SlideShare a Scribd company logo
To the Problem
of Four-Dimensional Symmetries
of the Properties of Chemical Elements
and the Interpretation of this Phenomenon
F.Bogomolov, Y.Magarshak, On commuting operators related to asymptotic
symmetries in the atomic theory; Scientific Israel-Technological
Advantages, vol 8, issues 1-2, pp. 161-165 (2006)
• Y.Magarshak, "Four-Dimensional Pyramidal Structure of the Periodic
Properties of Atoms and Chemical Elements", Scientific Israel -
Technological Advantages vol. 7, No.1,2 , pp. 134-150 (2006)
• Yu. Magarshak, J.Malinsky,"A Three-Dimensional Periodic Table ", Nature,
vol.360: 113-114 (1992).
Орбитальное Рис. 1
Квантовое Порядок заполнения оболочек
число
Порядок
заполнения
термов (подоболочек)
14F
10D
6P
2S
1 2 3 4 5 6 7 8 Главное
квантовое
число
),()( ϕθlmYrR=Ψ
[ ] 0)(
2
2
=Ψ−+∆Ψ rUE
m

EMPIRIC HUND RULE: Electronic configuration, which has
the the largest (for that electronic configuration) spin value
and the greatest possible at this value of the spin orbinal momentum
has the lowest energy.
***
Experimentally proven order of atomic orbitals energy encrease:
1s<2s<2p<3s<3p<4s<3d<4p<5s<4d<5p<6s<4f <5d <6p <7s <5f <6d <7p < 8s
5f < 6d < 7p < 8s …
4f < 5d < 6p < 7s <
4d < 5p < 6s <
3d < 4p < 5s <
3p < 4s <
2p < 3s <
2s <
1s <
5g 6F 7D 8P 8s
5f 6d 7p 8s
Восьмой уровень
Четвертый
суперцикл
4f (14 элементов) 5d (10 элементов) 6p (6 элементов) 7s (2 элемента)
Седьмой уровень
4d (10 элементов) 5p (6 элементов) 6s (2 элемента)
Шестой уровень
Третий
суперцикл 3d (10 элементов) 4p(6 элементов) 5s (2 элемента)
Пятый уровень
3p (6 элементов) 4s (2 элемента)
Четвертый уровень
Второй
суперцикл
2p (6 элементов) 3s (2 элемента)
Третий уровень
2s (2 элемента)
Второй уровень
Первый
суперцикл
1s (2 элемента)
Первый уровень
Рис. 2
Copiright Yuri Magarshak
All rights reserved
8s
7S
6 S 7P
5S 6P
4 S 5P 6D
3 S 4P 5D
2S 3P 4D 5F
1S 2P 3D 4F
1 2 3 4 5 6 7 8 Level
8S
7S
6S 7P
5S 6P
4S 5P 6D
3S 4P 5D
2S 3P 4D 5F
1S 2P 3D 4F
1 2 3 4 5 6 7 8 Level
8s
7s
6s 7p
5s 6p
4s 5p 6d
3s 4p 5d
2s 3p 4d 5f
1s 2p 3d 4f
1 2 3 4 5 6 7 8 Level
Fig. 7б
Copiright Yuri Magarshak
All rights reserved
Fr Rb Na H
Ti Ga B
Lu Sc
La
Uut
Lr
Ac
Y
Al
Cs
In
K Li
Fig. 7б
Copiright Yuri Magarshak
All rights reserved
Fr Rb Na H
Ti Ga B
Lu Sc
La
Uut
Lr
Ac
Y
Al
Cs
In
K Li
Copiright Yuri Magarshak
All rights reserved
Fr Rb Na H
Ti Ga B
Lu Sc
La
Uut
Lr
Ac
Y
Al
Cs
In
K Li
(1s)2
<
(2s)2
<
(2p)6
< (3s)2
<
(3p)6
< (4s)2
<
(3d)10
< (4p)6
< (5s)2
<
(4d)10
< (5p)6
< (6s)2
<
(4f)14
< (5d)10
< (6p)6
< (7s)2
<
(5f)14
< (6d)10
< (7p)6
< (8s)2
Порядок
заполнения
термов
элементами
Порядок Порядок
заполнения заполнения
периодов 3-7 периодов 2 и 3
термами термами
Copiright Yuri Magarshak
All rights reserved
Li HNaKCs RbFr
Al BGaIn
Y ScLuLr
TiUut
LaAc
The Basic Features
of the 4- Dimensional Pyramid
of Periodically Repeating Properties of Chemical
Elements
All chemical elements can be subdivided by
• Eight cycles having 2,2; 8,8;18,18, 32, 32
elements each
• Four Supercycles having 4, 16, 36 и 64
elements each
• Two clusters: M-cluster and F-cluster
• Paired clusters, cycles, subshells and
elements
8S
7S
6S 7P
5S 6P
4S 5P 6F
3S 4P 5D
2S 3P 4D 5F
1S 2P 3D 4F
1 2 3 4 5 6 7 8 Level
8s
7s
6s 7p
5s 6p
4s 5p 6d
3s 4p 5d
2s 3p 4d 5f
1s 2p 3d 4f
1 2 3 4 5 6 7 8 Level
n (principal quantum number)
8S
7S
6S 7P
5S 6P
4S 5P 6F
3S 4P 5D
2S 3P 4D 5F CYCLE
1S 2P 3D 4F CYCLE
1 2 3 4 5 6 7 8 Level
l (orbital quantum number)
Рис. 9a
Copiright Yuri Magarshak
All rights reserved
Порядок
заполнения
термов
элементами
Порядок Порядок
заполнения заполнения
периодов 3-7 периодов 2 и 3
термам термами
Li HNaKCs RbFr
Al BGaIn
Y ScLuLr
TiUut
LaAc
Copiright Yuri Magarshak
All rights reserved
Порядок
заполнения
термов
элементами
Порядок
заполнения Циклы
термов
каждого цикла
Li HNaKCs RbFr
Al BGaIn
Y ScLuLr
TiUut
LaAc
RaSr BaMg CaHe Be
Uub
HgCdZn
UuoRuXeCrAr
Ne
Yb No
O
СHEMISTRY NUMBERS. Each chemical element can be
characterized by the set of four chemical numbers.
CLUSTER NUMBER , having one of two values: either M or F
SUPERCYCLE NUMBER (or, in short, super-number) , which
determines to which pyramid super-level element belongs and on
which super-cycle is disposed ( = 1, 2, 3, 4).
LAYER NUMBER  which determines the layer number of the
cycle in which subshell  is disposed.  has integer values from -1
(bottom layer, which in the cycle is filled first) to 0 (surface layer,
щелочные и щелочноземельные металлы, подоболочки которых
заполняются в циклах последними).
NODE NUMBER , which enumerates 2(2  + 1) elements of the
subslell.
CERTAINITY PRICIPLE: TWO CHEMICAL
ELEMENTS CAN NOT HAVE FOUR
IDENTICAL CHEMICAL NUMBERS
),()( ϕθlmYrR=Ψ
[ ] 0)(
2
2
=Ψ−+∆Ψ rUE
m

lm
l
x
mml
ml
xP
mP
ml
mll
mP
ml
mll
m
m
m
l
m
j
m
j
,...,2,1,0
;,...,2,1,0
)1(
!)!(
)!(
2
1
)(
cos)(cos
)!(2
)!(12
sin)(cos
)!(2
)!(12
2/2
=
=
−
−
+
=
+
−+
+
−+
ϕϑ
π
ϕϑ
π
0
2)1(2
222
2
=





++
+
−+ R
r
E
m
R
r
ll
dr
dR
rdr
Rd α

1
2 22
2
−−=
−=
lnn
n
m
E
r

α
where n – radial quantum number, equal to the number of
nonzero nodes of the radial part of the wave function at
finite non-zero r.
Identity of the structure of the M-cluster (as well as that of
the F-clusterl) with the dependence of n(l) for hydrogen
atom, наводят на мысль о том, that D symmetry of the
periodic elements properties on the charge of the nuclei all
elements can be considered as the sates of the single
particles.
However the necessity
a) Getting two grids, which are rotated relative to each
other by /4;
б) filling the nodes on the slide 1 (hydrogen atom) and
slide 2 (for the set of all chemical elements)in opposite
directions, and
c) The presence of paired cycles, supercycles and clusters
in periodically repeating elements properties
Let the structures and symmetries that are described above and shown
in Fig. 1 be generated by a pair of Hamiltonian-type operators, which
naturally appear in the presence of two commutative Lie symmetry
algebras in the quantum system. From the existence of simple
commutative Lie symmetry algebras in a physical problem, it follows
the existence of a single commuting pair of energy-type operators for
localized quantum states.
Let us consider a finite-dimensional complex representation of the
product of semisimple Lie algebras. Any such representation V of
g1
 g2
decomposes into a direct sum of tensor products Vk
 Wj
where Vk
are irreducible representations of g1
and Wj
are representations of g2
.
 
Theorem: Assume that g1
,g2
are simple Lie algebras. Then there is a
canonically defined pair of commuting operators 1
, 2
such that both
i
, i=1,2 commute also with the action of g1
,g2
and have integer
nonnegative eigenvalues on V.
Note that the above decomposition may exist in the compexification of
the symmetry algebra and not in the algebra itself. Since finite-
dimensional representations of the complexified Lie algebra are the same
as of it's real form and the above decomposition holds anyway. In our
application the complexification of both real algebras are presumably
isomoprhic to so(3,C)= sl(2,C) after a complexification and hence have
rank 1. Thus there are two natural options:
1) both algebras are coming from the independent rotation invariance of
both the nucleus and the electron envelope.
2) the local symmetry group is the Lorentz group SO(3,1) and
though it's Lie algebra so(3,1) has no such a decompostion but the
complexification so(3,1) x C = sl(2,C) + sl(2,C).
The actual Hamiltonian operator of the problem splits into a sum of 
two commuting energy time operators.
 
In our opinion second case is physically more plausible
How could such a symmetry appear in reality? Currently the standard
answer to such question is symmetry break. Namely the existence of
symmetry within an ensemble of different particles is usually explained
by considering them as different states of an "ideal object" with the
above symmetry so that the particles are degenerate states of the above
object where the symmetry is broken due to some process of natural
degeneration.
If we try to apply similar explanation we are brought to the idea to view
the atom as one of the possible states of an ideal particle which we will
be denoting as I-particle. This particle has Lorentz symmetry algebra
within a bigger algebra of local symmetries and supersymmetries
corresponding to other potential fields. The I-particle exists in this 
ideal  state only 0-time  which in practice means  a very short time
depending on the total energy of the I-particle according to the
"uncertainty principle". While degenerating the I-particle creates an 
avalanche of intermediate particles which retain only pieces of the
initial symmetry but previous symmetry is manifested in the set of
possible degenerate states.
Four dimensional pyramids

More Related Content

What's hot

Trans effect
Trans effectTrans effect
Trans effect
Ateeqa Amjad
 
Sweeping discussion on_dirac_fields_secured
Sweeping discussion on_dirac_fields_securedSweeping discussion on_dirac_fields_secured
Sweeping discussion on_dirac_fields_secured
foxtrot jp R
 
Orgel diagram
Orgel diagramOrgel diagram
Orgel diagram
Dr. Tapas Ghatak
 
Reactions of complexes
Reactions of complexesReactions of complexes
Reactions of complexes
SANTHANAM V
 
Transition Metal Electronic Spectra
Transition Metal Electronic SpectraTransition Metal Electronic Spectra
Transition Metal Electronic Spectra
Chris Sonntag
 
Properties of coordination compounds part 2
Properties of coordination compounds part 2Properties of coordination compounds part 2
Properties of coordination compounds part 2
Chris Sonntag
 
Aipmt 2015 solution code f
Aipmt 2015 solution code fAipmt 2015 solution code f
Aipmt 2015 solution code f
Pradeep Kumar
 
Mg-doping effect on structural and magnetic properties on two-dimensional tri...
Mg-doping effect on structural and magnetic properties on two-dimensional tri...Mg-doping effect on structural and magnetic properties on two-dimensional tri...
Mg-doping effect on structural and magnetic properties on two-dimensional tri...
Yang Li
 
A STATISTICAL NOTE ON SYSTEM TRANSITION INTO EQUILIBRIUM [03-21-2014]
A STATISTICAL NOTE ON SYSTEM TRANSITION INTO EQUILIBRIUM [03-21-2014]A STATISTICAL NOTE ON SYSTEM TRANSITION INTO EQUILIBRIUM [03-21-2014]
A STATISTICAL NOTE ON SYSTEM TRANSITION INTO EQUILIBRIUM [03-21-2014]Junfeng Liu
 
Elementary steps in catalysis using transition metal compounds
Elementary steps in catalysis using transition metal compoundsElementary steps in catalysis using transition metal compounds
Elementary steps in catalysis using transition metal compounds
Chris Sonntag
 
Fieldtheoryhighlights2015
Fieldtheoryhighlights2015Fieldtheoryhighlights2015
Fieldtheoryhighlights2015
foxtrot jp R
 
Ligand substitution reactions
Ligand substitution reactionsLigand substitution reactions
Ligand substitution reactions
Priyanka Jaiswal
 
Properties of coordination compounds part 1 (2018)
Properties of coordination compounds part 1 (2018)Properties of coordination compounds part 1 (2018)
Properties of coordination compounds part 1 (2018)
Chris Sonntag
 
phase diagrams
 phase diagrams phase diagrams
phase diagramsNurul Adni
 
Kumada cross coupling reaction
Kumada cross coupling reactionKumada cross coupling reaction
Kumada cross coupling reaction
DrShahidRasool1
 
International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI) International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)
inventionjournals
 
Spectrochemical series
Spectrochemical seriesSpectrochemical series
Spectrochemical series
Rana Ashraf
 
Hawkinrad a sourceasd
Hawkinrad a sourceasdHawkinrad a sourceasd
Hawkinrad a sourceasd
foxtrot jp R
 

What's hot (19)

Trans effect
Trans effectTrans effect
Trans effect
 
Sweeping discussion on_dirac_fields_secured
Sweeping discussion on_dirac_fields_securedSweeping discussion on_dirac_fields_secured
Sweeping discussion on_dirac_fields_secured
 
Orgel diagram
Orgel diagramOrgel diagram
Orgel diagram
 
Reactions of complexes
Reactions of complexesReactions of complexes
Reactions of complexes
 
Transition Metal Electronic Spectra
Transition Metal Electronic SpectraTransition Metal Electronic Spectra
Transition Metal Electronic Spectra
 
Properties of coordination compounds part 2
Properties of coordination compounds part 2Properties of coordination compounds part 2
Properties of coordination compounds part 2
 
Aipmt 2015 solution code f
Aipmt 2015 solution code fAipmt 2015 solution code f
Aipmt 2015 solution code f
 
Mg-doping effect on structural and magnetic properties on two-dimensional tri...
Mg-doping effect on structural and magnetic properties on two-dimensional tri...Mg-doping effect on structural and magnetic properties on two-dimensional tri...
Mg-doping effect on structural and magnetic properties on two-dimensional tri...
 
A STATISTICAL NOTE ON SYSTEM TRANSITION INTO EQUILIBRIUM [03-21-2014]
A STATISTICAL NOTE ON SYSTEM TRANSITION INTO EQUILIBRIUM [03-21-2014]A STATISTICAL NOTE ON SYSTEM TRANSITION INTO EQUILIBRIUM [03-21-2014]
A STATISTICAL NOTE ON SYSTEM TRANSITION INTO EQUILIBRIUM [03-21-2014]
 
Elementary steps in catalysis using transition metal compounds
Elementary steps in catalysis using transition metal compoundsElementary steps in catalysis using transition metal compounds
Elementary steps in catalysis using transition metal compounds
 
Fieldtheoryhighlights2015
Fieldtheoryhighlights2015Fieldtheoryhighlights2015
Fieldtheoryhighlights2015
 
Ligand substitution reactions
Ligand substitution reactionsLigand substitution reactions
Ligand substitution reactions
 
Properties of coordination compounds part 1 (2018)
Properties of coordination compounds part 1 (2018)Properties of coordination compounds part 1 (2018)
Properties of coordination compounds part 1 (2018)
 
#26 Key
#26 Key#26 Key
#26 Key
 
phase diagrams
 phase diagrams phase diagrams
phase diagrams
 
Kumada cross coupling reaction
Kumada cross coupling reactionKumada cross coupling reaction
Kumada cross coupling reaction
 
International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI) International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)
 
Spectrochemical series
Spectrochemical seriesSpectrochemical series
Spectrochemical series
 
Hawkinrad a sourceasd
Hawkinrad a sourceasdHawkinrad a sourceasd
Hawkinrad a sourceasd
 

Similar to Four dimensional pyramids

4d mendel english
4d mendel english4d mendel english
4d mendel english
newconcepts
 
Classical mechanics analysis of the atomic wave and particulate forms
Classical mechanics analysis of the atomic wave and particulate formsClassical mechanics analysis of the atomic wave and particulate forms
Classical mechanics analysis of the atomic wave and particulate forms
theijes
 
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...Alexander Decker
 
Lattice dynamics and normal coordinate analysis of htsc tl ca3ba2cu4o11
Lattice dynamics and normal coordinate analysis of htsc tl ca3ba2cu4o11Lattice dynamics and normal coordinate analysis of htsc tl ca3ba2cu4o11
Lattice dynamics and normal coordinate analysis of htsc tl ca3ba2cu4o11
Alexander Decker
 
Gough plus bara atom model september 2007
Gough plus bara atom model september 2007Gough plus bara atom model september 2007
Gough plus bara atom model september 2007
newconcepts
 
Angdist
AngdistAngdist
Angdist
korkian
 
Angdist
AngdistAngdist
Angdist
korkian
 
A03401001005
A03401001005A03401001005
A03401001005
theijes
 
TIT-Molecular Spectroscopy Symposium-2010
TIT-Molecular Spectroscopy Symposium-2010TIT-Molecular Spectroscopy Symposium-2010
TIT-Molecular Spectroscopy Symposium-2010gopakumargeetha
 
On the existence properties of a rigid body algebraic integrals
On the existence properties of a rigid body algebraic integralsOn the existence properties of a rigid body algebraic integrals
On the existence properties of a rigid body algebraic integrals
MagedHelal1
 
Electron config
Electron configElectron config
Electron config
Madiya Afzal
 
Prova nacionalmnpef2018
Prova nacionalmnpef2018Prova nacionalmnpef2018
Prova nacionalmnpef2018
JURANDIRBENTES
 
Physical Chemistry Exam Help
Physical Chemistry Exam HelpPhysical Chemistry Exam Help
Physical Chemistry Exam Help
Live Exam Helper
 
Starobinsky astana 2017
Starobinsky astana 2017Starobinsky astana 2017
Starobinsky astana 2017
Baurzhan Alzhanov
 
Physics_notes.pdf
Physics_notes.pdfPhysics_notes.pdf
Physics_notes.pdf
mohdmisbha333
 

Similar to Four dimensional pyramids (20)

4d mendel english
4d mendel english4d mendel english
4d mendel english
 
Classical mechanics analysis of the atomic wave and particulate forms
Classical mechanics analysis of the atomic wave and particulate formsClassical mechanics analysis of the atomic wave and particulate forms
Classical mechanics analysis of the atomic wave and particulate forms
 
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
 
Lattice dynamics and normal coordinate analysis of htsc tl ca3ba2cu4o11
Lattice dynamics and normal coordinate analysis of htsc tl ca3ba2cu4o11Lattice dynamics and normal coordinate analysis of htsc tl ca3ba2cu4o11
Lattice dynamics and normal coordinate analysis of htsc tl ca3ba2cu4o11
 
Gough plus bara atom model september 2007
Gough plus bara atom model september 2007Gough plus bara atom model september 2007
Gough plus bara atom model september 2007
 
Angdist
AngdistAngdist
Angdist
 
Angdist
AngdistAngdist
Angdist
 
A03401001005
A03401001005A03401001005
A03401001005
 
TIT-Molecular Spectroscopy Symposium-2010
TIT-Molecular Spectroscopy Symposium-2010TIT-Molecular Spectroscopy Symposium-2010
TIT-Molecular Spectroscopy Symposium-2010
 
On the existence properties of a rigid body algebraic integrals
On the existence properties of a rigid body algebraic integralsOn the existence properties of a rigid body algebraic integrals
On the existence properties of a rigid body algebraic integrals
 
Artigo woodward hoffman
Artigo woodward hoffmanArtigo woodward hoffman
Artigo woodward hoffman
 
Electron config
Electron configElectron config
Electron config
 
SV-InclusionSOcouplinginNaCs
SV-InclusionSOcouplinginNaCsSV-InclusionSOcouplinginNaCs
SV-InclusionSOcouplinginNaCs
 
capp4
capp4capp4
capp4
 
Prova nacionalmnpef2018
Prova nacionalmnpef2018Prova nacionalmnpef2018
Prova nacionalmnpef2018
 
Physical Chemistry Exam Help
Physical Chemistry Exam HelpPhysical Chemistry Exam Help
Physical Chemistry Exam Help
 
Starobinsky astana 2017
Starobinsky astana 2017Starobinsky astana 2017
Starobinsky astana 2017
 
PhysRevA.85.063809
PhysRevA.85.063809PhysRevA.85.063809
PhysRevA.85.063809
 
Physics_notes.pdf
Physics_notes.pdfPhysics_notes.pdf
Physics_notes.pdf
 
final_report
final_reportfinal_report
final_report
 

Recently uploaded

Richard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlandsRichard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlands
Richard Gill
 
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
Wasswaderrick3
 
3D Hybrid PIC simulation of the plasma expansion (ISSS-14)
3D Hybrid PIC simulation of the plasma expansion (ISSS-14)3D Hybrid PIC simulation of the plasma expansion (ISSS-14)
3D Hybrid PIC simulation of the plasma expansion (ISSS-14)
David Osipyan
 
Chapter 12 - climate change and the energy crisis
Chapter 12 - climate change and the energy crisisChapter 12 - climate change and the energy crisis
Chapter 12 - climate change and the energy crisis
tonzsalvador2222
 
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Sérgio Sacani
 
Nutraceutical market, scope and growth: Herbal drug technology
Nutraceutical market, scope and growth: Herbal drug technologyNutraceutical market, scope and growth: Herbal drug technology
Nutraceutical market, scope and growth: Herbal drug technology
Lokesh Patil
 
In silico drugs analogue design: novobiocin analogues.pptx
In silico drugs analogue design: novobiocin analogues.pptxIn silico drugs analogue design: novobiocin analogues.pptx
In silico drugs analogue design: novobiocin analogues.pptx
AlaminAfendy1
 
Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...
Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...
Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...
Studia Poinsotiana
 
role of pramana in research.pptx in science
role of pramana in research.pptx in sciencerole of pramana in research.pptx in science
role of pramana in research.pptx in science
sonaliswain16
 
bordetella pertussis.................................ppt
bordetella pertussis.................................pptbordetella pertussis.................................ppt
bordetella pertussis.................................ppt
kejapriya1
 
GBSN - Microbiology (Lab 4) Culture Media
GBSN - Microbiology (Lab 4) Culture MediaGBSN - Microbiology (Lab 4) Culture Media
GBSN - Microbiology (Lab 4) Culture Media
Areesha Ahmad
 
platelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptxplatelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptx
muralinath2
 
Deep Software Variability and Frictionless Reproducibility
Deep Software Variability and Frictionless ReproducibilityDeep Software Variability and Frictionless Reproducibility
Deep Software Variability and Frictionless Reproducibility
University of Rennes, INSA Rennes, Inria/IRISA, CNRS
 
Mudde & Rovira Kaltwasser. - Populism - a very short introduction [2017].pdf
Mudde & Rovira Kaltwasser. - Populism - a very short introduction [2017].pdfMudde & Rovira Kaltwasser. - Populism - a very short introduction [2017].pdf
Mudde & Rovira Kaltwasser. - Populism - a very short introduction [2017].pdf
frank0071
 
S.1 chemistry scheme term 2 for ordinary level
S.1 chemistry scheme term 2 for ordinary levelS.1 chemistry scheme term 2 for ordinary level
S.1 chemistry scheme term 2 for ordinary level
ronaldlakony0
 
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATIONPRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
ChetanK57
 
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Sérgio Sacani
 
Leaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdfLeaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdf
RenuJangid3
 
Phenomics assisted breeding in crop improvement
Phenomics assisted breeding in crop improvementPhenomics assisted breeding in crop improvement
Phenomics assisted breeding in crop improvement
IshaGoswami9
 
in vitro propagation of plants lecture note.pptx
in vitro propagation of plants lecture note.pptxin vitro propagation of plants lecture note.pptx
in vitro propagation of plants lecture note.pptx
yusufzako14
 

Recently uploaded (20)

Richard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlandsRichard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlands
 
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
DERIVATION OF MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMINAL V...
 
3D Hybrid PIC simulation of the plasma expansion (ISSS-14)
3D Hybrid PIC simulation of the plasma expansion (ISSS-14)3D Hybrid PIC simulation of the plasma expansion (ISSS-14)
3D Hybrid PIC simulation of the plasma expansion (ISSS-14)
 
Chapter 12 - climate change and the energy crisis
Chapter 12 - climate change and the energy crisisChapter 12 - climate change and the energy crisis
Chapter 12 - climate change and the energy crisis
 
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
 
Nutraceutical market, scope and growth: Herbal drug technology
Nutraceutical market, scope and growth: Herbal drug technologyNutraceutical market, scope and growth: Herbal drug technology
Nutraceutical market, scope and growth: Herbal drug technology
 
In silico drugs analogue design: novobiocin analogues.pptx
In silico drugs analogue design: novobiocin analogues.pptxIn silico drugs analogue design: novobiocin analogues.pptx
In silico drugs analogue design: novobiocin analogues.pptx
 
Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...
Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...
Salas, V. (2024) "John of St. Thomas (Poinsot) on the Science of Sacred Theol...
 
role of pramana in research.pptx in science
role of pramana in research.pptx in sciencerole of pramana in research.pptx in science
role of pramana in research.pptx in science
 
bordetella pertussis.................................ppt
bordetella pertussis.................................pptbordetella pertussis.................................ppt
bordetella pertussis.................................ppt
 
GBSN - Microbiology (Lab 4) Culture Media
GBSN - Microbiology (Lab 4) Culture MediaGBSN - Microbiology (Lab 4) Culture Media
GBSN - Microbiology (Lab 4) Culture Media
 
platelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptxplatelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptx
 
Deep Software Variability and Frictionless Reproducibility
Deep Software Variability and Frictionless ReproducibilityDeep Software Variability and Frictionless Reproducibility
Deep Software Variability and Frictionless Reproducibility
 
Mudde & Rovira Kaltwasser. - Populism - a very short introduction [2017].pdf
Mudde & Rovira Kaltwasser. - Populism - a very short introduction [2017].pdfMudde & Rovira Kaltwasser. - Populism - a very short introduction [2017].pdf
Mudde & Rovira Kaltwasser. - Populism - a very short introduction [2017].pdf
 
S.1 chemistry scheme term 2 for ordinary level
S.1 chemistry scheme term 2 for ordinary levelS.1 chemistry scheme term 2 for ordinary level
S.1 chemistry scheme term 2 for ordinary level
 
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATIONPRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
 
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
 
Leaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdfLeaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdf
 
Phenomics assisted breeding in crop improvement
Phenomics assisted breeding in crop improvementPhenomics assisted breeding in crop improvement
Phenomics assisted breeding in crop improvement
 
in vitro propagation of plants lecture note.pptx
in vitro propagation of plants lecture note.pptxin vitro propagation of plants lecture note.pptx
in vitro propagation of plants lecture note.pptx
 

Four dimensional pyramids

  • 1.
  • 2.
  • 3. To the Problem of Four-Dimensional Symmetries of the Properties of Chemical Elements and the Interpretation of this Phenomenon F.Bogomolov, Y.Magarshak, On commuting operators related to asymptotic symmetries in the atomic theory; Scientific Israel-Technological Advantages, vol 8, issues 1-2, pp. 161-165 (2006) • Y.Magarshak, "Four-Dimensional Pyramidal Structure of the Periodic Properties of Atoms and Chemical Elements", Scientific Israel - Technological Advantages vol. 7, No.1,2 , pp. 134-150 (2006) • Yu. Magarshak, J.Malinsky,"A Three-Dimensional Periodic Table ", Nature, vol.360: 113-114 (1992).
  • 4. Орбитальное Рис. 1 Квантовое Порядок заполнения оболочек число Порядок заполнения термов (подоболочек) 14F 10D 6P 2S 1 2 3 4 5 6 7 8 Главное квантовое число ),()( ϕθlmYrR=Ψ [ ] 0)( 2 2 =Ψ−+∆Ψ rUE m 
  • 5.
  • 6.
  • 7.
  • 8.
  • 9. EMPIRIC HUND RULE: Electronic configuration, which has the the largest (for that electronic configuration) spin value and the greatest possible at this value of the spin orbinal momentum has the lowest energy. *** Experimentally proven order of atomic orbitals energy encrease: 1s<2s<2p<3s<3p<4s<3d<4p<5s<4d<5p<6s<4f <5d <6p <7s <5f <6d <7p < 8s
  • 10. 5f < 6d < 7p < 8s … 4f < 5d < 6p < 7s < 4d < 5p < 6s < 3d < 4p < 5s < 3p < 4s < 2p < 3s < 2s < 1s <
  • 11. 5g 6F 7D 8P 8s 5f 6d 7p 8s Восьмой уровень Четвертый суперцикл 4f (14 элементов) 5d (10 элементов) 6p (6 элементов) 7s (2 элемента) Седьмой уровень 4d (10 элементов) 5p (6 элементов) 6s (2 элемента) Шестой уровень Третий суперцикл 3d (10 элементов) 4p(6 элементов) 5s (2 элемента) Пятый уровень 3p (6 элементов) 4s (2 элемента) Четвертый уровень Второй суперцикл 2p (6 элементов) 3s (2 элемента) Третий уровень 2s (2 элемента) Второй уровень Первый суперцикл 1s (2 элемента) Первый уровень Рис. 2 Copiright Yuri Magarshak All rights reserved
  • 12. 8s 7S 6 S 7P 5S 6P 4 S 5P 6D 3 S 4P 5D 2S 3P 4D 5F 1S 2P 3D 4F 1 2 3 4 5 6 7 8 Level
  • 13. 8S 7S 6S 7P 5S 6P 4S 5P 6D 3S 4P 5D 2S 3P 4D 5F 1S 2P 3D 4F 1 2 3 4 5 6 7 8 Level
  • 14. 8s 7s 6s 7p 5s 6p 4s 5p 6d 3s 4p 5d 2s 3p 4d 5f 1s 2p 3d 4f 1 2 3 4 5 6 7 8 Level
  • 15. Fig. 7б Copiright Yuri Magarshak All rights reserved Fr Rb Na H Ti Ga B Lu Sc La Uut Lr Ac Y Al Cs In K Li
  • 16. Fig. 7б Copiright Yuri Magarshak All rights reserved Fr Rb Na H Ti Ga B Lu Sc La Uut Lr Ac Y Al Cs In K Li
  • 17. Copiright Yuri Magarshak All rights reserved Fr Rb Na H Ti Ga B Lu Sc La Uut Lr Ac Y Al Cs In K Li
  • 18. (1s)2 < (2s)2 < (2p)6 < (3s)2 < (3p)6 < (4s)2 < (3d)10 < (4p)6 < (5s)2 < (4d)10 < (5p)6 < (6s)2 < (4f)14 < (5d)10 < (6p)6 < (7s)2 < (5f)14 < (6d)10 < (7p)6 < (8s)2
  • 19.
  • 20.
  • 21. Порядок заполнения термов элементами Порядок Порядок заполнения заполнения периодов 3-7 периодов 2 и 3 термами термами Copiright Yuri Magarshak All rights reserved Li HNaKCs RbFr Al BGaIn Y ScLuLr TiUut LaAc
  • 22.
  • 23.
  • 24.
  • 25. The Basic Features of the 4- Dimensional Pyramid of Periodically Repeating Properties of Chemical Elements All chemical elements can be subdivided by • Eight cycles having 2,2; 8,8;18,18, 32, 32 elements each • Four Supercycles having 4, 16, 36 и 64 elements each • Two clusters: M-cluster and F-cluster • Paired clusters, cycles, subshells and elements
  • 26. 8S 7S 6S 7P 5S 6P 4S 5P 6F 3S 4P 5D 2S 3P 4D 5F 1S 2P 3D 4F 1 2 3 4 5 6 7 8 Level
  • 27. 8s 7s 6s 7p 5s 6p 4s 5p 6d 3s 4p 5d 2s 3p 4d 5f 1s 2p 3d 4f 1 2 3 4 5 6 7 8 Level
  • 28. n (principal quantum number) 8S 7S 6S 7P 5S 6P 4S 5P 6F 3S 4P 5D 2S 3P 4D 5F CYCLE 1S 2P 3D 4F CYCLE 1 2 3 4 5 6 7 8 Level l (orbital quantum number)
  • 29.
  • 30.
  • 31.
  • 32. Рис. 9a Copiright Yuri Magarshak All rights reserved Порядок заполнения термов элементами Порядок Порядок заполнения заполнения периодов 3-7 периодов 2 и 3 термам термами Li HNaKCs RbFr Al BGaIn Y ScLuLr TiUut LaAc
  • 33. Copiright Yuri Magarshak All rights reserved Порядок заполнения термов элементами Порядок заполнения Циклы термов каждого цикла Li HNaKCs RbFr Al BGaIn Y ScLuLr TiUut LaAc
  • 34. RaSr BaMg CaHe Be Uub HgCdZn UuoRuXeCrAr Ne Yb No O
  • 35. СHEMISTRY NUMBERS. Each chemical element can be characterized by the set of four chemical numbers. CLUSTER NUMBER , having one of two values: either M or F SUPERCYCLE NUMBER (or, in short, super-number) , which determines to which pyramid super-level element belongs and on which super-cycle is disposed ( = 1, 2, 3, 4). LAYER NUMBER  which determines the layer number of the cycle in which subshell  is disposed.  has integer values from -1 (bottom layer, which in the cycle is filled first) to 0 (surface layer, щелочные и щелочноземельные металлы, подоболочки которых заполняются в циклах последними). NODE NUMBER , which enumerates 2(2  + 1) elements of the subslell. CERTAINITY PRICIPLE: TWO CHEMICAL ELEMENTS CAN NOT HAVE FOUR IDENTICAL CHEMICAL NUMBERS
  • 36. ),()( ϕθlmYrR=Ψ [ ] 0)( 2 2 =Ψ−+∆Ψ rUE m  lm l x mml ml xP mP ml mll mP ml mll m m m l m j m j ,...,2,1,0 ;,...,2,1,0 )1( !)!( )!( 2 1 )( cos)(cos )!(2 )!(12 sin)(cos )!(2 )!(12 2/2 = = − − + = + −+ + −+ ϕϑ π ϕϑ π
  • 37. 0 2)1(2 222 2 =      ++ + −+ R r E m R r ll dr dR rdr Rd α  1 2 22 2 −−= −= lnn n m E r  α where n – radial quantum number, equal to the number of nonzero nodes of the radial part of the wave function at finite non-zero r.
  • 38.
  • 39. Identity of the structure of the M-cluster (as well as that of the F-clusterl) with the dependence of n(l) for hydrogen atom, наводят на мысль о том, that D symmetry of the periodic elements properties on the charge of the nuclei all elements can be considered as the sates of the single particles. However the necessity a) Getting two grids, which are rotated relative to each other by /4; б) filling the nodes on the slide 1 (hydrogen atom) and slide 2 (for the set of all chemical elements)in opposite directions, and c) The presence of paired cycles, supercycles and clusters in periodically repeating elements properties
  • 40.
  • 41.
  • 42.
  • 43.
  • 44.
  • 45.
  • 46.
  • 47.
  • 48. Let the structures and symmetries that are described above and shown in Fig. 1 be generated by a pair of Hamiltonian-type operators, which naturally appear in the presence of two commutative Lie symmetry algebras in the quantum system. From the existence of simple commutative Lie symmetry algebras in a physical problem, it follows the existence of a single commuting pair of energy-type operators for localized quantum states. Let us consider a finite-dimensional complex representation of the product of semisimple Lie algebras. Any such representation V of g1  g2 decomposes into a direct sum of tensor products Vk  Wj where Vk are irreducible representations of g1 and Wj are representations of g2 .   Theorem: Assume that g1 ,g2 are simple Lie algebras. Then there is a canonically defined pair of commuting operators 1 , 2 such that both i , i=1,2 commute also with the action of g1 ,g2 and have integer nonnegative eigenvalues on V.
  • 49. Note that the above decomposition may exist in the compexification of the symmetry algebra and not in the algebra itself. Since finite- dimensional representations of the complexified Lie algebra are the same as of it's real form and the above decomposition holds anyway. In our application the complexification of both real algebras are presumably isomoprhic to so(3,C)= sl(2,C) after a complexification and hence have rank 1. Thus there are two natural options: 1) both algebras are coming from the independent rotation invariance of both the nucleus and the electron envelope. 2) the local symmetry group is the Lorentz group SO(3,1) and though it's Lie algebra so(3,1) has no such a decompostion but the complexification so(3,1) x C = sl(2,C) + sl(2,C). The actual Hamiltonian operator of the problem splits into a sum of  two commuting energy time operators.   In our opinion second case is physically more plausible
  • 50. How could such a symmetry appear in reality? Currently the standard answer to such question is symmetry break. Namely the existence of symmetry within an ensemble of different particles is usually explained by considering them as different states of an "ideal object" with the above symmetry so that the particles are degenerate states of the above object where the symmetry is broken due to some process of natural degeneration. If we try to apply similar explanation we are brought to the idea to view the atom as one of the possible states of an ideal particle which we will be denoting as I-particle. This particle has Lorentz symmetry algebra within a bigger algebra of local symmetries and supersymmetries corresponding to other potential fields. The I-particle exists in this  ideal  state only 0-time  which in practice means  a very short time depending on the total energy of the I-particle according to the "uncertainty principle". While degenerating the I-particle creates an  avalanche of intermediate particles which retain only pieces of the initial symmetry but previous symmetry is manifested in the set of possible degenerate states.