peaks remaining after cirques have cut back into a mountain on 3+ sides
  • 11. Glacial Deposition • General name for unsorted, unlayered glacial sediment is till – Deposits of till left behind at the sides and end of a glacier are called lateral, medial and end moraines, respectively • Lateral moraines are elongate, low mounds of till along sides of valley glaciers
  • 12. Glacial Deposition • Medial moraines are lateral moraines trapped between adjacent ice streams • End moraines are ridges of till piled up along the front end of a glacier • Successive end moraines left behind by a retreating glacier are called recessional moraines
  • 13. Glacial Deposition • Large amounts of liquid water flow over, beneath and away from the ice at the end of a glacier • Sediment deposited by this water is known as glacial outwash • Sediment-laden streams emerging from ends of glaciers have braided channel drainage patterns • Outwash landforms include drumlins, eskers, kettles and kames • Annual sediment deposition in glacial lakes produces varves, which can be counted like tree rings
  • 14. Glacial Deposition • Large amounts of liquid water flow over, beneath and away from the ice at the end of a glacier • Sediment deposited by this water is known as glacial outwash • Sediment-laden streams emerging from ends of glaciers have braided channel drainage patterns • Outwash landforms include drumlins, eskers, kettles and kames • Annual sediment deposition in glacial lakes produces varves, which can be counted like tree rings
  • 15. Direct Effects of Past Glaciation • Large-scale glaciation of North America during the most recent ice age produced the following effects: – Most of the soil and sedimentary rocks were scraped off underlying crystalline rock in northern and eastern Canada, and lake basins were gouged out of the bedrock – Extensive sets of recessional moraines were left behind by retreating ice sheets in the upper midwestern U.S. and Canada
  • 16. Indirect Effects of Past Glaciation • Large pluvial lakes (formed in a period of abundant rainfall) existed in closed basins in Utah, Nevada and eastern California – Great Salt Lake is remnant of much larger pluvial Lake Bonneville – Huge floods emanated as ice-dammed lakes (e.g., Lake Missoula) drained catastrophically • Sea level was significantly lowered by large amounts of water locked up into ice sheets, allowing stream channels and glaciers to erode valleys below present- day sea level – Fiords are coastal inlets formed by drowning of glacially carved valleys by rising sea level
  • 17. Evidence for Older Glaciation • Rocks called tillites, lithified glacial till, have distinctive textures that suggest emplacement of sediments by glaciers – Unsorted rock particles including angular, faceted and striated boulders • In some areas, old tillites directly overlie polished and striated crystalline rocks • Tillites formed during late Paleozoic era in portions of the southern continents indicate that these landmasses were once joined – strong evidence supporting Theory of Plate Tectonics