Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved.
Feature Erasing and Diffusion
Network for Occluded Person
Re-Identification
北海道大学 大学院情報科学研究院
情報理工学部門 複合情報工学分野 調和系工学研究室
西浦 翼
Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved.
Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved.
論文情報 2
著者
・Zhikand Wang, Feng Zhu, Shixiang Tang 他
発表
・CVPR2022
概要
・オクルージョン消去モジュール(OEM)と特徴拡散モジュール(FDM)を導入
したReIDモデル、FEDを提案
・Re-IDのベンチマークでSoTAを達成
リンク
・論文 :https://arxiv.org/abs/2112.08740
・git:https://github.com/ZacharyWang-007/FED-Occluded-ReID
Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved.
Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved.
3
研究背景
• Person ReID (Re-Identification)
– 異なるカメラ、視点、明るさ、場所で撮影された
人物画像から同一人物の判定をするタスク
– この分野のデータセット・モデルは基本的に、全
身画像が対象
– 実環境ではオクルージョンが発生
ex)駅、学校、病院、ショッピングモールなど
• ReID分野の大きな課題
– NPO (Non-Pedestrian Occlusions)
障害物とのオクルージョンのこと
– NTP (Non-Target Pedestrians)
注目したい人物以外の人物
Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved.
Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved.
4
研究背景
• ReIDの最先端手法
– Human key points
人物の特徴的なポイントに注目
– Human parsing information
人間の概形の情報を使用
– 身体情報 → 特徴抽出 という流れでNPOを回避
• 最先端手法の課題
1. NTPに弱い(NTPの特徴がノイズとして混入)
2. Human parsingは荷物を認識できない
3. 計算量が多く、リアルタイムに不向き
Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved.
Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved.
5
研究背景
• NPOには強いがNTPに弱い
– Pose estimation:HRNet (2019)
– Human parsing:PSPNet (2017)
Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved.
Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved.
6
概要
• FED (Feature Erasing and Diffusion network)を提案
– OEM ( Occlusion Erasing Module)
– FDM (Feature Diffusion Module)
– NPOとNTPに強い
• 有効性を検証
– Occluded Datasets 3種類
– Holistic Datasets 2種類
– 特にOccluded DatasetsでRank-1、mAPがSoTA
Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved.
Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved.
7
提案モデル FED
NPO
Augmentation
Strategy
Occlusion
Erasing
Module
Feature
Diffusion
Module
• 特徴抽出にはViTを使用
• 2つのブランチでパラメータは共有
• FDMは補助モジュールで推論には使わない
Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved.
Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved.
8
NPO Augmentation Strategy
• 従来手法
1. ランダムな矩形をランダムな値で置換
過学習に強い、オクルージョンにロバスト
汎化性能が低い、何とのオクルージョンかわからない
2. 選択した物体や背景を貼り付け
オクルージョンのシミュレーションでロバスト
オクルージョンの領域がわからない
• 提案手法
– オクルージョンの補強
– マスク生成
Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved.
Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved.
9
NPO Augmentation Strategy
• オクルージョンの補強
– 経験的に、オクルージョンの発生個所は4か所(上下左右)
– 経験的に、面積は1/4~1/2
– 手動でオブジェクト・背景を切り出してパッチセット作成
– 入力画像にリサイズ・パディング・ランダムクロップ
– ランダムクロップ・リサイズしたパッチを画像に貼り付け
• マスク生成
– オクルージョンは垂直方向と水平方向の2種
– ReIDモデルにとって垂直方向の判別は容易
– 人物矩形を上から4分割
– 水平方向にマスクを適用
Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved.
Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved.
10
Occlusion Erasing Module
• OEMは4つのサブモジュールから構成
• FC層、normalization、FC層、シグモイド層
• 第1FC層で次元を1/4にして意味的情報を抽出
• シグモイド層でオクルージョンスコア si を計算
• オクルージョンスコアと特徴量の積を計算
• OEMの学習を監視するため、マスクとMSEを計算
Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved.
Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved.
11
Feature Diffusion Module
• NTP対策で複数人画像をシミュレーションしたい
• 画像特徴量の集合、メモリバンクを使用
• 入力特徴量とメモリバンク内の類似別人で cross attention
• FFN(feed forward network)は2つのFCと活性化関数
• 特徴レベルでTPに類似したNTPを生成
• 学習時のみ使用、推論では使用しない
Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved.
Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved.
12
損失関数
• ID Loss:クロスエントロピー
• Contrastive Loss:クロスエントロピー
• Final Loss
Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved.
Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved.
13
実験
• データセット
– Occluded-DukeMTMC
702人15,629枚の学習、1,629人19,871枚の評価、最難関
– Occluded-REID
200人が各5枚の全身、5枚のオクルージョンで計2,000枚
– Partial-REID
60人600枚で全身、オクルージョン、一部のみなど
– Market-1501
– DukeMTMC-reID
Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved.
Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved.
14
実験
• オクルージョンデータセットでの評価
他を圧倒
NPO augmentationに関して
*なしはO-Dukeのみ、
*ありはMSMT17からも
パッチを作成
Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved.
Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved.
15
実験
• 全身データセットでの評価
SoTAならず
Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved.
Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved.
16
アブレーションスタディ
1. Baseline + RE
2. Baseline + NPO Aug
3. Baseline + NPO Aug + OEM
4. Baseline + NPO Aug + FDM
5. FED
順調に精度上がって、当然全部盛りが1番いい
Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved.
Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved.
17
アブレーションスタディ
• 定性評価
OEMがNPOを特定している
NTPには特に効果なし
Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved.
Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved.
18
アブレーションスタディ
• Trans ReIDと比較
• 上2段がNPO、下2段がNTP
• 緑が正解、赤が不正解
• 圧倒的に良い
Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved.
Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved.
19
結論
• NPOとNTPに対応したReIDモデルFEDを提案
• OEM(occlusion erasing module)でNPOを改善
• FDM(feature diffusion module)でNTPを改善
• 既存のデータセットで評価を行い、オクルー
ジョンを含むデータセットではSoTAを達成

Feature Erasing and Diffusion Network for Occluded Person Re-Identification

  • 1.
    Copyright © 2020調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. Feature Erasing and Diffusion Network for Occluded Person Re-Identification 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 調和系工学研究室 西浦 翼
  • 2.
    Copyright © 2020調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. 論文情報 2 著者 ・Zhikand Wang, Feng Zhu, Shixiang Tang 他 発表 ・CVPR2022 概要 ・オクルージョン消去モジュール(OEM)と特徴拡散モジュール(FDM)を導入 したReIDモデル、FEDを提案 ・Re-IDのベンチマークでSoTAを達成 リンク ・論文 :https://arxiv.org/abs/2112.08740 ・git:https://github.com/ZacharyWang-007/FED-Occluded-ReID
  • 3.
    Copyright © 2020調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. 3 研究背景 • Person ReID (Re-Identification) – 異なるカメラ、視点、明るさ、場所で撮影された 人物画像から同一人物の判定をするタスク – この分野のデータセット・モデルは基本的に、全 身画像が対象 – 実環境ではオクルージョンが発生 ex)駅、学校、病院、ショッピングモールなど • ReID分野の大きな課題 – NPO (Non-Pedestrian Occlusions) 障害物とのオクルージョンのこと – NTP (Non-Target Pedestrians) 注目したい人物以外の人物
  • 4.
    Copyright © 2020調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. 4 研究背景 • ReIDの最先端手法 – Human key points 人物の特徴的なポイントに注目 – Human parsing information 人間の概形の情報を使用 – 身体情報 → 特徴抽出 という流れでNPOを回避 • 最先端手法の課題 1. NTPに弱い(NTPの特徴がノイズとして混入) 2. Human parsingは荷物を認識できない 3. 計算量が多く、リアルタイムに不向き
  • 5.
    Copyright © 2020調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. 5 研究背景 • NPOには強いがNTPに弱い – Pose estimation:HRNet (2019) – Human parsing:PSPNet (2017)
  • 6.
    Copyright © 2020調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. 6 概要 • FED (Feature Erasing and Diffusion network)を提案 – OEM ( Occlusion Erasing Module) – FDM (Feature Diffusion Module) – NPOとNTPに強い • 有効性を検証 – Occluded Datasets 3種類 – Holistic Datasets 2種類 – 特にOccluded DatasetsでRank-1、mAPがSoTA
  • 7.
    Copyright © 2020調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. 7 提案モデル FED NPO Augmentation Strategy Occlusion Erasing Module Feature Diffusion Module • 特徴抽出にはViTを使用 • 2つのブランチでパラメータは共有 • FDMは補助モジュールで推論には使わない
  • 8.
    Copyright © 2020調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. 8 NPO Augmentation Strategy • 従来手法 1. ランダムな矩形をランダムな値で置換 過学習に強い、オクルージョンにロバスト 汎化性能が低い、何とのオクルージョンかわからない 2. 選択した物体や背景を貼り付け オクルージョンのシミュレーションでロバスト オクルージョンの領域がわからない • 提案手法 – オクルージョンの補強 – マスク生成
  • 9.
    Copyright © 2020調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. 9 NPO Augmentation Strategy • オクルージョンの補強 – 経験的に、オクルージョンの発生個所は4か所(上下左右) – 経験的に、面積は1/4~1/2 – 手動でオブジェクト・背景を切り出してパッチセット作成 – 入力画像にリサイズ・パディング・ランダムクロップ – ランダムクロップ・リサイズしたパッチを画像に貼り付け • マスク生成 – オクルージョンは垂直方向と水平方向の2種 – ReIDモデルにとって垂直方向の判別は容易 – 人物矩形を上から4分割 – 水平方向にマスクを適用
  • 10.
    Copyright © 2020調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. 10 Occlusion Erasing Module • OEMは4つのサブモジュールから構成 • FC層、normalization、FC層、シグモイド層 • 第1FC層で次元を1/4にして意味的情報を抽出 • シグモイド層でオクルージョンスコア si を計算 • オクルージョンスコアと特徴量の積を計算 • OEMの学習を監視するため、マスクとMSEを計算
  • 11.
    Copyright © 2020調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. 11 Feature Diffusion Module • NTP対策で複数人画像をシミュレーションしたい • 画像特徴量の集合、メモリバンクを使用 • 入力特徴量とメモリバンク内の類似別人で cross attention • FFN(feed forward network)は2つのFCと活性化関数 • 特徴レベルでTPに類似したNTPを生成 • 学習時のみ使用、推論では使用しない
  • 12.
    Copyright © 2020調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. 12 損失関数 • ID Loss:クロスエントロピー • Contrastive Loss:クロスエントロピー • Final Loss
  • 13.
    Copyright © 2020調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. 13 実験 • データセット – Occluded-DukeMTMC 702人15,629枚の学習、1,629人19,871枚の評価、最難関 – Occluded-REID 200人が各5枚の全身、5枚のオクルージョンで計2,000枚 – Partial-REID 60人600枚で全身、オクルージョン、一部のみなど – Market-1501 – DukeMTMC-reID
  • 14.
    Copyright © 2020調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. 14 実験 • オクルージョンデータセットでの評価 他を圧倒 NPO augmentationに関して *なしはO-Dukeのみ、 *ありはMSMT17からも パッチを作成
  • 15.
    Copyright © 2020調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. 15 実験 • 全身データセットでの評価 SoTAならず
  • 16.
    Copyright © 2020調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. 16 アブレーションスタディ 1. Baseline + RE 2. Baseline + NPO Aug 3. Baseline + NPO Aug + OEM 4. Baseline + NPO Aug + FDM 5. FED 順調に精度上がって、当然全部盛りが1番いい
  • 17.
    Copyright © 2020調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. 17 アブレーションスタディ • 定性評価 OEMがNPOを特定している NTPには特に効果なし
  • 18.
    Copyright © 2020調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. 18 アブレーションスタディ • Trans ReIDと比較 • 上2段がNPO、下2段がNTP • 緑が正解、赤が不正解 • 圧倒的に良い
  • 19.
    Copyright © 2020調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. 19 結論 • NPOとNTPに対応したReIDモデルFEDを提案 • OEM(occlusion erasing module)でNPOを改善 • FDM(feature diffusion module)でNTPを改善 • 既存のデータセットで評価を行い、オクルー ジョンを含むデータセットではSoTAを達成