SlideShare a Scribd company logo
1 of 44
UNIT 4:
GENETICS AND
INHERITANCE
Campbell & Reece:
Chapters 14 and 15
1. WHAT IS GENETICS
• Genetics: The study of heredity.
• Heredity is the relations between
successive generations.
• Why do children look a little bit like their
parents but also different?
• What is responsible for these
similarities and differences?
2. MENDEL’S GENETICS
• Gregory Mendel is the father of
Genetics.
• Mendel discovered the basic principles
of heredity by breeding garden peas in
carefully planned experiments.
• Advantages of pea plants for genetic
study: Cross-pollination (fertilization
between different plants) can be achieved by
dusting one plant with pollen from another.
• Cross-pollination (fertilization between
different plants) can be achieved by dusting
one plant with pollen from another.
• He also used varieties that were true-breeding
(organisms with only one variety of a type e.g.
red flowers can only produce red flowers)
• In a typical experiment, Mendel mated two
contrasting, true-breeding varieties, a process
called hybridization
• The true-breeding parents are the P
generation.
• The hybrid offspring of the P generation are
called the F1 generation
• When F1 individuals self-pollinate, the F2
generation is produced
• When Mendel crossed contrasting, true-
breeding white and purple flowered pea
plants, all of the F1 hybrids were purple
• When Mendel crossed the F1 hybrids,
many of the F2 plants had purple flowers,
but some had white
• Mendel discovered a ratio of about three
to one, purple to white flowers, in the F2
generation.
• Mendel reasoned that only the purple flower
factor was affecting flower color in the F1
hybrids.
• Mendel called the purple flower color a
dominant trait and the white flower color a
recessive trait
• What Mendel called a “heritable factor” is
what we now call a gene
• He did 7 other crosses using different traits
and found the same phenomenon.
• Mendel noted that the gene for flower color for
example exists in two versions, one for purple
flowers and the other for white flowers
• These alternative versions of a gene are now
called alleles
• Each gene is found at a specific locus (position) on
a specific chromosome.
• The two alleles at a locus on a homologous
chromosome pair may be identical, as in the
true-breeding plants – they are then said to
be homozygous for that trait/gene.
• Alternatively, the two alleles at a locus may
differ – they are said to be heterozygous for
that gene/trait.
• If the two alleles at a locus differ, then one
(the dominant allele) determines the
organism’s appearance (we refer to it as its
phenotype), and the other (the recessive
allele) has no noticeable effect on
• Mendel then formulated the law of
segregation, states that the two alleles for a
heritable character separate (segregate)
during gamete formation and end up in
different gametes
• Thus, an egg or a sperm gets only one of the
two alleles that are present in the somatic
cells of an organism.
• An organism traits are indicated via its
genotype and phenotype.
 Genotype: The genetic composition of
the gene, indicated by letters e.g. GG,
Gg, gg. (A capital letter represents a
dominant allele, and a lowercase letter
represents a recessive allele)
 Phenotype: The external appearance of
the gene e.g. Brown hair, white hair.
3. GENETIC CROSSES
• HOW CAN WE NOW MORE OF LESS
DETERMINE WHAT WILL BE THE
OUTCOME IF 2 ORGANISMS HAVE A
BABY?
TWO TYPES OF
GENETIC CROSSES
• MONOHYBRID CROSSES: A cross
between 2 organisms where we only
look an one pair of contrasting traits.
• DIHYBRID CROSS: A cross between 2
organisms where we look at two pairs
of contrasting traits at the same time.
MONOHYBRID CROSS -EXAMPLE
• Determine the outcome/ F1 generation
of a cross between a homozygous tall
plant and a homozygous short plant.
Tall plants are dominant over short
plants.
STEPS TO SOLVE A CROSS PROBLEM
1. What trait are we looking at?
2. Choose a letter to represent the trait.
3. See if you can identify which trait is dominant –
allocate the capital letter to that trait.
4. Identify the recessive trait and allocate a lower case
letter to that trait.
5. Determine the genotypes of the parents. –
Homozygous dominant – Two capital letters e.g. GG
Homozygous recessive – Two lower case letter. E.g.
gg
Heterozygous – One capital letter and one lower
case letter e.g. Gg
1. Start with cross
SOLUTION
1. Trait – Size of plant.
2. Letter chosen to represent size of plant = T/t
3. Tall plants are dominant. (Given in problem) –
Given the – “T” (capital T)
4. Short plants are recessive – given the “t”
(lower case t)
5. One parent is homozygous tall – TT
other parent is homozygous short - tt
CROSS SHOWN AS A GENETIC DIAGRAM
Why?
Tall is dominant over short plants – Babies have both
alleles: tall and short
Cross shown as a punnet square
CROSS BETWEEN F1 GENERATION
INDIVIDUALS (INTERBREED F1 GENERATION)
MONOHYBRID CROSS –EXAMPLE 2
A heterozygous blue eyed rabbit is crossed
with a rabbit with pink eyes. What is the
possibility of the babies being born with
pink eyes?
SOLUTION
1. Trait: eye colour of rabbit.
2. Letter used: E/e
3. Dominant trait: Blue eyes (Why? The first rabbit is
heterozygous – both alleles – but blue is being
expressed in rabbit eyes.) = E
4. Recessive trait: pink eyes = e
5. Rabbit one – heterozygous: Ee
Rabbit two – homozygous: ee (why?)
The only way that a rabbit can have pink eyes
expressed externally is if both alleles code for pink
eyes.
EXAMPLE OF A DIHYBRID CROSS
Determine the F2 generation of a cross
between yellow round seeded peas and
wrinkled green seeded peas. Yellow and
round seeds are dominant.
• Using a dihybrid cross, Mendel developed
the law of independent assortment
• The law of independent assortment states
that each pair of alleles segregates
independently from another pair of alleles
during gamete formation.
• Strictly speaking, this law applies only to
genes on different, nonhomologous
chromosomes
• Genes located near each other on the
same chromosome tend to be inherited
together.
Dihybrid cross
• In humans there is a disease called Phenylketonuria
(PKU) which is caused by a recessive allele. People with
this allele have a defective enzyme and cannot break
down the amino acid phenylalanine. This disease can
result in mental retardation or death. Let “E” represent
the normal enzyme. Also in humans in a condition
called galactose intolerance or galactosemia, which is
also caused by a recessive allele. Let “G” represent the
normal allele for galactose digestion. In both diseases,
normal dominates over recessive.
• If two adults were heterozygous for both traits, what
are the chances of having a child that is completely
normal?
• Has just PKU?
• Has just galactosemia?
• Has both diseases?
EG Eg eG eg
EG EEGG EEGg EeGG EeGg
Eg EEGg EEgg EeGg Eegg
eG EeGG EeGg eeGG eeGg
eg EeGg Eegg eeGg eegg
P1 EeGg x EeGg
Meiosis
F1 EG Eg eG eg EG Eg eG eg
4. DEGREES OF DOMINANCE
•Complete dominance One allele
suppresses the expression of the other
allele.
• Incomplete dominance: phenotype of F1
hybrids is somewhere between the
phenotypes of the 2 parental varieties –
neither allele completely dominant
(White x Red = Pink)
• Codominance, 2 dominant alleles affect
the phenotype in separate,
distinguishable ways. (Red and white
flowers = White and red visible.)
5. MULTIPLE ALLELES
 Most genes exist in populations in more than two
allelic forms.
 For example, the four phenotypes of the ABO
blood group in humans are determined by three
alleles for the enzyme (I) that attaches A or B
carbohydrates to red blood cells: IA, IB, and i.
 The enzyme encoded by the IA allele adds the A
carbohydrate, whereas the enzyme encoded by
the IB allele adds the B carbohydrate; the enzyme
encoded by the i allele adds neither.
6. PLEIOTROPY
 Most genes have multiple phenotypic effects, a
property called pleiotropy
 For example, pleiotropic alleles are responsible
for the multiple symptoms of certain hereditary
diseases, such as cystic fibrosis and sickle-cell
disease
7. Polygenic Inheritance
 Polygenic inheritance is an additive effect of two
or more genes on a single phenotype
 Skin color in humans is an example of polygenic
inheritance.
8. DETERMINING THE SEX OF A BABY
 In humans and other mammals, there are
two varieties of sex chromosomes: a larger
X chromosome and a smaller Y
chromosome
 Only the ends of the Y chromosome have
regions that are homologous with the X
chromosome
 The SRY gene on the Y chromosome codes
for the development of testes.
X and Y CHROMOSOMES
 Females are XX, and males are XY
 Each ovum contains an X
chromosome, while a sperm may
contain either an X or a Y
chromosome.
DIAGRAM TO DETERMINE THE SEX OF
A BABY
9. Inheritance of Sex-Linked Genes
 The sex chromosomes have genes for many
characters unrelated to sex
 A gene located on either sex chromosome is
called a sex-linked gene
 In humans, sex-linked refers to a gene on the
larger X chromosome.
 For a recessive sex-linked trait to be expressed
 A female needs two copies of the allele
 A male needs only one copy of the allele.
 Sex-linked recessive disorders are much more
common in males than in females.
Some disorders caused by recessive alleles on
the X chromosome in humans:
• Color blindness
• Duchenne muscular dystrophy
• Hemophilia

More Related Content

What's hot (12)

Mendelism
MendelismMendelism
Mendelism
 
Mendelian genetics
Mendelian geneticsMendelian genetics
Mendelian genetics
 
genetics and inheritance, in plants and animals
genetics and inheritance, in plants and animalsgenetics and inheritance, in plants and animals
genetics and inheritance, in plants and animals
 
Unit 4 genetics and inheritance(2)
Unit 4 genetics and inheritance(2)Unit 4 genetics and inheritance(2)
Unit 4 genetics and inheritance(2)
 
Unit 4 genetics and inheritance
Unit 4 genetics and inheritanceUnit 4 genetics and inheritance
Unit 4 genetics and inheritance
 
Unit 4 genetics and inheritance
Unit 4 genetics and inheritanceUnit 4 genetics and inheritance
Unit 4 genetics and inheritance
 
Genetics and inheritance
Genetics and inheritanceGenetics and inheritance
Genetics and inheritance
 
Unit 4 genetics and inheritance
Unit 4 genetics and inheritanceUnit 4 genetics and inheritance
Unit 4 genetics and inheritance
 
Mendel and heredity pdf
Mendel and heredity pdfMendel and heredity pdf
Mendel and heredity pdf
 
THE LAWS OF MENDEL
THE LAWS OF MENDELTHE LAWS OF MENDEL
THE LAWS OF MENDEL
 
Genetics - Mendellian Principles of Heredity
Genetics - Mendellian Principles of HeredityGenetics - Mendellian Principles of Heredity
Genetics - Mendellian Principles of Heredity
 
Genetics and inheritance
Genetics and inheritanceGenetics and inheritance
Genetics and inheritance
 

Viewers also liked

7.genetics and inheritance
7.genetics and inheritance7.genetics and inheritance
7.genetics and inheritancelmurdoch
 
Human reproduction lesson 7
Human reproduction lesson 7Human reproduction lesson 7
Human reproduction lesson 7dhmcmillan
 
Qunatative inheritance by iqra aslam
Qunatative inheritance by iqra aslam Qunatative inheritance by iqra aslam
Qunatative inheritance by iqra aslam iqra666
 
Biotechnology - Inheritance and Breeding
Biotechnology - Inheritance and BreedingBiotechnology - Inheritance and Breeding
Biotechnology - Inheritance and BreedingCatherine Patterson
 
Chapter 9 genetics handout fall 2011
Chapter 9 genetics handout fall 2011Chapter 9 genetics handout fall 2011
Chapter 9 genetics handout fall 2011jaimeefawnbit
 
B.sc. agri i pog unit 4 population genetics
B.sc. agri i pog unit 4 population geneticsB.sc. agri i pog unit 4 population genetics
B.sc. agri i pog unit 4 population geneticsRai University
 
Inheritance and genetic of blood group
Inheritance and genetic of blood groupInheritance and genetic of blood group
Inheritance and genetic of blood groupForensic Pathology
 
Polygene and its inheritance
Polygene and its inheritancePolygene and its inheritance
Polygene and its inheritanceRicha Khatiwada
 

Viewers also liked (15)

Genetics and inheritance
Genetics and inheritanceGenetics and inheritance
Genetics and inheritance
 
7.genetics and inheritance
7.genetics and inheritance7.genetics and inheritance
7.genetics and inheritance
 
Human reproduction lesson 7
Human reproduction lesson 7Human reproduction lesson 7
Human reproduction lesson 7
 
Qunatative inheritance by iqra aslam
Qunatative inheritance by iqra aslam Qunatative inheritance by iqra aslam
Qunatative inheritance by iqra aslam
 
Biotechnology - Inheritance and Breeding
Biotechnology - Inheritance and BreedingBiotechnology - Inheritance and Breeding
Biotechnology - Inheritance and Breeding
 
09 Lecture Ppt
09 Lecture Ppt09 Lecture Ppt
09 Lecture Ppt
 
Genetics presentation ’15
Genetics presentation ’15Genetics presentation ’15
Genetics presentation ’15
 
Chapter 9 genetics handout fall 2011
Chapter 9 genetics handout fall 2011Chapter 9 genetics handout fall 2011
Chapter 9 genetics handout fall 2011
 
Genetics and Evolution
Genetics and EvolutionGenetics and Evolution
Genetics and Evolution
 
Genetics and evolution
Genetics and evolutionGenetics and evolution
Genetics and evolution
 
B.sc. agri i pog unit 4 population genetics
B.sc. agri i pog unit 4 population geneticsB.sc. agri i pog unit 4 population genetics
B.sc. agri i pog unit 4 population genetics
 
Evolution and Genetics
Evolution and GeneticsEvolution and Genetics
Evolution and Genetics
 
Quantitative genetics
Quantitative geneticsQuantitative genetics
Quantitative genetics
 
Inheritance and genetic of blood group
Inheritance and genetic of blood groupInheritance and genetic of blood group
Inheritance and genetic of blood group
 
Polygene and its inheritance
Polygene and its inheritancePolygene and its inheritance
Polygene and its inheritance
 

Similar to genetics and inheritance

GENETICS AND INHERITENCE
GENETICS AND INHERITENCEGENETICS AND INHERITENCE
GENETICS AND INHERITENCEPontsho Ngema
 
Unit 4 genetics and inheritance
Unit 4 genetics and inheritanceUnit 4 genetics and inheritance
Unit 4 genetics and inheritanceRudolph Mahlase
 
Unit 4 genetics and inheritance
Unit 4 genetics and inheritanceUnit 4 genetics and inheritance
Unit 4 genetics and inheritancenozie sithole
 
Unit 4 genetics and inheritance
Unit 4 genetics and inheritanceUnit 4 genetics and inheritance
Unit 4 genetics and inheritancemfundo mabuza
 
Unit 4 genetics and inheritance
Unit 4 genetics and inheritanceUnit 4 genetics and inheritance
Unit 4 genetics and inheritanceGoodness
 
Genetics and Inheritance
Genetics and InheritanceGenetics and Inheritance
Genetics and InheritanceDylan Green
 
GenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptxGenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptxBerniceCayabyab1
 
Concept_of_genetics_and_Mendel Gregor.pptx
Concept_of_genetics_and_Mendel Gregor.pptxConcept_of_genetics_and_Mendel Gregor.pptx
Concept_of_genetics_and_Mendel Gregor.pptxssuser09efe9
 
Genetics Powerpoint.pptx
Genetics Powerpoint.pptxGenetics Powerpoint.pptx
Genetics Powerpoint.pptxFolusoOyolola
 
FBY 0416 - Chapter 4 - Genetic Inheritance (Latest).pptx
FBY 0416 - Chapter 4 - Genetic Inheritance (Latest).pptxFBY 0416 - Chapter 4 - Genetic Inheritance (Latest).pptx
FBY 0416 - Chapter 4 - Genetic Inheritance (Latest).pptxEuniceTangEnShi
 
UNIT 4 GENETICS AND INHERITANCE (2).pptx
UNIT 4 GENETICS AND INHERITANCE (2).pptxUNIT 4 GENETICS AND INHERITANCE (2).pptx
UNIT 4 GENETICS AND INHERITANCE (2).pptxOluhle Mantyi
 
genetics and inheritance
genetics and inheritancegenetics and inheritance
genetics and inheritanceOluhle Mantyi
 
Principle of Genetics.pptx
Principle of Genetics.pptxPrinciple of Genetics.pptx
Principle of Genetics.pptxpooja singh
 
4.5 Theoretical Genetics
4.5 Theoretical Genetics4.5 Theoretical Genetics
4.5 Theoretical GeneticsPatricia Lopez
 
Dr. hajare balaji b [genetics}
Dr. hajare balaji b [genetics} Dr. hajare balaji b [genetics}
Dr. hajare balaji b [genetics} hajarebalaji
 

Similar to genetics and inheritance (20)

GENETICS AND INHERITENCE
GENETICS AND INHERITENCEGENETICS AND INHERITENCE
GENETICS AND INHERITENCE
 
Unit 4 genetics and inheritance
Unit 4 genetics and inheritanceUnit 4 genetics and inheritance
Unit 4 genetics and inheritance
 
Unit 4 genetics and inheritance
Unit 4 genetics and inheritanceUnit 4 genetics and inheritance
Unit 4 genetics and inheritance
 
Unit 4 genetics and inheritance
Unit 4 genetics and inheritanceUnit 4 genetics and inheritance
Unit 4 genetics and inheritance
 
Unit 4 genetics and inheritance
Unit 4 genetics and inheritanceUnit 4 genetics and inheritance
Unit 4 genetics and inheritance
 
Unit 4 genetics and inheritance
Unit 4 genetics and inheritanceUnit 4 genetics and inheritance
Unit 4 genetics and inheritance
 
Life sciences....genetics
Life sciences....geneticsLife sciences....genetics
Life sciences....genetics
 
Genetics and Inheritance
Genetics and InheritanceGenetics and Inheritance
Genetics and Inheritance
 
GenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptxGenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptx
 
Concept_of_genetics_and_Mendel Gregor.pptx
Concept_of_genetics_and_Mendel Gregor.pptxConcept_of_genetics_and_Mendel Gregor.pptx
Concept_of_genetics_and_Mendel Gregor.pptx
 
Genetics Powerpoint.pptx
Genetics Powerpoint.pptxGenetics Powerpoint.pptx
Genetics Powerpoint.pptx
 
FBY 0416 - Chapter 4 - Genetic Inheritance (Latest).pptx
FBY 0416 - Chapter 4 - Genetic Inheritance (Latest).pptxFBY 0416 - Chapter 4 - Genetic Inheritance (Latest).pptx
FBY 0416 - Chapter 4 - Genetic Inheritance (Latest).pptx
 
Genetics - Mendelian2.ppt
Genetics - Mendelian2.pptGenetics - Mendelian2.ppt
Genetics - Mendelian2.ppt
 
UNIT 4 GENETICS AND INHERITANCE (2).pptx
UNIT 4 GENETICS AND INHERITANCE (2).pptxUNIT 4 GENETICS AND INHERITANCE (2).pptx
UNIT 4 GENETICS AND INHERITANCE (2).pptx
 
genetics and inheritance
genetics and inheritancegenetics and inheritance
genetics and inheritance
 
Principle of Genetics.pptx
Principle of Genetics.pptxPrinciple of Genetics.pptx
Principle of Genetics.pptx
 
4.5 Theoretical Genetics
4.5 Theoretical Genetics4.5 Theoretical Genetics
4.5 Theoretical Genetics
 
Dr. hajare balaji b [genetics}
Dr. hajare balaji b [genetics} Dr. hajare balaji b [genetics}
Dr. hajare balaji b [genetics}
 
Mendel’s genetics
Mendel’s geneticsMendel’s genetics
Mendel’s genetics
 
Genetics
GeneticsGenetics
Genetics
 

Recently uploaded

URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersChitralekhaTherkar
 
PSYCHIATRIC History collection FORMAT.pptx
PSYCHIATRIC   History collection FORMAT.pptxPSYCHIATRIC   History collection FORMAT.pptx
PSYCHIATRIC History collection FORMAT.pptxPoojaSen20
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docxPoojaSen20
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991RKavithamani
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
 

Recently uploaded (20)

URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of Powders
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
PSYCHIATRIC History collection FORMAT.pptx
PSYCHIATRIC   History collection FORMAT.pptxPSYCHIATRIC   History collection FORMAT.pptx
PSYCHIATRIC History collection FORMAT.pptx
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docx
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
 

genetics and inheritance

  • 1. UNIT 4: GENETICS AND INHERITANCE Campbell & Reece: Chapters 14 and 15
  • 2. 1. WHAT IS GENETICS • Genetics: The study of heredity. • Heredity is the relations between successive generations. • Why do children look a little bit like their parents but also different? • What is responsible for these similarities and differences?
  • 3. 2. MENDEL’S GENETICS • Gregory Mendel is the father of Genetics. • Mendel discovered the basic principles of heredity by breeding garden peas in carefully planned experiments. • Advantages of pea plants for genetic study: Cross-pollination (fertilization between different plants) can be achieved by dusting one plant with pollen from another.
  • 4. • Cross-pollination (fertilization between different plants) can be achieved by dusting one plant with pollen from another.
  • 5. • He also used varieties that were true-breeding (organisms with only one variety of a type e.g. red flowers can only produce red flowers) • In a typical experiment, Mendel mated two contrasting, true-breeding varieties, a process called hybridization • The true-breeding parents are the P generation. • The hybrid offspring of the P generation are called the F1 generation • When F1 individuals self-pollinate, the F2 generation is produced
  • 6. • When Mendel crossed contrasting, true- breeding white and purple flowered pea plants, all of the F1 hybrids were purple
  • 7. • When Mendel crossed the F1 hybrids, many of the F2 plants had purple flowers, but some had white • Mendel discovered a ratio of about three to one, purple to white flowers, in the F2 generation.
  • 8.
  • 9. • Mendel reasoned that only the purple flower factor was affecting flower color in the F1 hybrids. • Mendel called the purple flower color a dominant trait and the white flower color a recessive trait • What Mendel called a “heritable factor” is what we now call a gene • He did 7 other crosses using different traits and found the same phenomenon.
  • 10.
  • 11. • Mendel noted that the gene for flower color for example exists in two versions, one for purple flowers and the other for white flowers • These alternative versions of a gene are now called alleles • Each gene is found at a specific locus (position) on a specific chromosome.
  • 12. • The two alleles at a locus on a homologous chromosome pair may be identical, as in the true-breeding plants – they are then said to be homozygous for that trait/gene. • Alternatively, the two alleles at a locus may differ – they are said to be heterozygous for that gene/trait. • If the two alleles at a locus differ, then one (the dominant allele) determines the organism’s appearance (we refer to it as its phenotype), and the other (the recessive allele) has no noticeable effect on
  • 13.
  • 14. • Mendel then formulated the law of segregation, states that the two alleles for a heritable character separate (segregate) during gamete formation and end up in different gametes • Thus, an egg or a sperm gets only one of the two alleles that are present in the somatic cells of an organism.
  • 15. • An organism traits are indicated via its genotype and phenotype.  Genotype: The genetic composition of the gene, indicated by letters e.g. GG, Gg, gg. (A capital letter represents a dominant allele, and a lowercase letter represents a recessive allele)  Phenotype: The external appearance of the gene e.g. Brown hair, white hair.
  • 16. 3. GENETIC CROSSES • HOW CAN WE NOW MORE OF LESS DETERMINE WHAT WILL BE THE OUTCOME IF 2 ORGANISMS HAVE A BABY?
  • 17. TWO TYPES OF GENETIC CROSSES • MONOHYBRID CROSSES: A cross between 2 organisms where we only look an one pair of contrasting traits. • DIHYBRID CROSS: A cross between 2 organisms where we look at two pairs of contrasting traits at the same time.
  • 18. MONOHYBRID CROSS -EXAMPLE • Determine the outcome/ F1 generation of a cross between a homozygous tall plant and a homozygous short plant. Tall plants are dominant over short plants.
  • 19. STEPS TO SOLVE A CROSS PROBLEM 1. What trait are we looking at? 2. Choose a letter to represent the trait. 3. See if you can identify which trait is dominant – allocate the capital letter to that trait. 4. Identify the recessive trait and allocate a lower case letter to that trait. 5. Determine the genotypes of the parents. – Homozygous dominant – Two capital letters e.g. GG Homozygous recessive – Two lower case letter. E.g. gg Heterozygous – One capital letter and one lower case letter e.g. Gg 1. Start with cross
  • 20. SOLUTION 1. Trait – Size of plant. 2. Letter chosen to represent size of plant = T/t 3. Tall plants are dominant. (Given in problem) – Given the – “T” (capital T) 4. Short plants are recessive – given the “t” (lower case t) 5. One parent is homozygous tall – TT other parent is homozygous short - tt
  • 21. CROSS SHOWN AS A GENETIC DIAGRAM Why? Tall is dominant over short plants – Babies have both alleles: tall and short
  • 22. Cross shown as a punnet square
  • 23. CROSS BETWEEN F1 GENERATION INDIVIDUALS (INTERBREED F1 GENERATION)
  • 24. MONOHYBRID CROSS –EXAMPLE 2 A heterozygous blue eyed rabbit is crossed with a rabbit with pink eyes. What is the possibility of the babies being born with pink eyes?
  • 25. SOLUTION 1. Trait: eye colour of rabbit. 2. Letter used: E/e 3. Dominant trait: Blue eyes (Why? The first rabbit is heterozygous – both alleles – but blue is being expressed in rabbit eyes.) = E 4. Recessive trait: pink eyes = e 5. Rabbit one – heterozygous: Ee Rabbit two – homozygous: ee (why?) The only way that a rabbit can have pink eyes expressed externally is if both alleles code for pink eyes.
  • 26.
  • 27. EXAMPLE OF A DIHYBRID CROSS Determine the F2 generation of a cross between yellow round seeded peas and wrinkled green seeded peas. Yellow and round seeds are dominant.
  • 28.
  • 29.
  • 30. • Using a dihybrid cross, Mendel developed the law of independent assortment • The law of independent assortment states that each pair of alleles segregates independently from another pair of alleles during gamete formation. • Strictly speaking, this law applies only to genes on different, nonhomologous chromosomes • Genes located near each other on the same chromosome tend to be inherited together.
  • 31. Dihybrid cross • In humans there is a disease called Phenylketonuria (PKU) which is caused by a recessive allele. People with this allele have a defective enzyme and cannot break down the amino acid phenylalanine. This disease can result in mental retardation or death. Let “E” represent the normal enzyme. Also in humans in a condition called galactose intolerance or galactosemia, which is also caused by a recessive allele. Let “G” represent the normal allele for galactose digestion. In both diseases, normal dominates over recessive. • If two adults were heterozygous for both traits, what are the chances of having a child that is completely normal? • Has just PKU? • Has just galactosemia? • Has both diseases?
  • 32. EG Eg eG eg EG EEGG EEGg EeGG EeGg Eg EEGg EEgg EeGg Eegg eG EeGG EeGg eeGG eeGg eg EeGg Eegg eeGg eegg P1 EeGg x EeGg Meiosis F1 EG Eg eG eg EG Eg eG eg
  • 33. 4. DEGREES OF DOMINANCE •Complete dominance One allele suppresses the expression of the other allele. • Incomplete dominance: phenotype of F1 hybrids is somewhere between the phenotypes of the 2 parental varieties – neither allele completely dominant (White x Red = Pink) • Codominance, 2 dominant alleles affect the phenotype in separate, distinguishable ways. (Red and white flowers = White and red visible.)
  • 34. 5. MULTIPLE ALLELES  Most genes exist in populations in more than two allelic forms.  For example, the four phenotypes of the ABO blood group in humans are determined by three alleles for the enzyme (I) that attaches A or B carbohydrates to red blood cells: IA, IB, and i.  The enzyme encoded by the IA allele adds the A carbohydrate, whereas the enzyme encoded by the IB allele adds the B carbohydrate; the enzyme encoded by the i allele adds neither.
  • 35.
  • 36. 6. PLEIOTROPY  Most genes have multiple phenotypic effects, a property called pleiotropy  For example, pleiotropic alleles are responsible for the multiple symptoms of certain hereditary diseases, such as cystic fibrosis and sickle-cell disease
  • 37. 7. Polygenic Inheritance  Polygenic inheritance is an additive effect of two or more genes on a single phenotype  Skin color in humans is an example of polygenic inheritance.
  • 38. 8. DETERMINING THE SEX OF A BABY  In humans and other mammals, there are two varieties of sex chromosomes: a larger X chromosome and a smaller Y chromosome  Only the ends of the Y chromosome have regions that are homologous with the X chromosome  The SRY gene on the Y chromosome codes for the development of testes.
  • 39. X and Y CHROMOSOMES
  • 40.  Females are XX, and males are XY  Each ovum contains an X chromosome, while a sperm may contain either an X or a Y chromosome.
  • 41. DIAGRAM TO DETERMINE THE SEX OF A BABY
  • 42. 9. Inheritance of Sex-Linked Genes  The sex chromosomes have genes for many characters unrelated to sex  A gene located on either sex chromosome is called a sex-linked gene  In humans, sex-linked refers to a gene on the larger X chromosome.  For a recessive sex-linked trait to be expressed  A female needs two copies of the allele  A male needs only one copy of the allele.  Sex-linked recessive disorders are much more common in males than in females.
  • 43.
  • 44. Some disorders caused by recessive alleles on the X chromosome in humans: • Color blindness • Duchenne muscular dystrophy • Hemophilia