SlideShare a Scribd company logo
1 of 14
Download to read offline
1
Eng. Abdulrahman Shaaban
Solved Examples for Consistent Deformation for trusses Structures
A) External determinate: Example (1)
Find the eternal forces at all members for the following truss.
Step 1: Determine the degree of indeterminacy
1) External determinacy:
Unknowns (U) = Reactions (R) = 4
Equations (E) = Statics equation + Special joint = 3
Number of indeterminacy (N) = 𝑈 − 𝐸 → 4 − 3 = 1
∴ it considered once statically indeterminate
2) Internal determinacy:
𝑈 = 𝑚𝑒𝑚𝑏𝑒𝑟𝑠 ( 𝑚) + 𝑅 = 9 + 4 = 13
𝐸 = 2 ∗ 𝐽𝑜𝑖𝑛𝑡 ( 𝐽) = 2 ∗ 6 = 12
N = 𝑈 − 𝐸 → 13 − 12 = 1 𝑏𝑢𝑡 𝑁 𝑓𝑟𝑜𝑚 𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑖𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑐𝑦 = 1 𝑎𝑙𝑠𝑜
so that it still once statically indeterminate
50 cm2
50 cm2
50 cm2
50 cm2
75 cm2
75 cm2
75 cm2
75 cm2
25 cm2
2
Eng. Abdulrahman Shaaban
Step 2: Select proper statically determinate main system
Step 3: Coding members, calculate angles for inclined members and find reactions:
𝜃1 = tan−1(3 4⁄ ) = 36.870
Step 4: Find all internal forces at all members due to original loads
Hint: using joint method without details for each individual joint just find the force and but its value and its
type (use [+ve] for tension force and [-ve] for compression value) directly on the figure.
1 2
3
45
6
7 8
9
0
7.5 7.5
θ1
θ1 θ1
θ1
0 0
-7.5
-10-10
-7.5
12.5 12.5
-15
0
7.5 7.5
θ1
θ1 θ1
θ1
3
Eng. Abdulrahman Shaaban
Step 5: Find all internal forces at all members due to applying unit redundant.
Step 6: Construct a table to summarize results and facilitation of calculation procedures.
Member L (cm) A (cm2
) N0 (t) N1 (t) N0N1*L/A N1
2
*L/A Nf
1 500 75 0 -1.25 0.00 10.42 -8.84
2 500 75 0 -1.25 0.00 10.42 -8.84
3 600 50 -7.5 +0.75 -67.50 6.75 -2.20
4 400 50 -10 +1 -80.00 8.00 -2.93
5 400 50 -10 +1 -80.00 8.00 -2.93
6 600 50 -7.5 +0.75 -67.50 6.75 -2.20
7 500 75 +12.5 -1.25 -104.17 10.42 3.66
8 500 75 +12.5 -1.25 -104.17 10.42 3.66
9 300 25 -15 0 0.00 0.00 -15.00
Σ -503.33 71.17
Step 7: Calculate the true value of redundant by the following eqn:
𝑥1 =
−𝑁0N1 ∗ L/A
𝑁1
2
∗ 𝐿/𝐴
= 7.07
Step 8: Calculate the final internal force at each member by the following eqn:
𝑁𝑓 = 𝑁0 + 𝑥1 ∗ 𝑁1
Step 9: Draw the final normal force diagram
-1.25
+0.75
+1+1
+0.75
-1.25 -1.25
0
1
0
0
θ1 θ1
1
-1.25
-8.84
-2.2
-2.93-2.93
-2.2
3.66 3.66
-15
7.07
7.5 7.5
7.07
-8.84
4
Eng. Abdulrahman Shaaban
Example (2)
Step 1: Determine the degree of indeterminacy
1) External determinacy:
U = 4
E = 3
N = 𝑈 − 𝐸 → 4 − 3 = 1
∴ it considered once statically indeterminate
2) Internal determinacy:
𝑈 = 𝑚 + 𝑅 = 19 + 4 = 23
𝐸 = 2 ∗ 𝐽 = 2 ∗ 11 = 22
N = 𝑈 − 𝐸 → 23 − 22 = 1 𝑏𝑢𝑡 𝑁 𝑓𝑟𝑜𝑚 𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑖𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑐𝑦 = 1 𝑎𝑙𝑠𝑜
so that it still once statically indeterminate
Step 2: Select proper statically determinate main system
2A
2A 2A
2A
2A2A
3A
5
Eng. Abdulrahman Shaaban
Step 3: Coding members, calculate angles for inclined members and find reactions:
𝜃1 = tan−1(6 2⁄ ) = 71.560
𝜃2 = tan−1(3 2⁄ ) = 56.310
Step 4: Find all internal forces at all members due to original loads
θ2
θ1
1 2
3
4
5
678
9
10 11 12 13
14 15 16 17 18 19
1212
0
1212
0
-6.33
-6.33
-6.33
-6.33
-7.21
-8-13.34-8
-7.21
+6 +10.67 +10.67 +6
+7.21
+4.81
-4.81 +4.81 -4.81 +7.21
6
Eng. Abdulrahman Shaaban
Step 5: Find all internal forces at all members due to applying unit redundant.
Step 6: Construct a table to summarize results and facilitation of calculation procedures.
Member L (m) A N0 (t) N1 (t) N0N1*L/A N1
2
*L/A Nf
1 2√10 2 -6.33 +1.58 -31.63 7.89 -1.20
2 2√10 2 -6.33 -1.58 31.63 7.89 -11.46
3 2√10 2 -6.33 -1.58 31.63 7.89 -11.46
4 2√10 2 -6.33 +1.58 -31.63 7.89 -1.20
5 √13 1 -7.21 +1.80 -46.79 11.68 -1.37
6 4 1 -8 +2 -64.00 16.00 -1.51
7 4 3 -13.34 +2 -35.57 5.33 -6.85
8 4 1 -8 +2 -64.00 16.00 -1.51
9 √13 1 -7.21 +1.80 -46.79 11.68 -1.37
10 4 1 +6 -1.5 -36.00 9.00 1.13
11 4 2 +10.67 -3 -64.02 18.00 0.93
12 4 2 +10.67 -3 -64.02 18.00 0.93
13 4 1 +6 -1.5 -36.00 9.00 1.13
14 √13 1 +7.21 -1.80 -46.79 11.68 1.37
15 √13 1 -4.81 0 0.00 0.00 -4.81
16 √13 1 +4.81 0 0.00 0.00 4.81
17 √13 1 +4.81 0 0.00 0.00 4.81
18 √13 1 -4.81 0 0.00 0.00 -4.81
19 √13 1 +7.21 -1.80 -46.79 11.68 1.37
Σ -550.78 169.64
00
1 1
-1.58+1.58
-1.58 +1.58
+1.8
+2
+2+2
+1.8
-1.5
-1.8 0
0 0 0 -1.8
-3 -3 -1.5
7
Eng. Abdulrahman Shaaban
Step 7: Calculate the true value of redundant by the following eqn:
𝑥1 =
−𝑁0N1 ∗ L/A
𝑁1
2
∗ 𝐿/𝐴
= 3.25
Step 8: Calculate the final internal force at each member by the following eqn:
𝑁𝑓 = 𝑁0 + 𝑥1 ∗ 𝑁1
Step 9: Draw the final normal force diagram
1212
3.25
-11.46
-1.2
-11.46
-1.2
-1.37
-1.51-6.85
-1.37
+1.13 +0.93 +0.93 +1.13
+4.81
-4.81+1.37 +4.81 -4.81 +1.37
3.25
-1.51
8
Eng. Abdulrahman Shaaban
B) Internal determinate: Example (3)
Find the eternal forces at all members for the following truss.
Step 1: Determine the degree of indeterminacy
1) External determinacy:
U = 4
E = 3 + 1 = 4
N = 𝑈 − 𝐸 → 4 − 4 = 0
∴ it considered statically determinate
2) Internal determinacy:
𝑈 = 𝑚 + 𝑅 = 13 + 4 = 17
𝐸 = 2 ∗ 𝐽 = 2 ∗ 8 = 16
N = 𝑈 − 𝐸 → 17 − 16 = 1 so that it considered once statically indeterminate
Step 2: Select proper statically determinate main system
9
Eng. Abdulrahman Shaaban
Step 3: Coding members, calculate angles for inclined members and find reactions:
𝜃1 = tan−1(3 4⁄ ) = 36.870
Step 4: Find all internal forces at all members due to original loads
Step 5: Find all internal forces at all members due to applying unit redundant.
26
64
64
0
1 2
3
456
7 8 11
θ1
26
64
64
0
-10
+8+29.34
-8
-26.67
+64
-43.33
-29.34
+16 +6
0
0
0
0
1
1
-0.6
0
00
0
0
-0.8
-0.8
-0.6
+1
9
10
10
Eng. Abdulrahman Shaaban
Step 6: Construct a table to summarize results and facilitation of calculation procedures.
Member L (m) A N0 (t) N1 (t) N0N1*L/A N1
2
*L/A Nf
1 4 1 -29.34 0 0.00 0.00 -29.34
2 4 1 -8 -0.8 25.60 2.56 -19.17
3 5 1 -10 0 0.00 0.00 -10.00
4 4 1 +8 0 0.00 0.00 8.00
5 4 1 +29.34 -0.8 -93.89 2.56 18.17
6 4 1 +64 0 0.00 0.00 64.00
7 5 1 -43.33 0 0.00 0.00 -43.33
8 3 1 +16 -0.6 -28.80 1.08 7.62
9 5 1 -26.67 +1 -133.35 5.00 -12.71
10 5 1 0 +1 0.00 5.00 13.96
11 3 1 +6 -0.6 -10.80 1.08 -2.38
Σ -241.24 17.28
Step 7: Calculate the true value of redundant by the following eqn:
𝑥1 =
−𝑁0N1 ∗ L/A
𝑁1
2
∗ 𝐿/𝐴
= 13.96
Step 8: Calculate the final internal force at each member by the following eqn:
𝑁𝑓 = 𝑁0 + 𝑥1 ∗ 𝑁1
Step 9: Draw the final normal force diagram
64
64
26
-2.38
-10
+8+64
-43.33
-29.34
+18.17
-19.17
+7.62
-12.71
+13.96
0
11
Eng. Abdulrahman Shaaban
Example (4)
Step 1: Determine the degree of indeterminacy
1) External determinacy:
U = 3
E = 3
N = 𝑈 − 𝐸 → 3 − 3 = 0
∴ it considered statically determinate
2) Internal determinacy:
𝑈 = 𝑚 + 𝑅 = 15 + 3 = 18
𝐸 = 2 ∗ 𝐽 = 2 ∗ 8 = 16
N = 𝑈 − 𝐸 → 18 − 16 = 2 so that it considered twice statically indeterminate
Step 2: Select proper statically determinate main system
12
Eng. Abdulrahman Shaaban
Step 3: Coding members, calculate angles for inclined members and find reactions:
𝜃1 = tan−1(3 4⁄ ) = 36.870
Step 4: Find all internal forces at all members due to original loads.
Step 5: Find all internal forces at all members due to applying unit redundant.
9
1
9
6
2
3
4
5
6
8
9
12
13 14
15
7
10
11
θ1
9
+4.5
9
6
+4.5
0
0
-9
0
-7.5
0
+7.5
1
-0.8
-0.8
-0.6-0.6
+1
0
0
00 +1
1
-0.6 -0.6
-0.8
-0.8
0 0 0
0
N2
N1
N0
13
Eng. Abdulrahman Shaaban
Step 6: Construct a table to summarize results and facilitation of calculation procedures.
Member L (m) A N0 (t) N1 (t) N2 (t) N0N1*L/A N0N2*L/A N1
2
*L/A N2
2
*L/A N1N2*L/A Nf
1 3 1 +4.5 -0.6 0 -8.1 0 1.08 0 0 6.36
2 3 1 +4.5 0 -0.6 0 -8.1 0 1.08 0 2.64
3 4 1 0 0 -0.8 0 0 0 2.56 0 -2.48
4 3 1 0 0 -0.6 0 0 0 1.08 0 -1.86
5 3 1 -9 -0.6 0 16.2 0 1.08 0 0 -7.14
6 4 1 0 -0.8 0 0 0 2.56 0 0 2.48
7 4 1 0 -0.8 -0.8 0 0 2.56 2.56 2.56 0.00
8 2.5 1 +7.5 +1 0 18.75 0 2.5 0 0 4.40
9 2.5 1 0 +1 0 0 0 2.5 0 0 -3.10
10 2.5 1 +7.5 +1 0 18.75 0 2.5 0 0 4.40
11 2.5 1 0 +1 0 0 0 2.5 0 0 -3.10
12 2.5 1 0 0 +1 0 0 0 2.5 0 3.10
13 2.5 1 -7.5 0 +1 0 -18.75 0 2.5 0 -4.40
14 2.5 1 0 0 +1 0 0 0 2.5 0 3.10
15 2.5 1 -7.5 0 +1 0 -18.75 0 2.5 0 -4.40
Σ 45.6 -45.6 17.28 17.28 2.56
Step 7: Calculate the true value of redundant by the following eqns:
𝛿10 + 𝑥1 𝛿11 + 𝑥2 𝛿12 = 0
𝛿20 + 𝑥1 𝛿21 + 𝑥2 𝛿22 = 0
𝛿10 = ∫
𝑁0 𝑁1 𝑙
𝐸𝐴
𝑑𝑙 𝛿20 = ∫
𝑁0 𝑁2 𝑙
𝐸𝐴
𝑑𝑙
𝛿11 = ∫
𝑁1 𝑁1 𝑙
𝐸𝐴
𝑑𝑙 𝛿22 = ∫
𝑁2 𝑁2 𝑙
𝐸𝐴
𝑑𝑙
𝛿12 = 𝛿21 = ∫
𝑁1 𝑁2 𝑙
𝐸𝐴
𝑑𝑙
45.6 + 𝑥1 ∗ 17.28 + 𝑥2 ∗ 2.56 = 0
−45.6 + 𝑥1 ∗ 2.56 + 𝑥2 ∗ 17.28 = 0
𝑥1 = −3.097 𝑥2 = 3.097
Step 8: Calculate the final internal force at each member by the following eqn:
𝑁𝑓 = 𝑁0 + 𝑥1 ∗ 𝑁1 + 𝑥2 ∗ 𝑁2
14
Eng. Abdulrahman Shaaban
Step 9: Draw the final normal force diagram
9
+6.36
9
6
+2.64
-2.48
-1.86
-7.14
+2.48
+4.4
-3.1
-4.4
0
+3.1

More Related Content

What's hot

Bracket model with direct transent results
Bracket model with direct transent resultsBracket model with direct transent results
Bracket model with direct transent resultsManas Ray
 
Stiffness matrix method for beam , examples ce525
Stiffness  matrix method for beam , examples   ce525Stiffness  matrix method for beam , examples   ce525
Stiffness matrix method for beam , examples ce525KAMARAN SHEKHA
 
Ejercicios resueltos en clase de fundaciones ayudante CALCULO DE ZAPATAS
Ejercicios resueltos en clase de fundaciones ayudante CALCULO DE ZAPATASEjercicios resueltos en clase de fundaciones ayudante CALCULO DE ZAPATAS
Ejercicios resueltos en clase de fundaciones ayudante CALCULO DE ZAPATASGABRIEL COCA
 
Análisis de-porticos-por-el-método-de-matriz-de-rigidez
Análisis de-porticos-por-el-método-de-matriz-de-rigidezAnálisis de-porticos-por-el-método-de-matriz-de-rigidez
Análisis de-porticos-por-el-método-de-matriz-de-rigidezEdgar Gerardo Huapaya Ormeño
 
Mechanics engineering statics forces analysis 3D
Mechanics engineering statics forces analysis 3DMechanics engineering statics forces analysis 3D
Mechanics engineering statics forces analysis 3DMohammed8712
 
Neural Network Back Propagation Algorithm
Neural Network Back Propagation AlgorithmNeural Network Back Propagation Algorithm
Neural Network Back Propagation AlgorithmMartin Opdam
 
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)Maamoun Hennache
 
Engineering circuit-analysis-solutions-7ed-hayt [upload by r1-lher
Engineering circuit-analysis-solutions-7ed-hayt [upload by r1-lherEngineering circuit-analysis-solutions-7ed-hayt [upload by r1-lher
Engineering circuit-analysis-solutions-7ed-hayt [upload by r1-lhercristhian cabrera
 
Chapter 18 solutions_to_exercises(engineering circuit analysis 7th)
Chapter 18 solutions_to_exercises(engineering circuit analysis 7th)Chapter 18 solutions_to_exercises(engineering circuit analysis 7th)
Chapter 18 solutions_to_exercises(engineering circuit analysis 7th)Maamoun Hennache
 
ANALYSIS OF CONTINUOUS BEAM USING STIFFNESS METHOD
ANALYSIS OF CONTINUOUS BEAM USING STIFFNESS METHODANALYSIS OF CONTINUOUS BEAM USING STIFFNESS METHOD
ANALYSIS OF CONTINUOUS BEAM USING STIFFNESS METHODkasirekha
 
IRJET- On the Pellian Like Equation 5x2-7y2=-8
IRJET- On the Pellian Like Equation 5x2-7y2=-8IRJET- On the Pellian Like Equation 5x2-7y2=-8
IRJET- On the Pellian Like Equation 5x2-7y2=-8IRJET Journal
 
DATA MINING - EVALUATING CLUSTERING ALGORITHM
DATA MINING - EVALUATING CLUSTERING ALGORITHMDATA MINING - EVALUATING CLUSTERING ALGORITHM
DATA MINING - EVALUATING CLUSTERING ALGORITHMTochukwu Udeh
 
Capítulo 02 considerações estatísticas
Capítulo 02   considerações estatísticasCapítulo 02   considerações estatísticas
Capítulo 02 considerações estatísticasJhayson Carvalho
 
Electromagnetic Levitation (control project)
Electromagnetic Levitation (control project)Electromagnetic Levitation (control project)
Electromagnetic Levitation (control project)Salim Al Oufi
 
Chapter 13 solutions_to_exercises (engineering circuit analysis 7th)
Chapter 13 solutions_to_exercises (engineering circuit analysis 7th)Chapter 13 solutions_to_exercises (engineering circuit analysis 7th)
Chapter 13 solutions_to_exercises (engineering circuit analysis 7th)Maamoun Hennache
 
Mechanic assignment (2)
Mechanic assignment (2)Mechanic assignment (2)
Mechanic assignment (2)Phearun Seng
 

What's hot (20)

Bracket model with direct transent results
Bracket model with direct transent resultsBracket model with direct transent results
Bracket model with direct transent results
 
Stiffness matrix method for beam , examples ce525
Stiffness  matrix method for beam , examples   ce525Stiffness  matrix method for beam , examples   ce525
Stiffness matrix method for beam , examples ce525
 
Ejercicios resueltos en clase de fundaciones ayudante CALCULO DE ZAPATAS
Ejercicios resueltos en clase de fundaciones ayudante CALCULO DE ZAPATASEjercicios resueltos en clase de fundaciones ayudante CALCULO DE ZAPATAS
Ejercicios resueltos en clase de fundaciones ayudante CALCULO DE ZAPATAS
 
Análisis de-porticos-por-el-método-de-matriz-de-rigidez
Análisis de-porticos-por-el-método-de-matriz-de-rigidezAnálisis de-porticos-por-el-método-de-matriz-de-rigidez
Análisis de-porticos-por-el-método-de-matriz-de-rigidez
 
Mechanics engineering statics forces analysis 3D
Mechanics engineering statics forces analysis 3DMechanics engineering statics forces analysis 3D
Mechanics engineering statics forces analysis 3D
 
Ab data
Ab dataAb data
Ab data
 
Neural Network Back Propagation Algorithm
Neural Network Back Propagation AlgorithmNeural Network Back Propagation Algorithm
Neural Network Back Propagation Algorithm
 
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)
 
Engineering circuit-analysis-solutions-7ed-hayt [upload by r1-lher
Engineering circuit-analysis-solutions-7ed-hayt [upload by r1-lherEngineering circuit-analysis-solutions-7ed-hayt [upload by r1-lher
Engineering circuit-analysis-solutions-7ed-hayt [upload by r1-lher
 
Chapter 18 solutions_to_exercises(engineering circuit analysis 7th)
Chapter 18 solutions_to_exercises(engineering circuit analysis 7th)Chapter 18 solutions_to_exercises(engineering circuit analysis 7th)
Chapter 18 solutions_to_exercises(engineering circuit analysis 7th)
 
ANALYSIS OF CONTINUOUS BEAM USING STIFFNESS METHOD
ANALYSIS OF CONTINUOUS BEAM USING STIFFNESS METHODANALYSIS OF CONTINUOUS BEAM USING STIFFNESS METHOD
ANALYSIS OF CONTINUOUS BEAM USING STIFFNESS METHOD
 
Computational Dynamics edited
Computational Dynamics editedComputational Dynamics edited
Computational Dynamics edited
 
Polinomios grados parte2
Polinomios grados  parte2Polinomios grados  parte2
Polinomios grados parte2
 
IRJET- On the Pellian Like Equation 5x2-7y2=-8
IRJET- On the Pellian Like Equation 5x2-7y2=-8IRJET- On the Pellian Like Equation 5x2-7y2=-8
IRJET- On the Pellian Like Equation 5x2-7y2=-8
 
DATA MINING - EVALUATING CLUSTERING ALGORITHM
DATA MINING - EVALUATING CLUSTERING ALGORITHMDATA MINING - EVALUATING CLUSTERING ALGORITHM
DATA MINING - EVALUATING CLUSTERING ALGORITHM
 
Capítulo 02 considerações estatísticas
Capítulo 02   considerações estatísticasCapítulo 02   considerações estatísticas
Capítulo 02 considerações estatísticas
 
Electromagnetic Levitation (control project)
Electromagnetic Levitation (control project)Electromagnetic Levitation (control project)
Electromagnetic Levitation (control project)
 
Chapter 13 solutions_to_exercises (engineering circuit analysis 7th)
Chapter 13 solutions_to_exercises (engineering circuit analysis 7th)Chapter 13 solutions_to_exercises (engineering circuit analysis 7th)
Chapter 13 solutions_to_exercises (engineering circuit analysis 7th)
 
Polinomios grados parte1
Polinomios grados  parte1Polinomios grados  parte1
Polinomios grados parte1
 
Mechanic assignment (2)
Mechanic assignment (2)Mechanic assignment (2)
Mechanic assignment (2)
 

Similar to Consistence deformation of trusses

130 problemas dispositivos electronicos lopez meza brayan
130 problemas dispositivos electronicos lopez meza brayan130 problemas dispositivos electronicos lopez meza brayan
130 problemas dispositivos electronicos lopez meza brayanbrandwin marcelo lavado
 
EJERCICIOS RESUELTOS DE LOGARITMOS
EJERCICIOS RESUELTOS DE LOGARITMOSEJERCICIOS RESUELTOS DE LOGARITMOS
EJERCICIOS RESUELTOS DE LOGARITMOSADRIANULLOAP
 
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...Sohar Carr
 
Solution of matlab chapter 3
Solution of matlab chapter 3Solution of matlab chapter 3
Solution of matlab chapter 3AhsanIrshad8
 
Power_flow..نظم_قدرة.pptx
Power_flow..نظم_قدرة.pptxPower_flow..نظم_قدرة.pptx
Power_flow..نظم_قدرة.pptxAhmedAbdAldafea
 
Soham Patra_13000120121.pdf
Soham Patra_13000120121.pdfSoham Patra_13000120121.pdf
Soham Patra_13000120121.pdfPritamDutta66
 
Tarea 1 vectores, matrices y determinantes laura montes
Tarea 1   vectores, matrices y determinantes laura montesTarea 1   vectores, matrices y determinantes laura montes
Tarea 1 vectores, matrices y determinantes laura montesLAURAXIMENAMONTESEST
 
Presentation_Final_Amrit - Ready to Present.pptx
Presentation_Final_Amrit - Ready to Present.pptxPresentation_Final_Amrit - Ready to Present.pptx
Presentation_Final_Amrit - Ready to Present.pptxNolarajPoudel
 
Dinamica rotacional
Dinamica rotacionalDinamica rotacional
Dinamica rotacionalKramerCaiza
 
William hyatt-7th-edition-drill-problems-solution
William hyatt-7th-edition-drill-problems-solutionWilliam hyatt-7th-edition-drill-problems-solution
William hyatt-7th-edition-drill-problems-solutionSalman Salman
 
Solucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdf
Solucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdfSolucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdf
Solucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdfAntonellaMeaurio
 
Numerical Methods: Solution of system of equations
Numerical Methods: Solution of system of equationsNumerical Methods: Solution of system of equations
Numerical Methods: Solution of system of equationsNikolai Priezjev
 
Introduction to Algorithms
Introduction to AlgorithmsIntroduction to Algorithms
Introduction to Algorithmspppepito86
 
FINITE ELEMENT METHOD (FEM) coding using C PROGRAMMING
FINITE ELEMENT METHOD (FEM) coding using  C PROGRAMMING FINITE ELEMENT METHOD (FEM) coding using  C PROGRAMMING
FINITE ELEMENT METHOD (FEM) coding using C PROGRAMMING Akash Gupta
 

Similar to Consistence deformation of trusses (20)

130 problemas dispositivos electronicos lopez meza brayan
130 problemas dispositivos electronicos lopez meza brayan130 problemas dispositivos electronicos lopez meza brayan
130 problemas dispositivos electronicos lopez meza brayan
 
EJERCICIOS RESUELTOS DE LOGARITMOS
EJERCICIOS RESUELTOS DE LOGARITMOSEJERCICIOS RESUELTOS DE LOGARITMOS
EJERCICIOS RESUELTOS DE LOGARITMOS
 
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
 
Solution of matlab chapter 3
Solution of matlab chapter 3Solution of matlab chapter 3
Solution of matlab chapter 3
 
Power_flow..نظم_قدرة.pptx
Power_flow..نظم_قدرة.pptxPower_flow..نظم_قدرة.pptx
Power_flow..نظم_قدرة.pptx
 
project designa.docx
project designa.docxproject designa.docx
project designa.docx
 
Soham Patra_13000120121.pdf
Soham Patra_13000120121.pdfSoham Patra_13000120121.pdf
Soham Patra_13000120121.pdf
 
Tarea 1 vectores, matrices y determinantes laura montes
Tarea 1   vectores, matrices y determinantes laura montesTarea 1   vectores, matrices y determinantes laura montes
Tarea 1 vectores, matrices y determinantes laura montes
 
Presentation_Final_Amrit - Ready to Present.pptx
Presentation_Final_Amrit - Ready to Present.pptxPresentation_Final_Amrit - Ready to Present.pptx
Presentation_Final_Amrit - Ready to Present.pptx
 
Dinamica rotacional
Dinamica rotacionalDinamica rotacional
Dinamica rotacional
 
0. preliminares
0. preliminares0. preliminares
0. preliminares
 
William hyatt-7th-edition-drill-problems-solution
William hyatt-7th-edition-drill-problems-solutionWilliam hyatt-7th-edition-drill-problems-solution
William hyatt-7th-edition-drill-problems-solution
 
Matlab quick quide3.4
Matlab  quick quide3.4Matlab  quick quide3.4
Matlab quick quide3.4
 
Solucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdf
Solucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdfSolucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdf
Solucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdf
 
Numerical Methods: Solution of system of equations
Numerical Methods: Solution of system of equationsNumerical Methods: Solution of system of equations
Numerical Methods: Solution of system of equations
 
Simultaneous equations
Simultaneous equationsSimultaneous equations
Simultaneous equations
 
Introduction to Algorithms
Introduction to AlgorithmsIntroduction to Algorithms
Introduction to Algorithms
 
FINITE ELEMENT METHOD (FEM) coding using C PROGRAMMING
FINITE ELEMENT METHOD (FEM) coding using  C PROGRAMMING FINITE ELEMENT METHOD (FEM) coding using  C PROGRAMMING
FINITE ELEMENT METHOD (FEM) coding using C PROGRAMMING
 
Recursion.pptx
Recursion.pptxRecursion.pptx
Recursion.pptx
 
Engineering Mechanics
Engineering MechanicsEngineering Mechanics
Engineering Mechanics
 

Recently uploaded

Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxbritheesh05
 
DATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage exampleDATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage examplePragyanshuParadkar1
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxk795866
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)dollysharma2066
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfROCENODodongVILLACER
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort servicejennyeacort
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHC Sai Kiran
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxPoojaBan
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEroselinkalist12
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptSAURABHKUMAR892774
 
EduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AIEduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AIkoyaldeepu123
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)Dr SOUNDIRARAJ N
 

Recently uploaded (20)

POWER SYSTEMS-1 Complete notes examples
POWER SYSTEMS-1 Complete notes  examplesPOWER SYSTEMS-1 Complete notes  examples
POWER SYSTEMS-1 Complete notes examples
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Serviceyoung call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptx
 
DATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage exampleDATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage example
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptx
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdf
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECH
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
Design and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdfDesign and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdf
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptx
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.ppt
 
EduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AIEduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AI
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
 

Consistence deformation of trusses

  • 1. 1 Eng. Abdulrahman Shaaban Solved Examples for Consistent Deformation for trusses Structures A) External determinate: Example (1) Find the eternal forces at all members for the following truss. Step 1: Determine the degree of indeterminacy 1) External determinacy: Unknowns (U) = Reactions (R) = 4 Equations (E) = Statics equation + Special joint = 3 Number of indeterminacy (N) = 𝑈 − 𝐸 → 4 − 3 = 1 ∴ it considered once statically indeterminate 2) Internal determinacy: 𝑈 = 𝑚𝑒𝑚𝑏𝑒𝑟𝑠 ( 𝑚) + 𝑅 = 9 + 4 = 13 𝐸 = 2 ∗ 𝐽𝑜𝑖𝑛𝑡 ( 𝐽) = 2 ∗ 6 = 12 N = 𝑈 − 𝐸 → 13 − 12 = 1 𝑏𝑢𝑡 𝑁 𝑓𝑟𝑜𝑚 𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑖𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑐𝑦 = 1 𝑎𝑙𝑠𝑜 so that it still once statically indeterminate 50 cm2 50 cm2 50 cm2 50 cm2 75 cm2 75 cm2 75 cm2 75 cm2 25 cm2
  • 2. 2 Eng. Abdulrahman Shaaban Step 2: Select proper statically determinate main system Step 3: Coding members, calculate angles for inclined members and find reactions: 𝜃1 = tan−1(3 4⁄ ) = 36.870 Step 4: Find all internal forces at all members due to original loads Hint: using joint method without details for each individual joint just find the force and but its value and its type (use [+ve] for tension force and [-ve] for compression value) directly on the figure. 1 2 3 45 6 7 8 9 0 7.5 7.5 θ1 θ1 θ1 θ1 0 0 -7.5 -10-10 -7.5 12.5 12.5 -15 0 7.5 7.5 θ1 θ1 θ1 θ1
  • 3. 3 Eng. Abdulrahman Shaaban Step 5: Find all internal forces at all members due to applying unit redundant. Step 6: Construct a table to summarize results and facilitation of calculation procedures. Member L (cm) A (cm2 ) N0 (t) N1 (t) N0N1*L/A N1 2 *L/A Nf 1 500 75 0 -1.25 0.00 10.42 -8.84 2 500 75 0 -1.25 0.00 10.42 -8.84 3 600 50 -7.5 +0.75 -67.50 6.75 -2.20 4 400 50 -10 +1 -80.00 8.00 -2.93 5 400 50 -10 +1 -80.00 8.00 -2.93 6 600 50 -7.5 +0.75 -67.50 6.75 -2.20 7 500 75 +12.5 -1.25 -104.17 10.42 3.66 8 500 75 +12.5 -1.25 -104.17 10.42 3.66 9 300 25 -15 0 0.00 0.00 -15.00 Σ -503.33 71.17 Step 7: Calculate the true value of redundant by the following eqn: 𝑥1 = −𝑁0N1 ∗ L/A 𝑁1 2 ∗ 𝐿/𝐴 = 7.07 Step 8: Calculate the final internal force at each member by the following eqn: 𝑁𝑓 = 𝑁0 + 𝑥1 ∗ 𝑁1 Step 9: Draw the final normal force diagram -1.25 +0.75 +1+1 +0.75 -1.25 -1.25 0 1 0 0 θ1 θ1 1 -1.25 -8.84 -2.2 -2.93-2.93 -2.2 3.66 3.66 -15 7.07 7.5 7.5 7.07 -8.84
  • 4. 4 Eng. Abdulrahman Shaaban Example (2) Step 1: Determine the degree of indeterminacy 1) External determinacy: U = 4 E = 3 N = 𝑈 − 𝐸 → 4 − 3 = 1 ∴ it considered once statically indeterminate 2) Internal determinacy: 𝑈 = 𝑚 + 𝑅 = 19 + 4 = 23 𝐸 = 2 ∗ 𝐽 = 2 ∗ 11 = 22 N = 𝑈 − 𝐸 → 23 − 22 = 1 𝑏𝑢𝑡 𝑁 𝑓𝑟𝑜𝑚 𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑖𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑐𝑦 = 1 𝑎𝑙𝑠𝑜 so that it still once statically indeterminate Step 2: Select proper statically determinate main system 2A 2A 2A 2A 2A2A 3A
  • 5. 5 Eng. Abdulrahman Shaaban Step 3: Coding members, calculate angles for inclined members and find reactions: 𝜃1 = tan−1(6 2⁄ ) = 71.560 𝜃2 = tan−1(3 2⁄ ) = 56.310 Step 4: Find all internal forces at all members due to original loads θ2 θ1 1 2 3 4 5 678 9 10 11 12 13 14 15 16 17 18 19 1212 0 1212 0 -6.33 -6.33 -6.33 -6.33 -7.21 -8-13.34-8 -7.21 +6 +10.67 +10.67 +6 +7.21 +4.81 -4.81 +4.81 -4.81 +7.21
  • 6. 6 Eng. Abdulrahman Shaaban Step 5: Find all internal forces at all members due to applying unit redundant. Step 6: Construct a table to summarize results and facilitation of calculation procedures. Member L (m) A N0 (t) N1 (t) N0N1*L/A N1 2 *L/A Nf 1 2√10 2 -6.33 +1.58 -31.63 7.89 -1.20 2 2√10 2 -6.33 -1.58 31.63 7.89 -11.46 3 2√10 2 -6.33 -1.58 31.63 7.89 -11.46 4 2√10 2 -6.33 +1.58 -31.63 7.89 -1.20 5 √13 1 -7.21 +1.80 -46.79 11.68 -1.37 6 4 1 -8 +2 -64.00 16.00 -1.51 7 4 3 -13.34 +2 -35.57 5.33 -6.85 8 4 1 -8 +2 -64.00 16.00 -1.51 9 √13 1 -7.21 +1.80 -46.79 11.68 -1.37 10 4 1 +6 -1.5 -36.00 9.00 1.13 11 4 2 +10.67 -3 -64.02 18.00 0.93 12 4 2 +10.67 -3 -64.02 18.00 0.93 13 4 1 +6 -1.5 -36.00 9.00 1.13 14 √13 1 +7.21 -1.80 -46.79 11.68 1.37 15 √13 1 -4.81 0 0.00 0.00 -4.81 16 √13 1 +4.81 0 0.00 0.00 4.81 17 √13 1 +4.81 0 0.00 0.00 4.81 18 √13 1 -4.81 0 0.00 0.00 -4.81 19 √13 1 +7.21 -1.80 -46.79 11.68 1.37 Σ -550.78 169.64 00 1 1 -1.58+1.58 -1.58 +1.58 +1.8 +2 +2+2 +1.8 -1.5 -1.8 0 0 0 0 -1.8 -3 -3 -1.5
  • 7. 7 Eng. Abdulrahman Shaaban Step 7: Calculate the true value of redundant by the following eqn: 𝑥1 = −𝑁0N1 ∗ L/A 𝑁1 2 ∗ 𝐿/𝐴 = 3.25 Step 8: Calculate the final internal force at each member by the following eqn: 𝑁𝑓 = 𝑁0 + 𝑥1 ∗ 𝑁1 Step 9: Draw the final normal force diagram 1212 3.25 -11.46 -1.2 -11.46 -1.2 -1.37 -1.51-6.85 -1.37 +1.13 +0.93 +0.93 +1.13 +4.81 -4.81+1.37 +4.81 -4.81 +1.37 3.25 -1.51
  • 8. 8 Eng. Abdulrahman Shaaban B) Internal determinate: Example (3) Find the eternal forces at all members for the following truss. Step 1: Determine the degree of indeterminacy 1) External determinacy: U = 4 E = 3 + 1 = 4 N = 𝑈 − 𝐸 → 4 − 4 = 0 ∴ it considered statically determinate 2) Internal determinacy: 𝑈 = 𝑚 + 𝑅 = 13 + 4 = 17 𝐸 = 2 ∗ 𝐽 = 2 ∗ 8 = 16 N = 𝑈 − 𝐸 → 17 − 16 = 1 so that it considered once statically indeterminate Step 2: Select proper statically determinate main system
  • 9. 9 Eng. Abdulrahman Shaaban Step 3: Coding members, calculate angles for inclined members and find reactions: 𝜃1 = tan−1(3 4⁄ ) = 36.870 Step 4: Find all internal forces at all members due to original loads Step 5: Find all internal forces at all members due to applying unit redundant. 26 64 64 0 1 2 3 456 7 8 11 θ1 26 64 64 0 -10 +8+29.34 -8 -26.67 +64 -43.33 -29.34 +16 +6 0 0 0 0 1 1 -0.6 0 00 0 0 -0.8 -0.8 -0.6 +1 9 10
  • 10. 10 Eng. Abdulrahman Shaaban Step 6: Construct a table to summarize results and facilitation of calculation procedures. Member L (m) A N0 (t) N1 (t) N0N1*L/A N1 2 *L/A Nf 1 4 1 -29.34 0 0.00 0.00 -29.34 2 4 1 -8 -0.8 25.60 2.56 -19.17 3 5 1 -10 0 0.00 0.00 -10.00 4 4 1 +8 0 0.00 0.00 8.00 5 4 1 +29.34 -0.8 -93.89 2.56 18.17 6 4 1 +64 0 0.00 0.00 64.00 7 5 1 -43.33 0 0.00 0.00 -43.33 8 3 1 +16 -0.6 -28.80 1.08 7.62 9 5 1 -26.67 +1 -133.35 5.00 -12.71 10 5 1 0 +1 0.00 5.00 13.96 11 3 1 +6 -0.6 -10.80 1.08 -2.38 Σ -241.24 17.28 Step 7: Calculate the true value of redundant by the following eqn: 𝑥1 = −𝑁0N1 ∗ L/A 𝑁1 2 ∗ 𝐿/𝐴 = 13.96 Step 8: Calculate the final internal force at each member by the following eqn: 𝑁𝑓 = 𝑁0 + 𝑥1 ∗ 𝑁1 Step 9: Draw the final normal force diagram 64 64 26 -2.38 -10 +8+64 -43.33 -29.34 +18.17 -19.17 +7.62 -12.71 +13.96 0
  • 11. 11 Eng. Abdulrahman Shaaban Example (4) Step 1: Determine the degree of indeterminacy 1) External determinacy: U = 3 E = 3 N = 𝑈 − 𝐸 → 3 − 3 = 0 ∴ it considered statically determinate 2) Internal determinacy: 𝑈 = 𝑚 + 𝑅 = 15 + 3 = 18 𝐸 = 2 ∗ 𝐽 = 2 ∗ 8 = 16 N = 𝑈 − 𝐸 → 18 − 16 = 2 so that it considered twice statically indeterminate Step 2: Select proper statically determinate main system
  • 12. 12 Eng. Abdulrahman Shaaban Step 3: Coding members, calculate angles for inclined members and find reactions: 𝜃1 = tan−1(3 4⁄ ) = 36.870 Step 4: Find all internal forces at all members due to original loads. Step 5: Find all internal forces at all members due to applying unit redundant. 9 1 9 6 2 3 4 5 6 8 9 12 13 14 15 7 10 11 θ1 9 +4.5 9 6 +4.5 0 0 -9 0 -7.5 0 +7.5 1 -0.8 -0.8 -0.6-0.6 +1 0 0 00 +1 1 -0.6 -0.6 -0.8 -0.8 0 0 0 0 N2 N1 N0
  • 13. 13 Eng. Abdulrahman Shaaban Step 6: Construct a table to summarize results and facilitation of calculation procedures. Member L (m) A N0 (t) N1 (t) N2 (t) N0N1*L/A N0N2*L/A N1 2 *L/A N2 2 *L/A N1N2*L/A Nf 1 3 1 +4.5 -0.6 0 -8.1 0 1.08 0 0 6.36 2 3 1 +4.5 0 -0.6 0 -8.1 0 1.08 0 2.64 3 4 1 0 0 -0.8 0 0 0 2.56 0 -2.48 4 3 1 0 0 -0.6 0 0 0 1.08 0 -1.86 5 3 1 -9 -0.6 0 16.2 0 1.08 0 0 -7.14 6 4 1 0 -0.8 0 0 0 2.56 0 0 2.48 7 4 1 0 -0.8 -0.8 0 0 2.56 2.56 2.56 0.00 8 2.5 1 +7.5 +1 0 18.75 0 2.5 0 0 4.40 9 2.5 1 0 +1 0 0 0 2.5 0 0 -3.10 10 2.5 1 +7.5 +1 0 18.75 0 2.5 0 0 4.40 11 2.5 1 0 +1 0 0 0 2.5 0 0 -3.10 12 2.5 1 0 0 +1 0 0 0 2.5 0 3.10 13 2.5 1 -7.5 0 +1 0 -18.75 0 2.5 0 -4.40 14 2.5 1 0 0 +1 0 0 0 2.5 0 3.10 15 2.5 1 -7.5 0 +1 0 -18.75 0 2.5 0 -4.40 Σ 45.6 -45.6 17.28 17.28 2.56 Step 7: Calculate the true value of redundant by the following eqns: 𝛿10 + 𝑥1 𝛿11 + 𝑥2 𝛿12 = 0 𝛿20 + 𝑥1 𝛿21 + 𝑥2 𝛿22 = 0 𝛿10 = ∫ 𝑁0 𝑁1 𝑙 𝐸𝐴 𝑑𝑙 𝛿20 = ∫ 𝑁0 𝑁2 𝑙 𝐸𝐴 𝑑𝑙 𝛿11 = ∫ 𝑁1 𝑁1 𝑙 𝐸𝐴 𝑑𝑙 𝛿22 = ∫ 𝑁2 𝑁2 𝑙 𝐸𝐴 𝑑𝑙 𝛿12 = 𝛿21 = ∫ 𝑁1 𝑁2 𝑙 𝐸𝐴 𝑑𝑙 45.6 + 𝑥1 ∗ 17.28 + 𝑥2 ∗ 2.56 = 0 −45.6 + 𝑥1 ∗ 2.56 + 𝑥2 ∗ 17.28 = 0 𝑥1 = −3.097 𝑥2 = 3.097 Step 8: Calculate the final internal force at each member by the following eqn: 𝑁𝑓 = 𝑁0 + 𝑥1 ∗ 𝑁1 + 𝑥2 ∗ 𝑁2
  • 14. 14 Eng. Abdulrahman Shaaban Step 9: Draw the final normal force diagram 9 +6.36 9 6 +2.64 -2.48 -1.86 -7.14 +2.48 +4.4 -3.1 -4.4 0 +3.1