Spring Cloud Data Flow + Geode
Sabby Anandan | Product Manager | @sabbyanandan
Stream Batch
Spring Cloud Data Flow
Spring Cloud Stream Spring Cloud Task
Shell; DSL; REST-
APIs
Drag & Drop UI Security
OOTB
Connectors
Reactive Data Science
Dataflow
Server
Admin / Flo UI
Shell
CURL
??X
Stream/Task Spring Boot Apps
YARN
Why are we here?
Data Pipelines requiring:
• Low latency and in-memory processing
• High Throughput SLAs
• Correlation between reference-data and data-
in-flight
• Frequent data-shuffling
http | transform | log
| = ?
http | transform | log
| = Binder
Binders
Region Data Buckets
http | transform | log
Geode Cluster
transform-processor.jar
PARTITION
transform-processor.jar
PARTITION
log-sink.jar
PARTITION
log-sink.jar
PARTITION
http-source.jar
PARTITION_PROXY
http-source.jar
PARTITION_PROXY
What’s next?
•+/- scaling and automatic re-partitioning
•Stream / Task metadata-repository
•Key-Value store for OOTB Counters
•Partition level local-state and SQL-like
stream processing
11
Join the Apache Geode Community!
• Check out http://geode.incubator.apache.org
• Subscribe: user-subscribe@geode.incubator.apache.org
• Download: http://geode.incubator.apache.org/releases/

#GeodeSummit - Integration & Future Direction for Spring Cloud Data Flow & Geode

  • 1.
    Spring Cloud DataFlow + Geode Sabby Anandan | Product Manager | @sabbyanandan
  • 2.
    Stream Batch Spring CloudData Flow Spring Cloud Stream Spring Cloud Task Shell; DSL; REST- APIs Drag & Drop UI Security OOTB Connectors Reactive Data Science
  • 3.
    Dataflow Server Admin / FloUI Shell CURL ??X Stream/Task Spring Boot Apps YARN
  • 4.
    Why are wehere? Data Pipelines requiring: • Low latency and in-memory processing • High Throughput SLAs • Correlation between reference-data and data- in-flight • Frequent data-shuffling
  • 5.
  • 6.
    | = ? http| transform | log
  • 7.
  • 8.
  • 9.
    Region Data Buckets http| transform | log Geode Cluster transform-processor.jar PARTITION transform-processor.jar PARTITION log-sink.jar PARTITION log-sink.jar PARTITION http-source.jar PARTITION_PROXY http-source.jar PARTITION_PROXY
  • 10.
    What’s next? •+/- scalingand automatic re-partitioning •Stream / Task metadata-repository •Key-Value store for OOTB Counters •Partition level local-state and SQL-like stream processing
  • 11.
    11 Join the ApacheGeode Community! • Check out http://geode.incubator.apache.org • Subscribe: user-subscribe@geode.incubator.apache.org • Download: http://geode.incubator.apache.org/releases/