SlideShare a Scribd company logo
He was only in first standard in school
(Dec 2007) when I was Paralysed head to toe.
His smiling face sees me through day in and day out.
Vast readership from academia and industry motivates me, and keeps
me going.
Helping millions with free advertisement free websites and has million
hits on google
Thanks for helping me to keep lionel smiling
 Your own will power and determination will
reach you to the shore even if you are
drowned in the middle of a storm
Introduction:
The perception of flavor is a complicated physiological and
psychological response that incorporates the sight, smell, taste,
and texture of an object. A large portion of the perceived flavor of
a food actually comes from its fragrance. Remember your last
cold? How did things taste? Many foods, including spearmint gum
and onions, do not have a 'taste' at all if your sense of smell is
impaired.
The major components of most flavors and fragrances are a class of
compounds known as esters. Esters are derived from the reaction
of carboxylic acids and alcohols. Most aromas are not single
compounds, but complex mixtures. For example, over 200 esters
have been identified in the 'rich aroma' of coffee. However, several
common fragrances have a major ester component.
 also known as odorant, aroma, fragrance or flavor, is a chemical
compound that has a smell or odor. A chemical compound has a smell
or odor when two conditions are met: the compound needs to be
volatile, so it can be transported to the olfactory system in the upper
part of the nose, and it needs to be in a sufficiently high concentration
to be able to interact with one or more of theolfactory receptors.
 Aroma compounds can be found
in food, wine, spices, perfumes, fragrance oils, and essential oils. For
example, many form biochemicallyduring ripening of fruits and other
crops. In wines, most form as byproducts of fermentation.
 Odorants can also be added to a dangerous odorless substance,
like propane, natural gas, or hydrogen, as a warning.
 Also, many of the aroma compounds play a significant role in the
production of flavorants, which are used in the food service industry to
flavor, improve, and generally increase the appeal of their products.
Compound name Fragrance Natural occurrence Chemical structure
Geranyl acetate Fruity, Rose
Rose,
Floral
Methyl formate Ethereal
Methyl acetate
Sweet, nail polish
Solvent
Methyl butyrate
Methyl butanoate
Fruity, Apple
Pineapple
Pineapple
Ethyl acetate Sweet, solvent Wine
Ethyl butyrate
Ethyl butanoate
Fruity, Orange
Pineapple
Isoamyl acetate
Fruity, Banana
Pear
Banana plant
Pentyl butyrate
Pentyl butanoate
Fruity, Pear
Apricot
Pentyl pentanoate Fruity, Apple
Octyl acetate Fruity, Orange
Esters
Compound name Fragrance Natural occurrence Chemical structure
Myrcene Woody, complex Verbena, Bay leaf
Geraniol Rose, flowery Geranium, Lemon
Nerol Sweet rose, flowery Neroli, Lemongrass
Citral, lemonal
Geranial, neral
Lemon Lemon myrtle, Lemongrass
Citronellal Lemon Lemongrass
Citronellol Lemon
Lemongrass, rose
Pelargonium
Linalool
Floral, sweet
Woody, Lavender
Coriander, Sweet basil
Lavender
Nerolidol Woody, fresh bark
Neroli, ginger
Jasmine
Linear terpenes
Compound name Fragrance
Natural
occurrence
Chemical
structure
Limonene Orange Orange, lemon
Camphor Camphor Camphor laurel
Terpineol Lilac Lilac, Cajuput
alpha-Ionone Violet, woody Violet
Thujone Minty
Cypress, lilac
Juniper
Cyclic terpenes
Compound name Fragrance Natural occurrence Chemical structure
Benzaldehyde Almond Bitter almond
Eugenol Clove Clove
Cinnamaldehyde Cinnamon
Cassia
Cinnamon
Ethyl maltol
Cooked fruit
Caramelized sugar
Vanillin Vanilla Vanilla
Anisole Anise Anise
Anethole Anise
Anise
Sweet basil
Estragole Tarragon Tarragon
Thymol Thyme Thyme
Aromatic
Compound name Fragrance
Natural
occurrence
Chemical
structure
Trimethylamine
Fishy
Ammonia
Putrescine
Diaminobutane
Rotting flesh Rotting flesh
Cadaverine Rotting flesh Rotting flesh
Pyridine Fishy Belladonna
Indole
Fecal
Flowery
Feces
Jasmine
Skatole Fecal Feces
Amines
Synthesis of (-)-Menthol from (+)-
Pulegone
 The manufacture of (-)-menthol from (+)-pulegone (ex Spanish
pennyroyal oil) similarly is dependent on configuration at C-1 in
the present material.14 In this process the 4,8-double bond is
catalytically hydrogenated and then the mixture of (-)-menthone
and (+)isomenthone so produced is reduced by sodium in
alcohol to give predominantly (-)-menthol. Reduction of
menthones by nascent hydrogen generated in situ is the
preferred procedure inasmuch as this system allows
epimerization of the isopropyl group and preferential reduction
to an all-equatorial substituent system, presumably via the
enolate.1
 References1. Leffingwell, J.C. & R.E. Shackelford, Laevo-Menthol
- Syntheses and organoleptic properties, Cosmetics and
Perfumery, 89(6), 69-89, 1974
 2. Hopp, R., Menthol: its origins, chemistry, physiology and
toxicological properties, Rec. Adv. Tobacco Science, Vol. 19, 3-
46 (1993).
http://www.leffingwell.com/menthol3/
menthol3.htm
(-)-Menthol from Geraniol or Nerol or Geranial or Neral
A New BASF Process
 utilizes (+)-(R)- citronellal which can be
produced from either geraniol or nerol by chiral
catalytic hydrogenation to (+)-(R)-citronellol
(Ref. 2) (in a manner similar to that described in
1987 by Ryoji Noyori and co-workers [Ref. 3])
followed by catalytic dehydrogenation to (+)-(R)-
citronellal. In addition, BASF has also achieved
the direct chiral catalytic hydrogenation of neral
or geranial to (+)-(R)-citronellal (Ref. 4). This
latter route as depicted in Scheme 2 appears to
be the commercial route.
 has recently developed refined processes for
the cyclization of (+)-(R)-citronellal to (-)-
Isopulegol that minimizes the undesirable
isomeric isopulegols (Ref. 5); further they
have developed an improved process for
enriching the (-)-Isopulegol before the
hydrogenation step to (-)-menthol (Ref. 6). A
continuous distillation process for purifying
the final menthol product has also been
achieved (Ref. 7).
 Nissen, Axel; Rebafka, Walter; Aquila, Werner, Preparation of citral, United States Patent 4288636
(09/08/1981); Therre, Jorg; Kaibel, Gerd; Aquila, Werner; Wegner, Gunter; Fuchs, Hartwig, Preparation of
citral, United States Patent 6175044 (01/16/2001); Dudeck, Christian; Diehm, Hans; Brunnmueller, Fritz;
Meissner, Bernd; Fliege, Werner; Preparation of 3-alkyl-buten-1-als, United States Patent 4165342
(08/21/1979); W.F. Hoelderich & F. KolLmer, Chapter 2 in Catalysis, Volume 16, James J. Spivey, Ed., Royal
Society of Chemistry, 2002. pp. 45-46
 2. Bergner, Eike Johannes; Ebel, Klaus; Johann, Thorsten; Lober, Oliver, Method for the production of
menthol, United States Patent 7709688 (05/04/2010); Johann, Thorsten; Löber, Oliver; Bergner, Eike Johannes;
Ebel, Klaus; Harth, Klaus; Walsdorff, Christian; Method for producing optically active carbonyl
compounds, United States Patent 7468463 (12/23/2008)
 3. Hidemasa Takaya, Tetsuo Ohta, Noboru Sayo, Hidenori Kumobayashi, Susumu Akutagawa, Shinichi Inoue,
Isamu Kasahara, Ryoji Noyori, Enantioselective hydrogenation of allylic and homoallylic alcohols, J. Am. Chem.
Soc., 1987, 109 (5), pp 1596–1597
 4. Jäkel, Christoph; Paciello, Rocco; Method for the production of optically active carbonyl, United States Patent
7534921 (05/19/2009)
 5. Friedrich, Marko; Ebel, Klaus; Götz, Norbert; Method for the production of isopulegol, United States Patent
7550633 (06/23/2009); Friedrich, Marko; Ebel, Klaus; Götz, Norbert; Krause, Wolfgang; , Zahm, Christian;
Diarylphenoxy aluminum compounds,United States Patent 7608742 (10/27/2009)
 6. Rauls, Matthias; Jakel, Christoph; Kashani-shirazi, Nawid; Ebel, Klaus, Method for the Production of Enriched
Isopulegol, United States Patent Application 20080214877 (09/04/2008)
 7. Heydrich, Gunnar; Gralla, Gabriele; Ebel, Klaus; Krause, Wolfgang; Kashani-shirazi, Nawid,CONTINUOUS
PROCESS FOR PREPARING MENTHOL IN PURE OR ENRICHED FORM, WIPO Patent Application WO/2009/033870
(03/19/2009)
 Please note that the above references encompass only a small number of the numerous BASF patents & patent
applications relative to menthol synthesis.
 8. John C. & Diane Leffingwell, Chiral chemistry in flavours & fragrances, Speciality Chemicals Magazine, March
2011, pp. 30-33
Vanillin
IUPAC name
4-Hydroxy-3-methoxybenzaldehyde
[1]
 is a phenolic aldehyde, an organic compound with the molecular formula C8H8O3.
Itsfunctional groups include aldehyde, ether, and phenol. It is the primary
component of the extract of the vanilla bean. Synthetic vanillin, instead of natural
vanilla extract, is sometimes used as aflavoring agent in foods, beverages, and
pharmaceuticals.
 Vanillin as well as ethylvanillin is used by the food industry. The ethyl is more
expensive but has a stronger note. It differs from vanillin by having an ethoxy
group (–O–CH2CH3) instead of a methoxy group (–O–CH3).
 Natural "vanilla extract" is a mixture of several hundred different compounds in
addition to vanillin. Artificial vanilla flavoring is a solution of pure vanillin, usually
of synthetic origin. Because of the scarcity and expense of natural vanilla extract,
there has long been interest in the synthetic preparation of its predominant
component. The first commercial synthesis of vanillin began with the more readily
available natural compound eugenol. Today, artificial vanillin is made either
from guaiacol or from lignin, a constituent of wood, which is a byproduct of
the pulp industry.
 Lignin-based artificial vanilla flavoring is alleged to have a richer flavor profile
than oil-based flavoring; the difference is due to the presence of acetovanillone in
the lignin-derived product, an impurity not found in vanillin synthesized from
guaiacol.[3]
 Vanilla was cultivated as a flavoring by pre-Columbian Mesoamerican
peoples; at the time of their conquest by Hernán Cortés, the Aztecs used
it as a flavoring for chocolate. Europeans became aware of both
chocolate and vanilla around 1520.[4]
 Vanillin was first isolated as a relatively pure substance in 1858
by Nicolas-Theodore Gobley, who obtained it by evaporating a vanilla
extract to dryness, and recrystallizing the resulting solids from hot
water.[5] In 1874, the German scientists Ferdinand Tiemann and Wilhelm
Haarmann deduced its chemical structure, at the same time finding a
synthesis for vanillin fromconiferin, a glycoside of isoeugenol found
in pine bark.[6] Tiemann and Haarmann founded a company, Haarmann &
Reimer (now part of Symrise) and started the first industrial production
of Vanillin using their process in Holzminden (Germany). In 1876, Karl
Reimer synthesized vanillin (2) from guaiacol (1).[7]

Synthesis of Vanillin by Reimer
 By the late 19th century, semisynthetic vanillin derived from
the eugenol found in clove oil was commercially available.[8]
 Natural vanillin is extracted from the seed pods of Vanilla planifola, a vining orchid native to
Mexico, but now grown in tropical areas around the globe. Madagascar is presently the largest
producer of natural vanillin.
 As harvested, the green seed pods contain vanillin in the form of its β-D-glycoside; the green
pods do not have the flavor or odor of vanilla.[23]

β-D-glycoside of vanillin
 After being harvested, their flavor is developed by a months-long curing process, the details of
which vary among vanilla-producing regions, but in broad terms it proceeds as follows:
 First, the seed pods are blanched in hot water, to arrest the processes of the living plant
tissues. Then, for 1–2 weeks, the pods are alternately sunned and sweated: during the day,
they are laid out in the sun, and each night, wrapped in cloth and packed in airtight boxes to
sweat. During this process, the pods become a dark brown, and enzymes in the pod release
vanillin as the free molecule. Finally, the pods are dried and further aged for several months,
during which time their flavors further develop. Several methods have been described for
curing vanilla in days rather than months, although they have not been widely developed in the
natural vanilla industry,[24] with its focus on producing a premium product by established
methods, rather than on innovations that might alter the product's flavor profile.
 Vanillin accounts for about 2% of the dry weight of cured vanilla beans, and is the chief among
about 200 other flavor compounds found in vanilla.
 The demand for vanilla flavoring has long exceeded the supply of vanilla beans.
As of 2001, the annual demand for vanillin was 12,000 tons, but only 1,800 tons
of natural vanillin were produced.[25] The remainder was produced by chemical
synthesis. Vanillin was first synthesized from eugenol (found in oil of clove) in
1874–75, less than 20 years after it was first identified and isolated. Vanillin was
commercially produced from eugenol until the 1920s.[26] Later it was synthesized
from lignin-containing "brown liquor", a byproduct of the sulfite process for
makingwood pulp.[9] Counter-intuitively, even though it uses waste materials, the
lignin process is no longer popular because of environmental concerns, and today
most vanillin is produced from the petrochemical raw material guaiacol.[9] Several
routes exist for synthesizing vanillin from guaiacol.[27]
 At present, the most significant of these is the two-step process practiced
by Rhodia since the 1970s, in which guaiacol (1) reacts withglyoxylic
acid by electrophilic aromatic substitution. The resulting vanillylmandelic acid (2)
is then converted via 4-Hydroxy-3-methoxyphenylglyoxylic acid (3) to vanillin (4)
by oxidative decarboxylation.[4]
 In October 2007 Mayu Yamamoto of the International Medical Center of Japan won
an Ig Nobel Prize for developing a way to extract vanillin from cow dung.[28]
 References
 Adahchour, Mohamed; René J. J. Vreuls, Arnold van der Heijden and Udo A. Th. Brinkman (1999). "Trace-level determination
of polar flavour compounds in butter by solid-phase extraction and gas chromatography–mass spectrometry". Journal of
Chromatography A844 (1–2): 295–305. doi:10.1016/S0021-9673(99)00351-9.PMID 10399332.
 Blank, Imre; Alina Sen, and Werner Grosch (1992). "Potent odorants of the roasted powder and brew of Arabica
coffee". Zeitschrift für Lebensmittel-Untersuchung und -Forschung A 195 (3): 239–245.doi:10.1007/BF01202802.
 Brenes, Manuel; Aranzazu García, Pedro García, José J. Rios, and Antonio Garrido (1999). "Phenolic Compounds in Spanish
Olive Oils".Journal of Agricultural and Food Chemistry 47 (9): 3535–3540.doi:10.1021/jf990009o. PMID 10552681.
 Buttery, Ron G.; and Louisa C. Ling (1995). "Volatile Flavor Components of Corn Tortillas and Related Products". Journal of
Agricultural and Food Chemistry 43 (7): 1878–1882.doi:10.1021/jf00055a023.
 Dignum, Mark J. W.; Josef Kerlera, and Rob Verpoorte (2001). "Vanilla Production: Technological, Chemical, and Biosynthetic
Aspects".Food Reviews International 17 (2): 119–120. doi:10.1081/FRI-100000269. Retrieved 2006-09-09.
 Esposito, Lawrence J.; K. Formanek, G. Kientz, F. Mauger, V. Maureaux, G. Robert, and F. Truchet (1997). "Vanillin". Kirk-
Othmer Encyclopedia of Chemical Technology, 4th edition. 24. New York: John Wiley & Sons. pp. 812–825.
 Fund for Research into Industrial Development, Growth and Equity (FRIDGE) (2004). Study into the Establishment of an
Aroma and Fragrance Fine Chemicals Value Chain in South Africa, Part Three: Aroma Chemicals Derived from Petrochemical
Feedstocks. National Economic Development and Labor Council.
 Gobley, N.-T. (1858). "Recherches sur le principe odorant de la vanille". Journal de Pharmacie et de Chimie 34: 401–405.
 Guth, Helmut; and Werner Grosch (1995). "Odorants of extrusion products of oat meal: Changes during storage". Zeitschrift
für Lebensmittel-Untersuchung und -Forschung A 196 (1): 22–28.doi:10.1007/BF01192979.
 Hocking, Martin B. (September 1997). "Vanillin: Synthetic Flavoring from Spent Sulfite Liquor" (PDF). Journal of Chemical
Education 74(9): 1055–1059. doi:10.1021/ed074p1055. Retrieved 2006-09-09.
 Kermasha, S.; M. Goetghebeur, and J. Dumont (1995). "Determination of Phenolic Compound Profiles in Maple Products by
High-Performance Liquid Chromatography". Journal of Agricultural and Food Chemistry 43 (3): 708–
716. doi:10.1021/jf00051a028.
 Lampman, Gary M.; Jennifer Andrews, Wayne Bratz, Otto Hanssen, Kenneth Kelley, Dana Perry, and Anthony Ridgeway
(1977). "Preparation of vanillin from eugenol and sawdust". Journal of Chemical Education 54 (12): 776–
778. doi:10.1021/ed054p776.
 Ong, Peter K. C.; Terry E. Acree (1998). "Gas Chromatography/Olfactory Analysis of Lychee (Litchi chinesis Sonn.)".Journal of
Agricultural and Food Chemistry 46 (6): 2282–2286.doi:10.1021/jf9801318.
 Reimer, K. (1876). "Ueber eine neue Bildungsweise aromatischer Aldehyde". Berichte der deutschen chemischen
Gesellschaft 9 (1): 423–424. doi:10.1002/cber.187600901134.
 Roberts, Deborah D.; Terry E. Acree (1996). "Effects of Heating and Cream Addition on Fresh Raspberry Aroma Using a
Retronasal Aroma Simulator and Gas Chromatography Olfactometry". Journal of Agricultural and Food Chemistry 44 (12):
3919–3925.doi:10.1021/jf950701t.
 Rouhi, A. Maureen (2003). "Fine Chemicals Firms Enable Flavor And Fragrance Industry". Chemical and Engineering
News 81 (28): 54.
 Tiemann, Ferd.; Wilh. Haarmann (1874). "Ueber das Coniferin und seine Umwandlung in das aromatische Princip der
Vanille". Berichte der Deutschen Chemischen Gesellschaft 7 (1): 608–623.doi:10.1002/cber.187400701193.
 Van Ness, J. H. (1983). "Vanillin". Kirk-Othmer Encyclopedia of Chemical Technology, 3rd edition. 23. New York: John Wiley
& Sons. pp. 704–717.
 Viriot, Carole; Augustin Scalbert, Catherine Lapierre, and Michel Moutounet (1993). "Ellagitannins and lignins in aging of
spirits in oak barrels". Journal of Agricultural and Food Chemistry 41 (11): 1872–1879. doi:10.1021/jf00035a013.
 Walton, Nicholas J.; Melinda J. Mayer, and Arjan Narbad (July 2003). "Vanillin". Phytochemistry 63 (5): 505–
515. doi:10.1016/S0031-9422(03)00149-3.
 Notes
 ^ a b PubChem 1183
 ^ Vanillin
 ^ According to Esposito 1997, blind taste-testing panels cannot distinguish between the flavors of synthetic vanillin from
lignin and those from guaicol, but can distinguish the odors of these two types of synthetic vanilla extracts. Guaiacol
vanillin, adulterated with acetovanillone, has an odor indistinguishable from lignin vanillin.
 ^ a b c d Esposito 1997
 ^ Gobley 1858
 ^ Tiemann 1874
 ^ Reimer 1876
 ^ According to Hocking 1997, synthetic vanillin was sold commercially in 1874, the same year Tiemann and Haarmann's
original synthesis was published. Haarmann & Reimer, one of the corporate ancestors of the modern flavor and aroma
manufacturerSymrise, was in fact established in 1874. However, Esposito 1997claims that synthetic vanillin first became
available in 1894 when Rhône-Poulenc (since 1998, Rhodia) entered the vanillin business. If the former claim is correct, the
authors of the latter article, being employees of Rhône-Poulenc, may have been unaware of any previous vanillin
manufacture.
 ^ a b c d Hocking 1997
 ^ Rouhi 2003
 ^ "Leptotes bicolor". Flora Library. Retrieved 2011-08-21.
 ^ Brenes 1999
 ^ Adahchour 1999
 ^ Roberts 1996
 ^ Ong 1998
 ^ Analysis of polyphenolic compounds of different vinegar samples. Miguel Carrero Gálvez, Carmelo García Barroso and
Juan Antonio Pérez-Bustamante, Zeitschrift für Lebensmitteluntersuhung und -Forschung A, Volume 199, Number 1, pages
29-31, doi:10.1007/BF01192948
 ^ Viriot 1993
 ^ Semmelroch, P.; Laskawy, G.; Blank, I.; Grosch, W. (1995). "Determination of potent odourants in roasted coffee by stable
isotope dilution assays". Flavour and Fragrance Journal 10: 1.doi:10.1002/ffj.2730100102. edit
 ^ Blank 1992
 ^ Kermasha 1995
 ^ Buttery 1995
 ^ Guth 1993
 ^ Walton 2003
 ^ Dignum 2001 reviews several such proposed innovations in vanilla processing,
including processes in which the seed pods are chopped, frozen, warmed by a
heat source other than the sun, or crushed and treated by various enzymes.
Whether or not these procedures produce a product whose taste is comparable to
traditionally prepared natural vanilla, many of them are incompatible with the
customs of the natural vanilla market, in which the vanilla beans are sold whole,
and graded by, among other factors, their length.
 ^ Dignum 2001
 ^ Hocking 1997. This chemical process can be conveniently carried out on the
laboratory scale using the procedure described by Lampman 1977.
 ^ Van Ness 1983
 ^ Japan’s 12th Ig Noble Prize Winner: Mayu Yamamoto & Dung Vanilla : Japan
Probe
 ^ FRIDGE 2004, p. 33
 ^ FRIDGE 2004, p. 32.
 ^ R.N. Rogers, "Studies on the Radiocarbon Sample from the Shroud of Turin",
Thermochimica Acta, 2005, 425, 189-194.
 ^ R.N. Rogers and A. Arnoldi, "Scientific Method applied to the Shroud of Turin"
 ^ Saint Denis, M.; Coughtrie, MW.; Guilland, JC.; Verges, B.; Lemesle, M.; Giroud,
M. (Dec 1996). "[Migraine induced by
Carvone
IUPAC name
2-Methyl-5-(1-methylethenyl)-2-cyclohexenone
[1]
 S-(+)-Carvone is the principal constituent (50-70%) of the
oil from caraway seeds (Carum carvi), which is produced
on a scale of about 10 tonnes per year. It also occurs to
the extent of about 40-60% in dill seed oil (from Anethum
graveolens), and also in mandarin orange peel oil.R-(–)-
Carvone is also the most abundant compound in the
essential oil from several species of mint, particularly
spearmint oil (Mentha spicata), which is composed of 50-
80% R-(–)-carvone.[7]Spearmint is a major source of
naturally produced R-(–)-carvone. However, the majority
of R-(–)-carvone used in commercial applications is
synthesized from limonene.The R-(–)-carvone isomer also
occurs in kuromoji oil. Some oils, like gingergrass oil,
contain a mixture of both enantiomers. Many other natural
oils, for example peppermint oil, contain trace quantities
of carvones.
The figure below shows the structure of some common flavors and fragrances:
Valerolactone (12) composes the fragrance blend of the most
representative Italian white wine varieties of Campania. In addition, it
exhibits a potential antifungal property against Monilinia
laxa and Rhizopus stolonifer and is also a potent inhibitor of mouse
coumarin 7-hydroxylases (CYP2A5). This lactone was prepared from
the enantioenriched hydroxy telluride (R)-10 by reaction with 2 equiv.
of n-butyllitium followed by carbon dioxide. Its enantiomer, lactone
(S)-12, was prepared from telluride (S)-10, by the same protocol and
used as starting material in the synthesis of the E/Z isomeric mixture
of spiroketals 13a and 13b.35 This synthetic step required the
preparation of the di-cerium salt 14, generated by the addition of 2
equiv. of butyllithium to a mixture of the optically active hydroxy
telluride (R)-10 and cerium chloride in THF at -78 ºC. The acid / base
and tellurium / lithium exchange reactions were so fast, that even
traces of the butyl addition byproduct were not detected. The
resulting organocerium dianion was reacted with lactone (S)-
12 allowing the isolation of (2R,5S,7S)-13a and (2R,5R,7S)-13b as a
1:1 isomeric mixture. These compounds are constituents of the flavor
of Jamaican rum (Scheme 13).35
Safrole
[1]
IUPAC name
5-(2-propenyl)-1,3-benzodioxole
 Safrole, also known as shikimol, is a phenylpropene. It is a
colorless or slightly yellow oily liquid. It is typically extracted
from the root-bark or the fruit of sassafras plants in the form
ofsassafras oil (although commercially available culinary
sassafras oil is usually devoid of safrole via a rule passed by
the FDA in 1960), or synthesized from other
related methylenedioxycompounds. It is the principal
component of brown camphor oil, and is found in small
amounts in a wide variety of plants, where it functions as a
natural pesticide. Ocotea cymbarum oil made from Ocotea
pretiosa,[2] a plant growing in Brazil, and sassafras oil made
from Sassafras albidum,[3] a tree growing in eastern North
America, are the main natural sources for safrole. It has a
characteristic "sweet-shop" aroma.
Safrole [5-allylbenzo[d][1,3]dioxole] (1)
Safrole [5-allylbenzo[d][1,3]dioxole] (1) is the major
component (80%) of the essential oil of sassafras
(Piper hispidinervum) (Piperaceae) in its leaves. IR
spectra were performed on a Perkin-Elmer 16 FPC
FT-IR spectrophotometer as thin films. 1H-
NMR and 13C-NMR spectra were obtained in
CDCl3 solution with a Brucker AVANCE D.P.X.
600 MHz apparatus. GCMS were determined by Joel
JMS 600H, GC Hewlett Packard, HP 6890 Series, with
capillary column (30 m × 0.32 mm × 0.25 μm) HP-5
cross linked 5% dimethyl polysiloxane. A sodium
lamp (Phillips G/5812 SON) was used for photo-
irradiation reactions. Thin layer chromatography
(TLC) and preparative layer chromatography (PLC):
Polygram SIL G/W 254, Mecherey-Nagel. A rotatory
evaporator (at 20 °C 15 torr) was used to remove the
solvents.
Safrole can be synthesized in three steps from unwatched chemicals in good yield:
1.Catechol (1,2-dihydroxybenzene, or pyrocatechol) is reacted in a
basic solution with dibromomethane (CH2Br2) to 1,2-methylenedioxybenzene.
The 1,2-methylenedioxy- benzene is selectively brominated with
N-bromo- succinimide to form 4-bromo- 1,2-methylenedioxybenzene.
The 4-bromo-1,2-methylenedioxy- benzene is reacted with
Mg to give the Grignard adduct (R-MgBr), and coupled with allyl bromide to form safrole.
 In a 2L-round bottom flask with two neck adapter (reflux condenser, dropping
funnel) immersed in an oil bath / magnetic stirrer, are placed 95 mL (1.36 moles)
of dibromomethane, 180 mL water and 4-5 mL trioctylmethylammonium chloride
(PTC, "Adogen 464, Aliquat 336"). On the top of the reflux condenser, a tube is
drawn to a gas washing bottle to give some protection against the atmosphere.)
The contents of the flask are heated and stirred to reflux and a previous made
solution of 100 g (0.91 moles) 1,2-dihydroxybenzene (catechol), 91 g sodium
hydroxide (2.275 moles) and 450 mL water is added to the flask (the contents are
stirred vigorously and refluxed continously). The addition time is 120 min,
thereafter the contents are stirred and refluxed 90 min. The product is distilled
with steam (add water continously to flask, distill off water and product). After 1.5
liters of distillate are collected, the distillate is saturated with table salt, and
extracted three times with ether (better: tert-butyl methyl ether, non watched, and
not so dangerous). The etheral extracts are dried with sodium sulfate, the whole is
filtered, and the drying agent washed with 2x30 mL of solvent. The combined
filtrates are evaporated (rotavap), and the residue is distilled in vacuum. At 60-
80°C (20 mmHg), 87 g 1,2-methylenedioxybenzene distills, containing about 8%
of unreacted dibromomethane. The gum in the reaction/distillation flasks is
removed with organic solvents.
 In a 500 mL-round bottom flask with reflux condenser (situated
in an oil bath and with magnetic stirrer) are placed 70 g of the
product from step 1 (92% pure 1,2-methylenedioxybenzene,
0.53 moles), 100 g N-bromosuccinimide and 260 mL chloroform
(dry). After three hours of refluxing and stirring, the solution is
cooled to room temp, and the the succinimide is filtered off with
suction, and washed with 2x20 mL of chloroform. The combined
filtrates are evaporated, and the residue is vacuum distilled. At
125-135°C (40 mmHg), a mixture of product and succinimide
distills, which is diluted with twice the volume of diethyl ether,
stored 3 hrs. over solid sodium hydroxide and washed
thoroughly with water. After thorough drying over sodium
sulfate, the drying agent is filtered off and washed with 20 mL
diethyl ether. The ether is evaporated (rotavap), the yellow-
brownish residual oil is sufficiently pure for the next step (the
refractive index at 25°C is 1.583). The yield is 72 g, 67% of
theory calculated to pure 1,2-methylenedioxybenzene being
used.
 In a 500 mL flask (immersed in a magnetic stirrer / oil bath) are placed 10-11g
magnesium turnings, and 150 mL tetrahydrofuran (freshly distilled from sodium).
After the addition of a little iodine crystal and 2 mL dibromomethane to start the
Grignard reaction, the 72 g of 4-bromo-1,2-methylenedioxybenzene (step 2) are
added to maintain gently reflux. To start up, heating of the bath to 50°C is
recommended. After the addition, which takes about 60 min., the whole is stirred
and refluxed 1 hr., and the brown liquid is rapidly decanted to a very dry 500 mL
flask with dropping funnel and reflux condenser. The magnesium turnings are
washed with additional 20 mL dry THF, the washing is added to the Grignard
solution. A little (0.5 g) copper(I)iodide is added, and with cooling in an ice-bath,
40 mL (0.47 moles) allyl bromide are added dropwise, the internal temperature
should not exceed 40°C. After standing overnight, followed by 1 hr of refluxing,
the reaction mixture is suspended in a solution of 20 mL 37% hydrochloric acid in
500 mL water and this is added to 80 mL 25% ammonia, and the solution is steam
distilled as above. After collecting 2 L distillate, the distillate is acidified to congo
red (pH 4) with hydrochloric acid, saturated with table salt, and extracted with
4x200 mL ether. The combined extracts are dried with sodium hydroxide,
evaporated (rotavap), and the residue taken up in ether, and washed thorougly
with sodium hydroxide. After drying (sodium sulfate), the drying agent is filtered,
washed with 20 mL ether, and the combined extracts are evaporated. The residue
is vacuum distilled, 39 g (67% of theory) of safrole, boiling at 120-130°C (20-25
mmHg), are obtained. Colourless and typically smelling oil. Total yield (from the
catechol), 32-33% of theory.
 Tet. Lett. 3489-3490 (1975)
 J. Chem. Soc. (C), 1202-1204 (1969)
 J. Org. Chem. 23, 908-910 (1958)
 Ann. Chem. 689, 156-162 (1965)
 Bull. Soc. chim. France, 1892-1895 (1964)
The structure of epoxide
derivative 2 was established by
spectral measurements. The 1H-
NMR spectrum of2 showed two doublet
signals at δ 2.75 and δ 2.80 ppm for
two protons 2H-3′ in position 3′ , two
doublet at δ2.53 ppm and δ 2.77 ppm
for the two methylene protons CH2-1′
and complex pattern at δ 3.1 ppm for
proton H-2′. In the 13C-NMR spectrum
of 2, signals from the oxiran carbon
atoms were presented at δC 46.9 ppm
((C3′) and δC 52.6 ppm ((C2′). The mass
spectrum of 2 contained the molecular
ion peak at m/z 178.
 Smell flavorants, or simply, flavorants, are engineered and composed in similar ways as with industrial
fragrances and fine perfumes. To produce natural flavors, the flavorant must first be extracted from the source
substance. The methods of extraction can involve solvent extraction, distillation, or using force to squeeze it
out. The extracts are then usually further purified and subsequently added to food products to flavor them. To
begin producing artificial flavors, flavor manufacturers must either find out the individual naturally occurring
aroma chemicals and mix them appropriately to produce a desired flavor or create a novel non-toxic artificial
compound that gives a specific flavor.
 Most artificial flavors are specific and often complex mixtures of singular naturally occurring flavor compounds
combined together to either imitate or enhance a natural flavor. These mixtures are formulated by flavorists to
give a food product a unique flavor and to maintain flavor consistency between different product batches or
after recipe changes. The list of known flavoring agents includes thousands of molecular compounds, and the
flavor chemist (flavorist) can often mix these together to produce many of the common flavors. Many flavorants
consist ofesters, which are often described as being "sweet" or "fruity".
 ChemicalOdorDiacetylButtery
 Isoamyl acetateBanana
 BenzaldehydeBitter almond
 Cinnamic aldehydeCinnamon
 Ethyl propionateFruity
 Methyl anthranilateGrapeL
 imoneneOrange
 Ethyl- (''E'',''Z'')-2,4-decadienoatePear
 Allyl hexanoatePineapple
 Ethyl maltolSugar, Cotton candy
 EthylvanillinVanilla
 Methyl salicylateWintergreen
 While salt and sugar can technically be considered flavorants that enhance salty
and sweet tastes, usually only compounds that enhance umami, as well as other
secondary flavors are considered and referred to as taste flavorants. Artificial
sweeteners are also technically flavorants.
 Umami or "savory" flavorants, more commonly called taste or flavor enhancers are
largely based on amino acids and nucleotides. These are typically used
as sodium or calcium salts. Umami flavorants recognized and approved by the
European Union include:
 AcidDescriptionGlutamic acidsaltsThis amino acid's sodium salt, monosodium
glutamate (MSG), a notable example, is one of the most commonly used flavor
enhancers in food processing. Mono and diglutamate salts are also commonly
used.Glycine saltsSimple amino acid salts typically combined with glutamic acid as
flavor enhancers.Guanylic acidsaltsNucleotide salts typically combined with
glutamic acid as flavor enhancers.Inosinic acidsaltsNucleotide salts created from
the breakdown of AMP. Due to high costs of production, typically combined with
glutamic acid as flavor enhancers.5'-ribonucleotidesaltsNucleotide salts typically
combined with other amino acids and nucleotide salts as flavor enhancers.Certain
organic and inorganic acids can be used to enhance sour tastes, but like salt and
sugar these are usually not considered and regulated as flavorants under law. Each
acid imparts a slightly different sour or tart taste that alters the flavor of a food.
 Cold pressed citrus oils have a high content of
terpene hydrocarbons, which do not contribute much
to the flavor and are detrimental to the oil’s stability
and solubility. Terpene hydrocarbons are usually
removed by vacuum distillation, thin film evaporation
or solvent extraction (a process that uses distillation
to remove the solvent before use). The higher the
vacuum of a still, the lower the boiling point of the
oil. This principle, when extended to a short path
still, results in a falling film evaporator. Nash pumps
are tolerant of process upsets and can maintain
constant vacuum levels under varying conditions,
making sure that the desired product composition is
achieved and downtime is not an issue.

Join my process development group on
google
http://groups.google.com/group/organic-
process-development
DR ANTHONY MELVIN CRASTO Ph.D
amcrasto@gmail.com
MOBILE-+91 9323115463
GLENMARK SCIENTIST , NAVIMUMBAI, INDIA
web link
http://anthonycrasto.jimdo.com/
http://www.anthonymelvincrasto.yolasite.com/
http://www.slidestaxx.com/anthony-melvin-crasto-phd
https://sites.google.com/site/anthonycrastoorganicchemistry/sites-
--my-own-on-the-net
http://anthonycrasto.wordpress.com/
http://organicchemistrysite.blogspot.com/
http://www.mendeley.com/profiles/anthony-melvin-crasto/
Congratulations! Your presentation titled "Anthony Crasto Glenmark
scientist, helping millions with websites" has just
crossed MILLION views.
FLAVORS_AND_FRAGRANCES.pptx

More Related Content

Similar to FLAVORS_AND_FRAGRANCES.pptx

Perfumes
PerfumesPerfumes
Perfumes
PrasathP13
 
Phytochemistry essential oils phenols and phenolic ethers
Phytochemistry essential  oils phenols and phenolic ethersPhytochemistry essential  oils phenols and phenolic ethers
Phytochemistry essential oils phenols and phenolic ethers
Mostafa Mahmoud Hegazy
 
Anthony crasto flavors and fragrances
Anthony crasto  flavors and fragrancesAnthony crasto  flavors and fragrances
Anthony crasto flavors and fragrances
Anthony Melvin Crasto Ph.D
 
Esterification
EsterificationEsterification
Esterification
MeerShahzaib
 
Toxic Products Presentation
Toxic Products PresentationToxic Products Presentation
Toxic Products Presentation
triciacutler
 
Pine needle gasifier
Pine needle gasifierPine needle gasifier
Pine needle gasifier
vivekkumarsingh777
 
11 5 2019
11 5 201911 5 2019
11 5 2019
Sayf Kamal
 
Isoamyl Acetate Synthesis
Isoamyl Acetate SynthesisIsoamyl Acetate Synthesis
Isoamyl Acetate Synthesis
Kimberly Brooks
 
Aromatic compounds
Aromatic compoundsAromatic compounds
Perfumes And EU Regulations
Perfumes And EU RegulationsPerfumes And EU Regulations
Perfumes And EU Regulations
YATINDRA BHADANKAR
 
Perfume ingredients listed as allergens in EU regulation.pptx
Perfume ingredients listed as allergens in EU regulation.pptxPerfume ingredients listed as allergens in EU regulation.pptx
Perfume ingredients listed as allergens in EU regulation.pptx
PrasanthiBoddu1
 
1- NPC Part I - 2022.ppt
1- NPC Part I - 2022.ppt1- NPC Part I - 2022.ppt
1- NPC Part I - 2022.ppt
DrHusseinAlganzory
 
seminar report1.pptx
seminar report1.pptxseminar report1.pptx
seminar report1.pptx
OdebodeJoseph
 
Phytochemicals
PhytochemicalsPhytochemicals
Phytochemicals
Saiful Irwan Zubairi
 
Chemical properties of natural colors, chlorophyll, carotenoids, anthocyanins...
Chemical properties of natural colors, chlorophyll, carotenoids, anthocyanins...Chemical properties of natural colors, chlorophyll, carotenoids, anthocyanins...
Chemical properties of natural colors, chlorophyll, carotenoids, anthocyanins...
Towkir Ahmed Ove
 
Perfume
PerfumePerfume
GCMS presentation - natural products
GCMS presentation - natural productsGCMS presentation - natural products
GCMS presentation - natural products
Murray Hunter
 
Fragrances Chemistry
Fragrances ChemistryFragrances Chemistry
Fragrances Chemistry
Vincent M
 
Fragrances chemistry
Fragrances chemistryFragrances chemistry
Fragrances chemistry
DUY TRUONG
 
Nonylphenol ethoxylate
Nonylphenol ethoxylateNonylphenol ethoxylate
Nonylphenol ethoxylate
medstuff1
 

Similar to FLAVORS_AND_FRAGRANCES.pptx (20)

Perfumes
PerfumesPerfumes
Perfumes
 
Phytochemistry essential oils phenols and phenolic ethers
Phytochemistry essential  oils phenols and phenolic ethersPhytochemistry essential  oils phenols and phenolic ethers
Phytochemistry essential oils phenols and phenolic ethers
 
Anthony crasto flavors and fragrances
Anthony crasto  flavors and fragrancesAnthony crasto  flavors and fragrances
Anthony crasto flavors and fragrances
 
Esterification
EsterificationEsterification
Esterification
 
Toxic Products Presentation
Toxic Products PresentationToxic Products Presentation
Toxic Products Presentation
 
Pine needle gasifier
Pine needle gasifierPine needle gasifier
Pine needle gasifier
 
11 5 2019
11 5 201911 5 2019
11 5 2019
 
Isoamyl Acetate Synthesis
Isoamyl Acetate SynthesisIsoamyl Acetate Synthesis
Isoamyl Acetate Synthesis
 
Aromatic compounds
Aromatic compoundsAromatic compounds
Aromatic compounds
 
Perfumes And EU Regulations
Perfumes And EU RegulationsPerfumes And EU Regulations
Perfumes And EU Regulations
 
Perfume ingredients listed as allergens in EU regulation.pptx
Perfume ingredients listed as allergens in EU regulation.pptxPerfume ingredients listed as allergens in EU regulation.pptx
Perfume ingredients listed as allergens in EU regulation.pptx
 
1- NPC Part I - 2022.ppt
1- NPC Part I - 2022.ppt1- NPC Part I - 2022.ppt
1- NPC Part I - 2022.ppt
 
seminar report1.pptx
seminar report1.pptxseminar report1.pptx
seminar report1.pptx
 
Phytochemicals
PhytochemicalsPhytochemicals
Phytochemicals
 
Chemical properties of natural colors, chlorophyll, carotenoids, anthocyanins...
Chemical properties of natural colors, chlorophyll, carotenoids, anthocyanins...Chemical properties of natural colors, chlorophyll, carotenoids, anthocyanins...
Chemical properties of natural colors, chlorophyll, carotenoids, anthocyanins...
 
Perfume
PerfumePerfume
Perfume
 
GCMS presentation - natural products
GCMS presentation - natural productsGCMS presentation - natural products
GCMS presentation - natural products
 
Fragrances Chemistry
Fragrances ChemistryFragrances Chemistry
Fragrances Chemistry
 
Fragrances chemistry
Fragrances chemistryFragrances chemistry
Fragrances chemistry
 
Nonylphenol ethoxylate
Nonylphenol ethoxylateNonylphenol ethoxylate
Nonylphenol ethoxylate
 

More from Abdallah Albeltagy

Forecasting Cotton & Bollworms Developments Using Heat Units Accumulation M...
Forecasting Cotton & Bollworms Developments Using Heat Units  Accumulation  M...Forecasting Cotton & Bollworms Developments Using Heat Units  Accumulation  M...
Forecasting Cotton & Bollworms Developments Using Heat Units Accumulation M...
Abdallah Albeltagy
 
PBW and SBW heat units accumulations 2022.pdf
PBW and SBW heat units accumulations 2022.pdfPBW and SBW heat units accumulations 2022.pdf
PBW and SBW heat units accumulations 2022.pdf
Abdallah Albeltagy
 
The_chemical_volatiles_Semiochemicals_pr.pdf
The_chemical_volatiles_Semiochemicals_pr.pdfThe_chemical_volatiles_Semiochemicals_pr.pdf
The_chemical_volatiles_Semiochemicals_pr.pdf
Abdallah Albeltagy
 
Chemical_ecology_of_animal_and_human_pat.pdf
Chemical_ecology_of_animal_and_human_pat.pdfChemical_ecology_of_animal_and_human_pat.pdf
Chemical_ecology_of_animal_and_human_pat.pdf
Abdallah Albeltagy
 
PBW Bibliography ( 1908 - 2002 ) .pdf
PBW Bibliography ( 1908 - 2002 ) .pdfPBW Bibliography ( 1908 - 2002 ) .pdf
PBW Bibliography ( 1908 - 2002 ) .pdf
Abdallah Albeltagy
 
132_LIST_of_publications.docx
132_LIST_of_publications.docx132_LIST_of_publications.docx
132_LIST_of_publications.docx
Abdallah Albeltagy
 
Pheromone Technology Applications In Cotton Fields In Egypt final 1.docx
Pheromone Technology Applications In  Cotton Fields In Egypt final 1.docxPheromone Technology Applications In  Cotton Fields In Egypt final 1.docx
Pheromone Technology Applications In Cotton Fields In Egypt final 1.docx
Abdallah Albeltagy
 
Effects_of_two_pheromone_trap_densities.pdf
Effects_of_two_pheromone_trap_densities.pdfEffects_of_two_pheromone_trap_densities.pdf
Effects_of_two_pheromone_trap_densities.pdf
Abdallah Albeltagy
 
Disruption_of_responses_to_pheromone_by.pdf
Disruption_of_responses_to_pheromone_by.pdfDisruption_of_responses_to_pheromone_by.pdf
Disruption_of_responses_to_pheromone_by.pdf
Abdallah Albeltagy
 
Pheromones_Male_Lures_and_Trapping_of_Te.pdf
Pheromones_Male_Lures_and_Trapping_of_Te.pdfPheromones_Male_Lures_and_Trapping_of_Te.pdf
Pheromones_Male_Lures_and_Trapping_of_Te.pdf
Abdallah Albeltagy
 
Pheromones Technology Applications In Egypt
Pheromones Technology Applications In EgyptPheromones Technology Applications In Egypt
Pheromones Technology Applications In Egypt
Abdallah Albeltagy
 
Pheromone traps for the estimating insecticides efficacy
Pheromone traps for the estimating insecticides efficacyPheromone traps for the estimating insecticides efficacy
Pheromone traps for the estimating insecticides efficacy
Abdallah Albeltagy
 
A new formula for estimating insecticides efficiency in cotton fields
A new formula for estimating insecticides efficiency in cotton fieldsA new formula for estimating insecticides efficiency in cotton fields
A new formula for estimating insecticides efficiency in cotton fields
Abdallah Albeltagy
 
Bio technology techniques 2.pdf
Bio technology techniques 2.pdfBio technology techniques 2.pdf
Bio technology techniques 2.pdf
Abdallah Albeltagy
 
pheromone distance.pdf
pheromone distance.pdfpheromone distance.pdf
pheromone distance.pdf
Abdallah Albeltagy
 
pheromone traps for assessment and monitoring محطة بحوث وقاية النباتات 2019.pptx
pheromone traps for assessment and monitoring محطة بحوث وقاية النباتات 2019.pptxpheromone traps for assessment and monitoring محطة بحوث وقاية النباتات 2019.pptx
pheromone traps for assessment and monitoring محطة بحوث وقاية النباتات 2019.pptx
Abdallah Albeltagy
 
Pheromone technology
Pheromone technologyPheromone technology
Pheromone technology
Abdallah Albeltagy
 
Pink bollworm presentation2 2009
Pink bollworm presentation2 2009Pink bollworm presentation2 2009
Pink bollworm presentation2 2009
Abdallah Albeltagy
 
Bt cotton benefits, costs, and impacts
Bt cotton benefits, costs, and impactsBt cotton benefits, costs, and impacts
Bt cotton benefits, costs, and impacts
Abdallah Albeltagy
 
دعوة إبراهيم
دعوة إبراهيمدعوة إبراهيم
دعوة إبراهيم
Abdallah Albeltagy
 

More from Abdallah Albeltagy (20)

Forecasting Cotton & Bollworms Developments Using Heat Units Accumulation M...
Forecasting Cotton & Bollworms Developments Using Heat Units  Accumulation  M...Forecasting Cotton & Bollworms Developments Using Heat Units  Accumulation  M...
Forecasting Cotton & Bollworms Developments Using Heat Units Accumulation M...
 
PBW and SBW heat units accumulations 2022.pdf
PBW and SBW heat units accumulations 2022.pdfPBW and SBW heat units accumulations 2022.pdf
PBW and SBW heat units accumulations 2022.pdf
 
The_chemical_volatiles_Semiochemicals_pr.pdf
The_chemical_volatiles_Semiochemicals_pr.pdfThe_chemical_volatiles_Semiochemicals_pr.pdf
The_chemical_volatiles_Semiochemicals_pr.pdf
 
Chemical_ecology_of_animal_and_human_pat.pdf
Chemical_ecology_of_animal_and_human_pat.pdfChemical_ecology_of_animal_and_human_pat.pdf
Chemical_ecology_of_animal_and_human_pat.pdf
 
PBW Bibliography ( 1908 - 2002 ) .pdf
PBW Bibliography ( 1908 - 2002 ) .pdfPBW Bibliography ( 1908 - 2002 ) .pdf
PBW Bibliography ( 1908 - 2002 ) .pdf
 
132_LIST_of_publications.docx
132_LIST_of_publications.docx132_LIST_of_publications.docx
132_LIST_of_publications.docx
 
Pheromone Technology Applications In Cotton Fields In Egypt final 1.docx
Pheromone Technology Applications In  Cotton Fields In Egypt final 1.docxPheromone Technology Applications In  Cotton Fields In Egypt final 1.docx
Pheromone Technology Applications In Cotton Fields In Egypt final 1.docx
 
Effects_of_two_pheromone_trap_densities.pdf
Effects_of_two_pheromone_trap_densities.pdfEffects_of_two_pheromone_trap_densities.pdf
Effects_of_two_pheromone_trap_densities.pdf
 
Disruption_of_responses_to_pheromone_by.pdf
Disruption_of_responses_to_pheromone_by.pdfDisruption_of_responses_to_pheromone_by.pdf
Disruption_of_responses_to_pheromone_by.pdf
 
Pheromones_Male_Lures_and_Trapping_of_Te.pdf
Pheromones_Male_Lures_and_Trapping_of_Te.pdfPheromones_Male_Lures_and_Trapping_of_Te.pdf
Pheromones_Male_Lures_and_Trapping_of_Te.pdf
 
Pheromones Technology Applications In Egypt
Pheromones Technology Applications In EgyptPheromones Technology Applications In Egypt
Pheromones Technology Applications In Egypt
 
Pheromone traps for the estimating insecticides efficacy
Pheromone traps for the estimating insecticides efficacyPheromone traps for the estimating insecticides efficacy
Pheromone traps for the estimating insecticides efficacy
 
A new formula for estimating insecticides efficiency in cotton fields
A new formula for estimating insecticides efficiency in cotton fieldsA new formula for estimating insecticides efficiency in cotton fields
A new formula for estimating insecticides efficiency in cotton fields
 
Bio technology techniques 2.pdf
Bio technology techniques 2.pdfBio technology techniques 2.pdf
Bio technology techniques 2.pdf
 
pheromone distance.pdf
pheromone distance.pdfpheromone distance.pdf
pheromone distance.pdf
 
pheromone traps for assessment and monitoring محطة بحوث وقاية النباتات 2019.pptx
pheromone traps for assessment and monitoring محطة بحوث وقاية النباتات 2019.pptxpheromone traps for assessment and monitoring محطة بحوث وقاية النباتات 2019.pptx
pheromone traps for assessment and monitoring محطة بحوث وقاية النباتات 2019.pptx
 
Pheromone technology
Pheromone technologyPheromone technology
Pheromone technology
 
Pink bollworm presentation2 2009
Pink bollworm presentation2 2009Pink bollworm presentation2 2009
Pink bollworm presentation2 2009
 
Bt cotton benefits, costs, and impacts
Bt cotton benefits, costs, and impactsBt cotton benefits, costs, and impacts
Bt cotton benefits, costs, and impacts
 
دعوة إبراهيم
دعوة إبراهيمدعوة إبراهيم
دعوة إبراهيم
 

Recently uploaded

The binding of cosmological structures by massless topological defects
The binding of cosmological structures by massless topological defectsThe binding of cosmological structures by massless topological defects
The binding of cosmological structures by massless topological defects
Sérgio Sacani
 
bordetella pertussis.................................ppt
bordetella pertussis.................................pptbordetella pertussis.................................ppt
bordetella pertussis.................................ppt
kejapriya1
 
Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...
Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...
Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...
Travis Hills MN
 
Deep Software Variability and Frictionless Reproducibility
Deep Software Variability and Frictionless ReproducibilityDeep Software Variability and Frictionless Reproducibility
Deep Software Variability and Frictionless Reproducibility
University of Rennes, INSA Rennes, Inria/IRISA, CNRS
 
What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.
moosaasad1975
 
Oedema_types_causes_pathophysiology.pptx
Oedema_types_causes_pathophysiology.pptxOedema_types_causes_pathophysiology.pptx
Oedema_types_causes_pathophysiology.pptx
muralinath2
 
Chapter 12 - climate change and the energy crisis
Chapter 12 - climate change and the energy crisisChapter 12 - climate change and the energy crisis
Chapter 12 - climate change and the energy crisis
tonzsalvador2222
 
SAR of Medicinal Chemistry 1st by dk.pdf
SAR of Medicinal Chemistry 1st by dk.pdfSAR of Medicinal Chemistry 1st by dk.pdf
SAR of Medicinal Chemistry 1st by dk.pdf
KrushnaDarade1
 
Thornton ESPP slides UK WW Network 4_6_24.pdf
Thornton ESPP slides UK WW Network 4_6_24.pdfThornton ESPP slides UK WW Network 4_6_24.pdf
Thornton ESPP slides UK WW Network 4_6_24.pdf
European Sustainable Phosphorus Platform
 
8.Isolation of pure cultures and preservation of cultures.pdf
8.Isolation of pure cultures and preservation of cultures.pdf8.Isolation of pure cultures and preservation of cultures.pdf
8.Isolation of pure cultures and preservation of cultures.pdf
by6843629
 
Micronuclei test.M.sc.zoology.fisheries.
Micronuclei test.M.sc.zoology.fisheries.Micronuclei test.M.sc.zoology.fisheries.
Micronuclei test.M.sc.zoology.fisheries.
Aditi Bajpai
 
Sharlene Leurig - Enabling Onsite Water Use with Net Zero Water
Sharlene Leurig - Enabling Onsite Water Use with Net Zero WaterSharlene Leurig - Enabling Onsite Water Use with Net Zero Water
Sharlene Leurig - Enabling Onsite Water Use with Net Zero Water
Texas Alliance of Groundwater Districts
 
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
yqqaatn0
 
Bob Reedy - Nitrate in Texas Groundwater.pdf
Bob Reedy - Nitrate in Texas Groundwater.pdfBob Reedy - Nitrate in Texas Groundwater.pdf
Bob Reedy - Nitrate in Texas Groundwater.pdf
Texas Alliance of Groundwater Districts
 
Equivariant neural networks and representation theory
Equivariant neural networks and representation theoryEquivariant neural networks and representation theory
Equivariant neural networks and representation theory
Daniel Tubbenhauer
 
THEMATIC APPERCEPTION TEST(TAT) cognitive abilities, creativity, and critic...
THEMATIC  APPERCEPTION  TEST(TAT) cognitive abilities, creativity, and critic...THEMATIC  APPERCEPTION  TEST(TAT) cognitive abilities, creativity, and critic...
THEMATIC APPERCEPTION TEST(TAT) cognitive abilities, creativity, and critic...
Abdul Wali Khan University Mardan,kP,Pakistan
 
mô tả các thí nghiệm về đánh giá tác động dòng khí hóa sau đốt
mô tả các thí nghiệm về đánh giá tác động dòng khí hóa sau đốtmô tả các thí nghiệm về đánh giá tác động dòng khí hóa sau đốt
mô tả các thí nghiệm về đánh giá tác động dòng khí hóa sau đốt
HongcNguyn6
 
Unlocking the mysteries of reproduction: Exploring fecundity and gonadosomati...
Unlocking the mysteries of reproduction: Exploring fecundity and gonadosomati...Unlocking the mysteries of reproduction: Exploring fecundity and gonadosomati...
Unlocking the mysteries of reproduction: Exploring fecundity and gonadosomati...
AbdullaAlAsif1
 
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
University of Maribor
 
Shallowest Oil Discovery of Turkiye.pptx
Shallowest Oil Discovery of Turkiye.pptxShallowest Oil Discovery of Turkiye.pptx
Shallowest Oil Discovery of Turkiye.pptx
Gokturk Mehmet Dilci
 

Recently uploaded (20)

The binding of cosmological structures by massless topological defects
The binding of cosmological structures by massless topological defectsThe binding of cosmological structures by massless topological defects
The binding of cosmological structures by massless topological defects
 
bordetella pertussis.................................ppt
bordetella pertussis.................................pptbordetella pertussis.................................ppt
bordetella pertussis.................................ppt
 
Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...
Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...
Travis Hills' Endeavors in Minnesota: Fostering Environmental and Economic Pr...
 
Deep Software Variability and Frictionless Reproducibility
Deep Software Variability and Frictionless ReproducibilityDeep Software Variability and Frictionless Reproducibility
Deep Software Variability and Frictionless Reproducibility
 
What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.
 
Oedema_types_causes_pathophysiology.pptx
Oedema_types_causes_pathophysiology.pptxOedema_types_causes_pathophysiology.pptx
Oedema_types_causes_pathophysiology.pptx
 
Chapter 12 - climate change and the energy crisis
Chapter 12 - climate change and the energy crisisChapter 12 - climate change and the energy crisis
Chapter 12 - climate change and the energy crisis
 
SAR of Medicinal Chemistry 1st by dk.pdf
SAR of Medicinal Chemistry 1st by dk.pdfSAR of Medicinal Chemistry 1st by dk.pdf
SAR of Medicinal Chemistry 1st by dk.pdf
 
Thornton ESPP slides UK WW Network 4_6_24.pdf
Thornton ESPP slides UK WW Network 4_6_24.pdfThornton ESPP slides UK WW Network 4_6_24.pdf
Thornton ESPP slides UK WW Network 4_6_24.pdf
 
8.Isolation of pure cultures and preservation of cultures.pdf
8.Isolation of pure cultures and preservation of cultures.pdf8.Isolation of pure cultures and preservation of cultures.pdf
8.Isolation of pure cultures and preservation of cultures.pdf
 
Micronuclei test.M.sc.zoology.fisheries.
Micronuclei test.M.sc.zoology.fisheries.Micronuclei test.M.sc.zoology.fisheries.
Micronuclei test.M.sc.zoology.fisheries.
 
Sharlene Leurig - Enabling Onsite Water Use with Net Zero Water
Sharlene Leurig - Enabling Onsite Water Use with Net Zero WaterSharlene Leurig - Enabling Onsite Water Use with Net Zero Water
Sharlene Leurig - Enabling Onsite Water Use with Net Zero Water
 
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
如何办理(uvic毕业证书)维多利亚大学毕业证本科学位证书原版一模一样
 
Bob Reedy - Nitrate in Texas Groundwater.pdf
Bob Reedy - Nitrate in Texas Groundwater.pdfBob Reedy - Nitrate in Texas Groundwater.pdf
Bob Reedy - Nitrate in Texas Groundwater.pdf
 
Equivariant neural networks and representation theory
Equivariant neural networks and representation theoryEquivariant neural networks and representation theory
Equivariant neural networks and representation theory
 
THEMATIC APPERCEPTION TEST(TAT) cognitive abilities, creativity, and critic...
THEMATIC  APPERCEPTION  TEST(TAT) cognitive abilities, creativity, and critic...THEMATIC  APPERCEPTION  TEST(TAT) cognitive abilities, creativity, and critic...
THEMATIC APPERCEPTION TEST(TAT) cognitive abilities, creativity, and critic...
 
mô tả các thí nghiệm về đánh giá tác động dòng khí hóa sau đốt
mô tả các thí nghiệm về đánh giá tác động dòng khí hóa sau đốtmô tả các thí nghiệm về đánh giá tác động dòng khí hóa sau đốt
mô tả các thí nghiệm về đánh giá tác động dòng khí hóa sau đốt
 
Unlocking the mysteries of reproduction: Exploring fecundity and gonadosomati...
Unlocking the mysteries of reproduction: Exploring fecundity and gonadosomati...Unlocking the mysteries of reproduction: Exploring fecundity and gonadosomati...
Unlocking the mysteries of reproduction: Exploring fecundity and gonadosomati...
 
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
 
Shallowest Oil Discovery of Turkiye.pptx
Shallowest Oil Discovery of Turkiye.pptxShallowest Oil Discovery of Turkiye.pptx
Shallowest Oil Discovery of Turkiye.pptx
 

FLAVORS_AND_FRAGRANCES.pptx

  • 1.
  • 2. He was only in first standard in school (Dec 2007) when I was Paralysed head to toe. His smiling face sees me through day in and day out. Vast readership from academia and industry motivates me, and keeps me going. Helping millions with free advertisement free websites and has million hits on google Thanks for helping me to keep lionel smiling
  • 3.  Your own will power and determination will reach you to the shore even if you are drowned in the middle of a storm
  • 4. Introduction: The perception of flavor is a complicated physiological and psychological response that incorporates the sight, smell, taste, and texture of an object. A large portion of the perceived flavor of a food actually comes from its fragrance. Remember your last cold? How did things taste? Many foods, including spearmint gum and onions, do not have a 'taste' at all if your sense of smell is impaired. The major components of most flavors and fragrances are a class of compounds known as esters. Esters are derived from the reaction of carboxylic acids and alcohols. Most aromas are not single compounds, but complex mixtures. For example, over 200 esters have been identified in the 'rich aroma' of coffee. However, several common fragrances have a major ester component.
  • 5.  also known as odorant, aroma, fragrance or flavor, is a chemical compound that has a smell or odor. A chemical compound has a smell or odor when two conditions are met: the compound needs to be volatile, so it can be transported to the olfactory system in the upper part of the nose, and it needs to be in a sufficiently high concentration to be able to interact with one or more of theolfactory receptors.  Aroma compounds can be found in food, wine, spices, perfumes, fragrance oils, and essential oils. For example, many form biochemicallyduring ripening of fruits and other crops. In wines, most form as byproducts of fermentation.  Odorants can also be added to a dangerous odorless substance, like propane, natural gas, or hydrogen, as a warning.  Also, many of the aroma compounds play a significant role in the production of flavorants, which are used in the food service industry to flavor, improve, and generally increase the appeal of their products.
  • 6. Compound name Fragrance Natural occurrence Chemical structure Geranyl acetate Fruity, Rose Rose, Floral Methyl formate Ethereal Methyl acetate Sweet, nail polish Solvent Methyl butyrate Methyl butanoate Fruity, Apple Pineapple Pineapple Ethyl acetate Sweet, solvent Wine Ethyl butyrate Ethyl butanoate Fruity, Orange Pineapple Isoamyl acetate Fruity, Banana Pear Banana plant Pentyl butyrate Pentyl butanoate Fruity, Pear Apricot Pentyl pentanoate Fruity, Apple Octyl acetate Fruity, Orange Esters
  • 7.
  • 8. Compound name Fragrance Natural occurrence Chemical structure Myrcene Woody, complex Verbena, Bay leaf Geraniol Rose, flowery Geranium, Lemon Nerol Sweet rose, flowery Neroli, Lemongrass Citral, lemonal Geranial, neral Lemon Lemon myrtle, Lemongrass Citronellal Lemon Lemongrass Citronellol Lemon Lemongrass, rose Pelargonium Linalool Floral, sweet Woody, Lavender Coriander, Sweet basil Lavender Nerolidol Woody, fresh bark Neroli, ginger Jasmine Linear terpenes
  • 9. Compound name Fragrance Natural occurrence Chemical structure Limonene Orange Orange, lemon Camphor Camphor Camphor laurel Terpineol Lilac Lilac, Cajuput alpha-Ionone Violet, woody Violet Thujone Minty Cypress, lilac Juniper Cyclic terpenes
  • 10. Compound name Fragrance Natural occurrence Chemical structure Benzaldehyde Almond Bitter almond Eugenol Clove Clove Cinnamaldehyde Cinnamon Cassia Cinnamon Ethyl maltol Cooked fruit Caramelized sugar Vanillin Vanilla Vanilla Anisole Anise Anise Anethole Anise Anise Sweet basil Estragole Tarragon Tarragon Thymol Thyme Thyme Aromatic
  • 11. Compound name Fragrance Natural occurrence Chemical structure Trimethylamine Fishy Ammonia Putrescine Diaminobutane Rotting flesh Rotting flesh Cadaverine Rotting flesh Rotting flesh Pyridine Fishy Belladonna Indole Fecal Flowery Feces Jasmine Skatole Fecal Feces Amines
  • 12.
  • 13.
  • 14.
  • 15.
  • 16. Synthesis of (-)-Menthol from (+)- Pulegone
  • 17.  The manufacture of (-)-menthol from (+)-pulegone (ex Spanish pennyroyal oil) similarly is dependent on configuration at C-1 in the present material.14 In this process the 4,8-double bond is catalytically hydrogenated and then the mixture of (-)-menthone and (+)isomenthone so produced is reduced by sodium in alcohol to give predominantly (-)-menthol. Reduction of menthones by nascent hydrogen generated in situ is the preferred procedure inasmuch as this system allows epimerization of the isopropyl group and preferential reduction to an all-equatorial substituent system, presumably via the enolate.1  References1. Leffingwell, J.C. & R.E. Shackelford, Laevo-Menthol - Syntheses and organoleptic properties, Cosmetics and Perfumery, 89(6), 69-89, 1974  2. Hopp, R., Menthol: its origins, chemistry, physiology and toxicological properties, Rec. Adv. Tobacco Science, Vol. 19, 3- 46 (1993).
  • 19.
  • 20.
  • 21.
  • 22. (-)-Menthol from Geraniol or Nerol or Geranial or Neral A New BASF Process
  • 23.  utilizes (+)-(R)- citronellal which can be produced from either geraniol or nerol by chiral catalytic hydrogenation to (+)-(R)-citronellol (Ref. 2) (in a manner similar to that described in 1987 by Ryoji Noyori and co-workers [Ref. 3]) followed by catalytic dehydrogenation to (+)-(R)- citronellal. In addition, BASF has also achieved the direct chiral catalytic hydrogenation of neral or geranial to (+)-(R)-citronellal (Ref. 4). This latter route as depicted in Scheme 2 appears to be the commercial route.
  • 24.
  • 25.  has recently developed refined processes for the cyclization of (+)-(R)-citronellal to (-)- Isopulegol that minimizes the undesirable isomeric isopulegols (Ref. 5); further they have developed an improved process for enriching the (-)-Isopulegol before the hydrogenation step to (-)-menthol (Ref. 6). A continuous distillation process for purifying the final menthol product has also been achieved (Ref. 7).
  • 26.  Nissen, Axel; Rebafka, Walter; Aquila, Werner, Preparation of citral, United States Patent 4288636 (09/08/1981); Therre, Jorg; Kaibel, Gerd; Aquila, Werner; Wegner, Gunter; Fuchs, Hartwig, Preparation of citral, United States Patent 6175044 (01/16/2001); Dudeck, Christian; Diehm, Hans; Brunnmueller, Fritz; Meissner, Bernd; Fliege, Werner; Preparation of 3-alkyl-buten-1-als, United States Patent 4165342 (08/21/1979); W.F. Hoelderich & F. KolLmer, Chapter 2 in Catalysis, Volume 16, James J. Spivey, Ed., Royal Society of Chemistry, 2002. pp. 45-46  2. Bergner, Eike Johannes; Ebel, Klaus; Johann, Thorsten; Lober, Oliver, Method for the production of menthol, United States Patent 7709688 (05/04/2010); Johann, Thorsten; Löber, Oliver; Bergner, Eike Johannes; Ebel, Klaus; Harth, Klaus; Walsdorff, Christian; Method for producing optically active carbonyl compounds, United States Patent 7468463 (12/23/2008)  3. Hidemasa Takaya, Tetsuo Ohta, Noboru Sayo, Hidenori Kumobayashi, Susumu Akutagawa, Shinichi Inoue, Isamu Kasahara, Ryoji Noyori, Enantioselective hydrogenation of allylic and homoallylic alcohols, J. Am. Chem. Soc., 1987, 109 (5), pp 1596–1597  4. Jäkel, Christoph; Paciello, Rocco; Method for the production of optically active carbonyl, United States Patent 7534921 (05/19/2009)  5. Friedrich, Marko; Ebel, Klaus; Götz, Norbert; Method for the production of isopulegol, United States Patent 7550633 (06/23/2009); Friedrich, Marko; Ebel, Klaus; Götz, Norbert; Krause, Wolfgang; , Zahm, Christian; Diarylphenoxy aluminum compounds,United States Patent 7608742 (10/27/2009)  6. Rauls, Matthias; Jakel, Christoph; Kashani-shirazi, Nawid; Ebel, Klaus, Method for the Production of Enriched Isopulegol, United States Patent Application 20080214877 (09/04/2008)  7. Heydrich, Gunnar; Gralla, Gabriele; Ebel, Klaus; Krause, Wolfgang; Kashani-shirazi, Nawid,CONTINUOUS PROCESS FOR PREPARING MENTHOL IN PURE OR ENRICHED FORM, WIPO Patent Application WO/2009/033870 (03/19/2009)  Please note that the above references encompass only a small number of the numerous BASF patents & patent applications relative to menthol synthesis.  8. John C. & Diane Leffingwell, Chiral chemistry in flavours & fragrances, Speciality Chemicals Magazine, March 2011, pp. 30-33
  • 27.
  • 29.  is a phenolic aldehyde, an organic compound with the molecular formula C8H8O3. Itsfunctional groups include aldehyde, ether, and phenol. It is the primary component of the extract of the vanilla bean. Synthetic vanillin, instead of natural vanilla extract, is sometimes used as aflavoring agent in foods, beverages, and pharmaceuticals.  Vanillin as well as ethylvanillin is used by the food industry. The ethyl is more expensive but has a stronger note. It differs from vanillin by having an ethoxy group (–O–CH2CH3) instead of a methoxy group (–O–CH3).  Natural "vanilla extract" is a mixture of several hundred different compounds in addition to vanillin. Artificial vanilla flavoring is a solution of pure vanillin, usually of synthetic origin. Because of the scarcity and expense of natural vanilla extract, there has long been interest in the synthetic preparation of its predominant component. The first commercial synthesis of vanillin began with the more readily available natural compound eugenol. Today, artificial vanillin is made either from guaiacol or from lignin, a constituent of wood, which is a byproduct of the pulp industry.  Lignin-based artificial vanilla flavoring is alleged to have a richer flavor profile than oil-based flavoring; the difference is due to the presence of acetovanillone in the lignin-derived product, an impurity not found in vanillin synthesized from guaiacol.[3]
  • 30.  Vanilla was cultivated as a flavoring by pre-Columbian Mesoamerican peoples; at the time of their conquest by Hernán Cortés, the Aztecs used it as a flavoring for chocolate. Europeans became aware of both chocolate and vanilla around 1520.[4]  Vanillin was first isolated as a relatively pure substance in 1858 by Nicolas-Theodore Gobley, who obtained it by evaporating a vanilla extract to dryness, and recrystallizing the resulting solids from hot water.[5] In 1874, the German scientists Ferdinand Tiemann and Wilhelm Haarmann deduced its chemical structure, at the same time finding a synthesis for vanillin fromconiferin, a glycoside of isoeugenol found in pine bark.[6] Tiemann and Haarmann founded a company, Haarmann & Reimer (now part of Symrise) and started the first industrial production of Vanillin using their process in Holzminden (Germany). In 1876, Karl Reimer synthesized vanillin (2) from guaiacol (1).[7]  Synthesis of Vanillin by Reimer  By the late 19th century, semisynthetic vanillin derived from the eugenol found in clove oil was commercially available.[8]
  • 31.  Natural vanillin is extracted from the seed pods of Vanilla planifola, a vining orchid native to Mexico, but now grown in tropical areas around the globe. Madagascar is presently the largest producer of natural vanillin.  As harvested, the green seed pods contain vanillin in the form of its β-D-glycoside; the green pods do not have the flavor or odor of vanilla.[23]  β-D-glycoside of vanillin  After being harvested, their flavor is developed by a months-long curing process, the details of which vary among vanilla-producing regions, but in broad terms it proceeds as follows:  First, the seed pods are blanched in hot water, to arrest the processes of the living plant tissues. Then, for 1–2 weeks, the pods are alternately sunned and sweated: during the day, they are laid out in the sun, and each night, wrapped in cloth and packed in airtight boxes to sweat. During this process, the pods become a dark brown, and enzymes in the pod release vanillin as the free molecule. Finally, the pods are dried and further aged for several months, during which time their flavors further develop. Several methods have been described for curing vanilla in days rather than months, although they have not been widely developed in the natural vanilla industry,[24] with its focus on producing a premium product by established methods, rather than on innovations that might alter the product's flavor profile.  Vanillin accounts for about 2% of the dry weight of cured vanilla beans, and is the chief among about 200 other flavor compounds found in vanilla.
  • 32.  The demand for vanilla flavoring has long exceeded the supply of vanilla beans. As of 2001, the annual demand for vanillin was 12,000 tons, but only 1,800 tons of natural vanillin were produced.[25] The remainder was produced by chemical synthesis. Vanillin was first synthesized from eugenol (found in oil of clove) in 1874–75, less than 20 years after it was first identified and isolated. Vanillin was commercially produced from eugenol until the 1920s.[26] Later it was synthesized from lignin-containing "brown liquor", a byproduct of the sulfite process for makingwood pulp.[9] Counter-intuitively, even though it uses waste materials, the lignin process is no longer popular because of environmental concerns, and today most vanillin is produced from the petrochemical raw material guaiacol.[9] Several routes exist for synthesizing vanillin from guaiacol.[27]  At present, the most significant of these is the two-step process practiced by Rhodia since the 1970s, in which guaiacol (1) reacts withglyoxylic acid by electrophilic aromatic substitution. The resulting vanillylmandelic acid (2) is then converted via 4-Hydroxy-3-methoxyphenylglyoxylic acid (3) to vanillin (4) by oxidative decarboxylation.[4]  In October 2007 Mayu Yamamoto of the International Medical Center of Japan won an Ig Nobel Prize for developing a way to extract vanillin from cow dung.[28]
  • 33.  References  Adahchour, Mohamed; René J. J. Vreuls, Arnold van der Heijden and Udo A. Th. Brinkman (1999). "Trace-level determination of polar flavour compounds in butter by solid-phase extraction and gas chromatography–mass spectrometry". Journal of Chromatography A844 (1–2): 295–305. doi:10.1016/S0021-9673(99)00351-9.PMID 10399332.  Blank, Imre; Alina Sen, and Werner Grosch (1992). "Potent odorants of the roasted powder and brew of Arabica coffee". Zeitschrift für Lebensmittel-Untersuchung und -Forschung A 195 (3): 239–245.doi:10.1007/BF01202802.  Brenes, Manuel; Aranzazu García, Pedro García, José J. Rios, and Antonio Garrido (1999). "Phenolic Compounds in Spanish Olive Oils".Journal of Agricultural and Food Chemistry 47 (9): 3535–3540.doi:10.1021/jf990009o. PMID 10552681.  Buttery, Ron G.; and Louisa C. Ling (1995). "Volatile Flavor Components of Corn Tortillas and Related Products". Journal of Agricultural and Food Chemistry 43 (7): 1878–1882.doi:10.1021/jf00055a023.  Dignum, Mark J. W.; Josef Kerlera, and Rob Verpoorte (2001). "Vanilla Production: Technological, Chemical, and Biosynthetic Aspects".Food Reviews International 17 (2): 119–120. doi:10.1081/FRI-100000269. Retrieved 2006-09-09.  Esposito, Lawrence J.; K. Formanek, G. Kientz, F. Mauger, V. Maureaux, G. Robert, and F. Truchet (1997). "Vanillin". Kirk- Othmer Encyclopedia of Chemical Technology, 4th edition. 24. New York: John Wiley & Sons. pp. 812–825.  Fund for Research into Industrial Development, Growth and Equity (FRIDGE) (2004). Study into the Establishment of an Aroma and Fragrance Fine Chemicals Value Chain in South Africa, Part Three: Aroma Chemicals Derived from Petrochemical Feedstocks. National Economic Development and Labor Council.  Gobley, N.-T. (1858). "Recherches sur le principe odorant de la vanille". Journal de Pharmacie et de Chimie 34: 401–405.  Guth, Helmut; and Werner Grosch (1995). "Odorants of extrusion products of oat meal: Changes during storage". Zeitschrift für Lebensmittel-Untersuchung und -Forschung A 196 (1): 22–28.doi:10.1007/BF01192979.  Hocking, Martin B. (September 1997). "Vanillin: Synthetic Flavoring from Spent Sulfite Liquor" (PDF). Journal of Chemical Education 74(9): 1055–1059. doi:10.1021/ed074p1055. Retrieved 2006-09-09.  Kermasha, S.; M. Goetghebeur, and J. Dumont (1995). "Determination of Phenolic Compound Profiles in Maple Products by High-Performance Liquid Chromatography". Journal of Agricultural and Food Chemistry 43 (3): 708– 716. doi:10.1021/jf00051a028.  Lampman, Gary M.; Jennifer Andrews, Wayne Bratz, Otto Hanssen, Kenneth Kelley, Dana Perry, and Anthony Ridgeway (1977). "Preparation of vanillin from eugenol and sawdust". Journal of Chemical Education 54 (12): 776– 778. doi:10.1021/ed054p776.  Ong, Peter K. C.; Terry E. Acree (1998). "Gas Chromatography/Olfactory Analysis of Lychee (Litchi chinesis Sonn.)".Journal of Agricultural and Food Chemistry 46 (6): 2282–2286.doi:10.1021/jf9801318.  Reimer, K. (1876). "Ueber eine neue Bildungsweise aromatischer Aldehyde". Berichte der deutschen chemischen Gesellschaft 9 (1): 423–424. doi:10.1002/cber.187600901134.  Roberts, Deborah D.; Terry E. Acree (1996). "Effects of Heating and Cream Addition on Fresh Raspberry Aroma Using a Retronasal Aroma Simulator and Gas Chromatography Olfactometry". Journal of Agricultural and Food Chemistry 44 (12): 3919–3925.doi:10.1021/jf950701t.  Rouhi, A. Maureen (2003). "Fine Chemicals Firms Enable Flavor And Fragrance Industry". Chemical and Engineering News 81 (28): 54.  Tiemann, Ferd.; Wilh. Haarmann (1874). "Ueber das Coniferin und seine Umwandlung in das aromatische Princip der Vanille". Berichte der Deutschen Chemischen Gesellschaft 7 (1): 608–623.doi:10.1002/cber.187400701193.  Van Ness, J. H. (1983). "Vanillin". Kirk-Othmer Encyclopedia of Chemical Technology, 3rd edition. 23. New York: John Wiley & Sons. pp. 704–717.  Viriot, Carole; Augustin Scalbert, Catherine Lapierre, and Michel Moutounet (1993). "Ellagitannins and lignins in aging of spirits in oak barrels". Journal of Agricultural and Food Chemistry 41 (11): 1872–1879. doi:10.1021/jf00035a013.  Walton, Nicholas J.; Melinda J. Mayer, and Arjan Narbad (July 2003). "Vanillin". Phytochemistry 63 (5): 505– 515. doi:10.1016/S0031-9422(03)00149-3.
  • 34.  Notes  ^ a b PubChem 1183  ^ Vanillin  ^ According to Esposito 1997, blind taste-testing panels cannot distinguish between the flavors of synthetic vanillin from lignin and those from guaicol, but can distinguish the odors of these two types of synthetic vanilla extracts. Guaiacol vanillin, adulterated with acetovanillone, has an odor indistinguishable from lignin vanillin.  ^ a b c d Esposito 1997  ^ Gobley 1858  ^ Tiemann 1874  ^ Reimer 1876  ^ According to Hocking 1997, synthetic vanillin was sold commercially in 1874, the same year Tiemann and Haarmann's original synthesis was published. Haarmann & Reimer, one of the corporate ancestors of the modern flavor and aroma manufacturerSymrise, was in fact established in 1874. However, Esposito 1997claims that synthetic vanillin first became available in 1894 when Rhône-Poulenc (since 1998, Rhodia) entered the vanillin business. If the former claim is correct, the authors of the latter article, being employees of Rhône-Poulenc, may have been unaware of any previous vanillin manufacture.  ^ a b c d Hocking 1997  ^ Rouhi 2003  ^ "Leptotes bicolor". Flora Library. Retrieved 2011-08-21.  ^ Brenes 1999  ^ Adahchour 1999  ^ Roberts 1996  ^ Ong 1998  ^ Analysis of polyphenolic compounds of different vinegar samples. Miguel Carrero Gálvez, Carmelo García Barroso and Juan Antonio Pérez-Bustamante, Zeitschrift für Lebensmitteluntersuhung und -Forschung A, Volume 199, Number 1, pages 29-31, doi:10.1007/BF01192948  ^ Viriot 1993  ^ Semmelroch, P.; Laskawy, G.; Blank, I.; Grosch, W. (1995). "Determination of potent odourants in roasted coffee by stable isotope dilution assays". Flavour and Fragrance Journal 10: 1.doi:10.1002/ffj.2730100102. edit  ^ Blank 1992  ^ Kermasha 1995  ^ Buttery 1995  ^ Guth 1993
  • 35.  ^ Walton 2003  ^ Dignum 2001 reviews several such proposed innovations in vanilla processing, including processes in which the seed pods are chopped, frozen, warmed by a heat source other than the sun, or crushed and treated by various enzymes. Whether or not these procedures produce a product whose taste is comparable to traditionally prepared natural vanilla, many of them are incompatible with the customs of the natural vanilla market, in which the vanilla beans are sold whole, and graded by, among other factors, their length.  ^ Dignum 2001  ^ Hocking 1997. This chemical process can be conveniently carried out on the laboratory scale using the procedure described by Lampman 1977.  ^ Van Ness 1983  ^ Japan’s 12th Ig Noble Prize Winner: Mayu Yamamoto & Dung Vanilla : Japan Probe  ^ FRIDGE 2004, p. 33  ^ FRIDGE 2004, p. 32.  ^ R.N. Rogers, "Studies on the Radiocarbon Sample from the Shroud of Turin", Thermochimica Acta, 2005, 425, 189-194.  ^ R.N. Rogers and A. Arnoldi, "Scientific Method applied to the Shroud of Turin"  ^ Saint Denis, M.; Coughtrie, MW.; Guilland, JC.; Verges, B.; Lemesle, M.; Giroud, M. (Dec 1996). "[Migraine induced by
  • 37.  S-(+)-Carvone is the principal constituent (50-70%) of the oil from caraway seeds (Carum carvi), which is produced on a scale of about 10 tonnes per year. It also occurs to the extent of about 40-60% in dill seed oil (from Anethum graveolens), and also in mandarin orange peel oil.R-(–)- Carvone is also the most abundant compound in the essential oil from several species of mint, particularly spearmint oil (Mentha spicata), which is composed of 50- 80% R-(–)-carvone.[7]Spearmint is a major source of naturally produced R-(–)-carvone. However, the majority of R-(–)-carvone used in commercial applications is synthesized from limonene.The R-(–)-carvone isomer also occurs in kuromoji oil. Some oils, like gingergrass oil, contain a mixture of both enantiomers. Many other natural oils, for example peppermint oil, contain trace quantities of carvones.
  • 38.
  • 39.
  • 40.
  • 41.
  • 42.
  • 43.
  • 44.
  • 45.
  • 46. The figure below shows the structure of some common flavors and fragrances:
  • 47.
  • 48. Valerolactone (12) composes the fragrance blend of the most representative Italian white wine varieties of Campania. In addition, it exhibits a potential antifungal property against Monilinia laxa and Rhizopus stolonifer and is also a potent inhibitor of mouse coumarin 7-hydroxylases (CYP2A5). This lactone was prepared from the enantioenriched hydroxy telluride (R)-10 by reaction with 2 equiv. of n-butyllitium followed by carbon dioxide. Its enantiomer, lactone (S)-12, was prepared from telluride (S)-10, by the same protocol and used as starting material in the synthesis of the E/Z isomeric mixture of spiroketals 13a and 13b.35 This synthetic step required the preparation of the di-cerium salt 14, generated by the addition of 2 equiv. of butyllithium to a mixture of the optically active hydroxy telluride (R)-10 and cerium chloride in THF at -78 ºC. The acid / base and tellurium / lithium exchange reactions were so fast, that even traces of the butyl addition byproduct were not detected. The resulting organocerium dianion was reacted with lactone (S)- 12 allowing the isolation of (2R,5S,7S)-13a and (2R,5R,7S)-13b as a 1:1 isomeric mixture. These compounds are constituents of the flavor of Jamaican rum (Scheme 13).35
  • 49.
  • 51.  Safrole, also known as shikimol, is a phenylpropene. It is a colorless or slightly yellow oily liquid. It is typically extracted from the root-bark or the fruit of sassafras plants in the form ofsassafras oil (although commercially available culinary sassafras oil is usually devoid of safrole via a rule passed by the FDA in 1960), or synthesized from other related methylenedioxycompounds. It is the principal component of brown camphor oil, and is found in small amounts in a wide variety of plants, where it functions as a natural pesticide. Ocotea cymbarum oil made from Ocotea pretiosa,[2] a plant growing in Brazil, and sassafras oil made from Sassafras albidum,[3] a tree growing in eastern North America, are the main natural sources for safrole. It has a characteristic "sweet-shop" aroma.
  • 52. Safrole [5-allylbenzo[d][1,3]dioxole] (1) Safrole [5-allylbenzo[d][1,3]dioxole] (1) is the major component (80%) of the essential oil of sassafras (Piper hispidinervum) (Piperaceae) in its leaves. IR spectra were performed on a Perkin-Elmer 16 FPC FT-IR spectrophotometer as thin films. 1H- NMR and 13C-NMR spectra were obtained in CDCl3 solution with a Brucker AVANCE D.P.X. 600 MHz apparatus. GCMS were determined by Joel JMS 600H, GC Hewlett Packard, HP 6890 Series, with capillary column (30 m × 0.32 mm × 0.25 μm) HP-5 cross linked 5% dimethyl polysiloxane. A sodium lamp (Phillips G/5812 SON) was used for photo- irradiation reactions. Thin layer chromatography (TLC) and preparative layer chromatography (PLC): Polygram SIL G/W 254, Mecherey-Nagel. A rotatory evaporator (at 20 °C 15 torr) was used to remove the solvents.
  • 53. Safrole can be synthesized in three steps from unwatched chemicals in good yield: 1.Catechol (1,2-dihydroxybenzene, or pyrocatechol) is reacted in a basic solution with dibromomethane (CH2Br2) to 1,2-methylenedioxybenzene. The 1,2-methylenedioxy- benzene is selectively brominated with N-bromo- succinimide to form 4-bromo- 1,2-methylenedioxybenzene. The 4-bromo-1,2-methylenedioxy- benzene is reacted with Mg to give the Grignard adduct (R-MgBr), and coupled with allyl bromide to form safrole.
  • 54.  In a 2L-round bottom flask with two neck adapter (reflux condenser, dropping funnel) immersed in an oil bath / magnetic stirrer, are placed 95 mL (1.36 moles) of dibromomethane, 180 mL water and 4-5 mL trioctylmethylammonium chloride (PTC, "Adogen 464, Aliquat 336"). On the top of the reflux condenser, a tube is drawn to a gas washing bottle to give some protection against the atmosphere.) The contents of the flask are heated and stirred to reflux and a previous made solution of 100 g (0.91 moles) 1,2-dihydroxybenzene (catechol), 91 g sodium hydroxide (2.275 moles) and 450 mL water is added to the flask (the contents are stirred vigorously and refluxed continously). The addition time is 120 min, thereafter the contents are stirred and refluxed 90 min. The product is distilled with steam (add water continously to flask, distill off water and product). After 1.5 liters of distillate are collected, the distillate is saturated with table salt, and extracted three times with ether (better: tert-butyl methyl ether, non watched, and not so dangerous). The etheral extracts are dried with sodium sulfate, the whole is filtered, and the drying agent washed with 2x30 mL of solvent. The combined filtrates are evaporated (rotavap), and the residue is distilled in vacuum. At 60- 80°C (20 mmHg), 87 g 1,2-methylenedioxybenzene distills, containing about 8% of unreacted dibromomethane. The gum in the reaction/distillation flasks is removed with organic solvents.
  • 55.  In a 500 mL-round bottom flask with reflux condenser (situated in an oil bath and with magnetic stirrer) are placed 70 g of the product from step 1 (92% pure 1,2-methylenedioxybenzene, 0.53 moles), 100 g N-bromosuccinimide and 260 mL chloroform (dry). After three hours of refluxing and stirring, the solution is cooled to room temp, and the the succinimide is filtered off with suction, and washed with 2x20 mL of chloroform. The combined filtrates are evaporated, and the residue is vacuum distilled. At 125-135°C (40 mmHg), a mixture of product and succinimide distills, which is diluted with twice the volume of diethyl ether, stored 3 hrs. over solid sodium hydroxide and washed thoroughly with water. After thorough drying over sodium sulfate, the drying agent is filtered off and washed with 20 mL diethyl ether. The ether is evaporated (rotavap), the yellow- brownish residual oil is sufficiently pure for the next step (the refractive index at 25°C is 1.583). The yield is 72 g, 67% of theory calculated to pure 1,2-methylenedioxybenzene being used.
  • 56.  In a 500 mL flask (immersed in a magnetic stirrer / oil bath) are placed 10-11g magnesium turnings, and 150 mL tetrahydrofuran (freshly distilled from sodium). After the addition of a little iodine crystal and 2 mL dibromomethane to start the Grignard reaction, the 72 g of 4-bromo-1,2-methylenedioxybenzene (step 2) are added to maintain gently reflux. To start up, heating of the bath to 50°C is recommended. After the addition, which takes about 60 min., the whole is stirred and refluxed 1 hr., and the brown liquid is rapidly decanted to a very dry 500 mL flask with dropping funnel and reflux condenser. The magnesium turnings are washed with additional 20 mL dry THF, the washing is added to the Grignard solution. A little (0.5 g) copper(I)iodide is added, and with cooling in an ice-bath, 40 mL (0.47 moles) allyl bromide are added dropwise, the internal temperature should not exceed 40°C. After standing overnight, followed by 1 hr of refluxing, the reaction mixture is suspended in a solution of 20 mL 37% hydrochloric acid in 500 mL water and this is added to 80 mL 25% ammonia, and the solution is steam distilled as above. After collecting 2 L distillate, the distillate is acidified to congo red (pH 4) with hydrochloric acid, saturated with table salt, and extracted with 4x200 mL ether. The combined extracts are dried with sodium hydroxide, evaporated (rotavap), and the residue taken up in ether, and washed thorougly with sodium hydroxide. After drying (sodium sulfate), the drying agent is filtered, washed with 20 mL ether, and the combined extracts are evaporated. The residue is vacuum distilled, 39 g (67% of theory) of safrole, boiling at 120-130°C (20-25 mmHg), are obtained. Colourless and typically smelling oil. Total yield (from the catechol), 32-33% of theory.
  • 57.  Tet. Lett. 3489-3490 (1975)  J. Chem. Soc. (C), 1202-1204 (1969)  J. Org. Chem. 23, 908-910 (1958)  Ann. Chem. 689, 156-162 (1965)  Bull. Soc. chim. France, 1892-1895 (1964)
  • 58. The structure of epoxide derivative 2 was established by spectral measurements. The 1H- NMR spectrum of2 showed two doublet signals at δ 2.75 and δ 2.80 ppm for two protons 2H-3′ in position 3′ , two doublet at δ2.53 ppm and δ 2.77 ppm for the two methylene protons CH2-1′ and complex pattern at δ 3.1 ppm for proton H-2′. In the 13C-NMR spectrum of 2, signals from the oxiran carbon atoms were presented at δC 46.9 ppm ((C3′) and δC 52.6 ppm ((C2′). The mass spectrum of 2 contained the molecular ion peak at m/z 178.
  • 59.
  • 60.
  • 61.
  • 62.
  • 63.
  • 64.  Smell flavorants, or simply, flavorants, are engineered and composed in similar ways as with industrial fragrances and fine perfumes. To produce natural flavors, the flavorant must first be extracted from the source substance. The methods of extraction can involve solvent extraction, distillation, or using force to squeeze it out. The extracts are then usually further purified and subsequently added to food products to flavor them. To begin producing artificial flavors, flavor manufacturers must either find out the individual naturally occurring aroma chemicals and mix them appropriately to produce a desired flavor or create a novel non-toxic artificial compound that gives a specific flavor.  Most artificial flavors are specific and often complex mixtures of singular naturally occurring flavor compounds combined together to either imitate or enhance a natural flavor. These mixtures are formulated by flavorists to give a food product a unique flavor and to maintain flavor consistency between different product batches or after recipe changes. The list of known flavoring agents includes thousands of molecular compounds, and the flavor chemist (flavorist) can often mix these together to produce many of the common flavors. Many flavorants consist ofesters, which are often described as being "sweet" or "fruity".  ChemicalOdorDiacetylButtery  Isoamyl acetateBanana  BenzaldehydeBitter almond  Cinnamic aldehydeCinnamon  Ethyl propionateFruity  Methyl anthranilateGrapeL  imoneneOrange  Ethyl- (''E'',''Z'')-2,4-decadienoatePear  Allyl hexanoatePineapple  Ethyl maltolSugar, Cotton candy  EthylvanillinVanilla  Methyl salicylateWintergreen
  • 65.  While salt and sugar can technically be considered flavorants that enhance salty and sweet tastes, usually only compounds that enhance umami, as well as other secondary flavors are considered and referred to as taste flavorants. Artificial sweeteners are also technically flavorants.  Umami or "savory" flavorants, more commonly called taste or flavor enhancers are largely based on amino acids and nucleotides. These are typically used as sodium or calcium salts. Umami flavorants recognized and approved by the European Union include:  AcidDescriptionGlutamic acidsaltsThis amino acid's sodium salt, monosodium glutamate (MSG), a notable example, is one of the most commonly used flavor enhancers in food processing. Mono and diglutamate salts are also commonly used.Glycine saltsSimple amino acid salts typically combined with glutamic acid as flavor enhancers.Guanylic acidsaltsNucleotide salts typically combined with glutamic acid as flavor enhancers.Inosinic acidsaltsNucleotide salts created from the breakdown of AMP. Due to high costs of production, typically combined with glutamic acid as flavor enhancers.5'-ribonucleotidesaltsNucleotide salts typically combined with other amino acids and nucleotide salts as flavor enhancers.Certain organic and inorganic acids can be used to enhance sour tastes, but like salt and sugar these are usually not considered and regulated as flavorants under law. Each acid imparts a slightly different sour or tart taste that alters the flavor of a food.
  • 66.
  • 67.  Cold pressed citrus oils have a high content of terpene hydrocarbons, which do not contribute much to the flavor and are detrimental to the oil’s stability and solubility. Terpene hydrocarbons are usually removed by vacuum distillation, thin film evaporation or solvent extraction (a process that uses distillation to remove the solvent before use). The higher the vacuum of a still, the lower the boiling point of the oil. This principle, when extended to a short path still, results in a falling film evaporator. Nash pumps are tolerant of process upsets and can maintain constant vacuum levels under varying conditions, making sure that the desired product composition is achieved and downtime is not an issue. 
  • 68.
  • 69.
  • 70.
  • 71.
  • 72.
  • 73.
  • 74.
  • 75.
  • 76.
  • 77.
  • 78. Join my process development group on google http://groups.google.com/group/organic- process-development
  • 79.
  • 80. DR ANTHONY MELVIN CRASTO Ph.D amcrasto@gmail.com MOBILE-+91 9323115463 GLENMARK SCIENTIST , NAVIMUMBAI, INDIA web link http://anthonycrasto.jimdo.com/ http://www.anthonymelvincrasto.yolasite.com/ http://www.slidestaxx.com/anthony-melvin-crasto-phd https://sites.google.com/site/anthonycrastoorganicchemistry/sites- --my-own-on-the-net http://anthonycrasto.wordpress.com/ http://organicchemistrysite.blogspot.com/ http://www.mendeley.com/profiles/anthony-melvin-crasto/ Congratulations! Your presentation titled "Anthony Crasto Glenmark scientist, helping millions with websites" has just crossed MILLION views.