SlideShare a Scribd company logo
1 of 120
Download to read offline
Exploring early universe with neutral hydrogen + machine learning
@東京⼤学宇宙理論(2022/5/16)
©Aman Chokshi
Hayato Shimabukuro(島袋隼⼠)
(Yunnan university,
Nagoya university)
Aman Chokshi
1
•Born in Okinawa
•Ph.D from


Nagoya university(2016)
•Postdoc at


Paris observatory(2016-2018)
About me
•Postdoc at


Tsinghua University(2018-2019)
2
•Born in Okinawa
•Ph.D from


Nagoya university(2016)
•Postdoc at


Paris observatory(2016-2018)
About me
•Postdoc at


Tsinghua University(2018-2019)
•Yunnan university(2019ー)
2
How is Yunnan province?
3
How is Yunnan province?
High altitude (~2000m)
3
How is Yunnan province?
High altitude (~2000m)
Some old cities
3
How is Yunnan province?
High altitude (~2000m)
Some old cities
Mushroom !
3
Outline
• Introduction (4 pages)

• Basics of 21cm line (7 pages)

• Current 21cm cosmology status and future ( 4 pages)

• 21cm signal analysis with machine learning (17 pages)

• Summary
4
Introduction
5
The history of the universe
©NAOJ
Dark Ages・・・No luminous object exists.
Epoch of Reionization(EoR)・・・UV photons by luminous objects ionize
neutral hydrogen in the IGM (z~6-15).
Cosmic Dawn・・・First stars and galaxies form (z~20-30).
6
The history of the universe
©NAOJ
Dark Ages・・・No luminous object exists.
Epoch of Reionization(EoR)・・・UV photons by luminous objects ionize
neutral hydrogen in the IGM (z~6-15).
Cosmic Dawn・・・First stars and galaxies form (z~20-30).
6
(C)Kenji Hasegawa(Nagoya University)
Credit: M. Alvarez, R. Kaehler and T.Abel
(C)Kenji Hasegawa(Nagoya University)
Credit: M. Alvarez, R. Kaehler and T.Abel
(Naidu et al 2020)
Current observations tell us
Current observations such as Quasar absorption lines and Lyman-alpha emitter galaxies
constraint on average neutral(ionized) hydrogen fraction (Global history).
8
(Naidu et al 2020)
Current observations tell us
Current observations such as Quasar absorption lines and Lyman-alpha emitter galaxies
constraint on average neutral(ionized) hydrogen fraction (Global history).
Current observations tell us only global
history.
8
We want to know EoR much more
(ex)


•EoR theory


•Morphology and topology of ionized bubble


•Ionizing sources


•Relation to galaxy formation and evolution


etc…
9
We want to know EoR much more
We should observe IGM at the EoR directly !
(ex)


•EoR theory


•Morphology and topology of ionized bubble


•Ionizing sources


•Relation to galaxy formation and evolution


etc…
9
We want to know EoR much more
We should observe IGM at the EoR directly !
(ex)


•EoR theory


•Morphology and topology of ionized bubble


•Ionizing sources


•Relation to galaxy formation and evolution


etc…
✕
Synergy with galaxy observation by ALMA, JWST, Subaru
9
We want to know EoR much more
We should observe IGM at the EoR directly !
(ex)


•EoR theory


•Morphology and topology of ionized bubble


•Ionizing sources


•Relation to galaxy formation and evolution


etc…
✕
Synergy with galaxy observation by ALMA, JWST, Subaru
9
We want to know EoR much more
We should observe IGM at the EoR directly !
(ex)


•EoR theory


•Morphology and topology of ionized bubble


•Ionizing sources


•Relation to galaxy formation and evolution


etc…
✕
Synergy with galaxy observation by ALMA, JWST, Subaru
9
Basics of 21cm line
10
21cm line
•21cm line radiation : Neutral hydrogen atom in IGM emits the
radiation due to the hyperfine structure.
z=6 → 1.5m or 202 MHz


z=20 → 4.4m or 68MHz Radio wavelength.
Proton
Electron
21cm line emission(1.4GHz)
(Neutral) hydrogen atom is good tracer for IGM.
11
signlet
Triplet
Spin temperature
n""
n"#
= 3 exp
✓
h⌫21cm
kTS
◆
Key quantity in 21cm line physics
T 1
S =
T 1
CMB + xcT 1
K + x↵T 1
c
1 + xc + x↵
Spin temperature is determined by
•interaction with CMB photons


•collision with hydrogen atoms


•interaction with Ly-alpha photons
(TCMB)
(TK, xc)
(Tc ⇠ TK, x↵)
Properties of X-ray sources (e.g.
spectral energy distribution (SED))
Relevant astrophysics
Properties of first stars (e.g.
Initial mass function)
12
Spin temperature
Mesinger et al 2010
heating
WF e
ff
ect
Wouthuysen-Field(WF) effect
Spin temperature couples to
IGM kinetic temperature via
Ly-alpha photons from first
stars.
Thermal history
X-ray heating
X-ray photons drastically heat
kinetic temperature of the IGM
Spin temperature


Kinetic temperature


CMB temperature
13
21cm line signal
Red : cosmology Blue : astrophysics
Tb =
TS T
1 + z
(1 exp(⌧⌫))
⇠ 27xH(1 + m)
✓
H
dvr/dr + H
◆ ✓
1
T
TS
◆ ✓
1 + z
10
0.15
⌦mh2
◆1/2 ✓
⌦bh2
0.023
◆
[mK]
Brightness temperature *We actually observe brightness temperature
We can map the distribution of HI in the IGM with 21cm line
14
21cm line signal
Red : cosmology Blue : astrophysics
Tb =
TS T
1 + z
(1 exp(⌧⌫))
⇠ 27xH(1 + m)
✓
H
dvr/dr + H
◆ ✓
1
T
TS
◆ ✓
1 + z
10
0.15
⌦mh2
◆1/2 ✓
⌦bh2
0.023
◆
[mK]
Brightness temperature *We actually observe brightness temperature
We can map the distribution of HI in the IGM with 21cm line
14
21cm power spectrum (PS) :
Scale dependence
Pober et al (2014)
EoR
X-ray
heating
WF
effect
z
Redshift dependence
21cm power spectrum
h Tb(k) Tb(k
0
)i = (2⇡)3
(k + k
0
)P21
We first try to detect the 21cm line signal statistically with ongoing telescopes.
15
Current upper limits on 21cm PS
Current 21cm experiments put upper limit of the 21cm line power spectrum 2-3 order
of magnitude higher than theoretical expectation.
Challenges: ionosphere, RFI, foreground, etc
Shimabukuro et al 2022b
16
21cm line global signal
Global signal has characteristic peaks
and troughs according to key epochs
Global signal (sky averaged brightness temperature)
So far, we introduced 21cm line power spectrum to measure 21cm line signal, global signal is
another observable.
These behavior inherits the behavior of
the spin temperature (and ionization
history)
17
Current 21cm cosmology
status and future project
18
EDGES (Bouman et al 2018)
Too deep trough
Too flat
We detected the 21cm line signal?
19
EDGES (Bouman et al 2018)
Too deep trough
Too flat
We detected the 21cm line signal?
SARAS3 did not detect signal


(Singh + 2022, Nature astronomy)
19
EDGES (Bouman et al 2018)
Too deep trough
Too flat
We detected the 21cm line signal?
SARAS3 did not detect signal


(Singh + 2022, Nature astronomy)
Very strange result ! Need exotic physics?
mis-calibration? unknown systematics?
19
Current radio interferometers
MWA LOFAR HERA
GMRT
Radio interferometer
•Array of radio telescope
antennas
•Measure time delay
between antennas
•Work together as a single
telescope
20
21
SKA-Low
•Frequency 50-350MHz(z=3~27)


&


High sensitivity


Wide FoV
&
22
We want to know EoR much more
We should observe IGM at the EoR directly !
(ex)


•EoR theory


•Morphology and topology of ionized bubble


•Ionizing sources


•Relation to galaxy formation and evolution


etc…
✕
Synergy with galaxy observation by ALMA, JWST, Subaru
23
We want to know EoR much more
We should observe IGM at the EoR directly !
(ex)


•EoR theory


•Morphology and topology of ionized bubble


•Ionizing sources


•Relation to galaxy formation and evolution


etc…
✕
Synergy with galaxy observation by ALMA, JWST, Subaru
23
21cm signal analysis with
machine learning
24
Artificial Neural Network (ANN)
An ANN is a mathematical
model of human brain network.
ex.) Rumelhart et. al (1986)


LeCun et. al (1989)
Recently, it has been applied to
field of astronomy. 25
Artificial Neural Network (ANN)
•Training network with training
dataset, ANN can approximate any
function which associates input and
output values.
y = f(x)
• Applying trained network to unknown
data(test data) for prediction.
yANN = f(xtest)
• ANN consists of input layer, hidden
layer and output layer. Each layer has
neurons.
non linear regression Problem
26
•Emulator
•parameter estimate
•Distinguish EoR sources
(e.g) Hassan +2019
•Others
(e.g.) Li + 2019, Chardin + 2019, Yoshiura + 2020, Shimabukuro + 2022
(e.g.) Kern + 2017, Schmit + 2018, Aviad + 2020, Bevins + 2021, Bevins+ 2021
(e.g.) Shimabukuro + 2017, Gilet+ 2018, Nicolas +2019, Doussot +2019, Choudhury+
2020,2021a,b, Zhao+ 2022a,b
21cm study+machine learning
27
1.EoR parameter estimation
with ANN
Based on Shimabukuro and Semelin 2017
28
Statistical challenge in 21cm cosmology
(Mesinger 2018)
Cosmology
CMB map (angular) power spectrum cosmological parameter
21cm
21cm 3D map 21cm power spectrum astrophysical parameter
Based on Bayesian inference
29
Statistical challenge in 21cm cosmology
(Mesinger 2018)
Cosmology
CMB map (angular) power spectrum cosmological parameter
21cm
21cm 3D map 21cm power spectrum astrophysical parameter
Based on Bayesian inference
We proposed alternative method.
29
Dataset
⇣ : the ionizing efficiency.
: the minimum viral temperature of halos producing ionizing
photons
: the mean free path of ionizing photons through the IGM
(Maximum HII bubble size)
Tvir
Rmfp
~
d = [P(k), ~
✓]
21cm power spectrum (input)
EoR parameter (output)
EoR Parameter
✓EoR = f(P21)
30
z=11, PS without any noise
Reconstructed by 21cmPS at z=11
10
20
30
40
50
60
10 20 30 40 50 60
R
mfp,ANN
[Mpc]
Rmfp,true[Mpc]
z=12
10
20
30
40
50
60
10 20 30 40 50 60
ANN
true
z=12
1
10
100
1 10 100
T
vir,ANN
[K/10
3
]
Tvir,true[K/103
]
z=12
14 neurons, 100’000 iterations
• True value .vs. Reconstructed value
•The scatter of is large.
Rmfp ⇣
Tvir
•Other reconstructed parameters match
true one relatively well.
Shimabukuro &
Semelin (2017)
Rmfp
31
z=11, PS without any noise
Reconstructed by 21cmPS at z=11
10
20
30
40
50
60
10 20 30 40 50 60
R
mfp,ANN
[Mpc]
Rmfp,true[Mpc]
z=12
10
20
30
40
50
60
10 20 30 40 50 60
ANN
true
z=12
1
10
100
1 10 100
T
vir,ANN
[K/10
3
]
Tvir,true[K/103
]
z=12
14 neurons, 100’000 iterations
• True value .vs. Reconstructed value
•The scatter of is large.
Rmfp ⇣
Tvir
•Other reconstructed parameters match
true one relatively well.
Shimabukuro &
Semelin (2017)
Rmfp
31
z=9, 10, 11. PS with thermal noise and cosmic variance
Reconstructed by 21cm PS at z=9,10,11
Rmfp ⇣
Tvir
10
20
30
40
50
60
10 20 30 40 50 60
R
mfp,ANN
[Mpc]
Rmfp,true[Mpc]
10
20
30
40
50
60
10 20 30 40 50 60
ANN
true
1
10
100
1 10 100
T
vir,ANN
[K/10
3
]
Tvir,true[K/10
3
]
Red : z=9,10,11


Blue : z=9
The parameters obtained by the ANN
match true values. ANN work well !
32
Emulator
EoR parameters 21cmPS
ANN MCMC
Before : 2.5days on 6 cores
After: 4minutes
speed up by 3 orders of magnitude
(Schmit et al 2018)
(input) (output)
33
parameters
21cm map ANN
(input) (output)
Parameter estimate
Gillet +2018 34
2.Recovering HII bubble size
distribution with ANN
Based on Shimabukuro et al 2022
35
Bubble size distribution (BSD)
''How large bubbles are distributed ?’'
Giri 2019
What can we learn from BSD?
Giri et al 2017
•EoR source (galaxy or AGN?)
•ionizing efficiency, recombination, radiative feedback.
(ex.)
36
BSD from 21cm observation
Kakiichi et al 2017
IFT
21cm Image BSD
Incomplete IFT due to limited number of antenna in interferometer.
visibility
We do not observe 21cm image directly by radio interferometer!
We first observe visibility and perform Inverse Fourier
Transformation (IFT) to obtain 21cm image. Then, compute BSD.
37
BSD from 21cm PS
Kakiichi et al 2017
21cm power spectrum BSD
visibility
We can directly compute 21cm power spectrum from visibility
without Inverse Fourier Transformation.
Avoid information loss by incomplete IFT.
38
BSD from 21cm PS
Kakiichi et al 2017
21cm power spectrum BSD
visibility
We can directly compute 21cm power spectrum from visibility
without Inverse Fourier Transformation.
Can we recover BSD from 21cm PS ?
Avoid information loss by incomplete IFT.
38
21cm power
spectrum
Input Output
ionised bubble size
distribution
Our datasets consist of 21cm power spectrum as input data and bubble
size distribution as output data.
Our strategy
We try to recover ionised bubble size distribution from 21cm PS
39
Recovered BSD
Black: Distribution obtained by
21cm 3D image directly.
Red: Distribution obtained by
ANN.
40
Different stage of reionization
41
Effect of thermal noise
42
21cm PS with thermal noises
(SKA level)


Errors are estimated by 10
realizations thermal noises
Accuracy for all test data
Relative error between two size
distributions at fixed bubble
radius for all test data.
Good recovery for all test data.
43
Reconstruction of HI distribution from LAE
map is marked in angles (degrees) and the projected distances (comoving megaparsecs).
Fig. 5. Same as Figure 4, but for the LAEs z = 6.6. The large red open squares indicate the LAEs with spatially extended Lyα emission including Himiko
(Ouchi et al. 2009a) and CR7 (Sobral et al. 2015). See Shibuya et al. (2017b) for more details.
Input :


Lyman-alpha emitter galaxies
Output :


HI distribution
Yoshiura,HS +2021
44
cGAN
Take home messages of my talk are…
•The epoch from the Dark Ages to cosmic reionization is the
frontier in the history of the universe.
•21cm signal is a promising tool to study this epoch.
•SKA will bring us fruitful information on the epoch
through Dark Ages to EoR
•We proposed a method based on machine learning to
analyze the 21cm line signal.
45
•"21cm cosmology" (Prithcard & Loeb, astro-ph/1109.6012)
Textbook
Review paper
•"Cosmology at low frequencies" (Furlanetto et al, astro-ph/0608032)
•''In the beginning : the first sources of light and the deionization of the
universe” R,Bakana & A,Loeb (astro-ph/0010468)
References
46
Coming soon
47
Shimabukuro et al 2022b, accepted in PASJ
bakcup
Challenging issue
Foreground problem
Jelic et al 2008
The 21cm signal is buried under strong foreground !
Remove foreground ?


or


Avoid (strong)foreground?
Santos 2005
~8 order
Dillon et al 2013
HII bubble
Red: 21cm power spectrum > ANN > bubble size distribution
Blue: 21cm power spectrum > MCMC > parameter > bubble size distribution
21cm PS > parameter > BSD
Algorithm for calculating bubble size distribution
2. Generating density field
3. Generating ionization field from density field with excursion-set formalism for modeling Reionization
1.Input EoR & cosmological parameters
21cmFAST
Roughly speaking, it evaluates whether isolated region is
ionized or not (Furlanetto+2004, Zahn+ 2010).
4. Evaluating ionized bubble size distribution
(Zahn+2007, Mesinger & Furlanetto 2007, See also Giri+ 2018)
•Randomly choose a pixel of ionized region.
•Record the distance from that pixel to neutral
region along randomly chosen direction.
•Repeat Monte Carlo procedure times.
107
Ionized region
R
Neutral region
Introduction & 21cm basic
Current observations for EoR
•Lyman alpha emitter galaxies(LAE) •Lyman alpha forest
Konno et al (2014)
(http://pages.astronomy.ua.edu/keel/agn/forest.html)
QSO
HI cloud
>The number of ionizing photons
Sensitive to neutral hydrogen fraction
Current observations for EoR
•Lyman alpha emitter galaxies(LAE) •Lyman alpha forest
Konno et al (2014)
(http://pages.astronomy.ua.edu/keel/agn/forest.html)
QSO
HI cloud
>The number of ionizing photons
Sensitive to neutral hydrogen fraction
Current observations for EoR
•Lyman alpha emitter galaxies(LAE) •Lyman alpha forest
Konno et al (2014)
(http://pages.astronomy.ua.edu/keel/agn/forest.html)
QSO
HI cloud
>The number of ionizing photons
Sensitive to neutral hydrogen fraction
n""
n"#
= 3 exp
✓
h⌫21cm
kTS
◆
The spin temperature is determined by following equilibrium
T 1
S =
T 1
CMB + xcT 1
K + x↵T 1
c
1 + xc + x↵
de-excitation rate by collision
de-excitation rate by UV
photons
excitation rate by UV
photons
excitation rate by collision
Stimulated by CMB photons
Spontaneous de-
excitation with Einstein
coefficient
Wouthuysen Field (WF)effect
•The mechanism that couples the spin
temperature of neutral hydrogen atom to
Lyman-alpha photons(Wouthuysen
1952,Field 1959)
•The hyperfine state is changed via 2P state
Solid lines : allowed path


Dashed lines : not allowed path
The impact of IMF on 21cm signal
Jones+ 2022, Magg+ 2021
IMF
Lower mass dominated IMF causes delayed
21cm signal.
21cm PS with SKA
SKA covers wide epoch and range of the 21cm PS !!
Redshift evolution Scale dependence
z=8.95
z=15.98
Koopmans et al. (2014)
Pritchard et al. (2014)
EoR parameter with ANN
• 1000 EoR models


• 48000 training datasets (20% of which is used for validation)


• 2000 test datasets


• 21cm PS is ranged from k=0.11/Mpc to 1.1/Mpc with 14 bins


• 5 hidden layers


• 212 neurons at each hidden layer


• 2000 iterations
Setup
Evaluate accuracy: noise
We evaluate accuracy of obtained parameters by chi-square. Smaller
chi-square means better accuracy.
single z
As expected, accuracy becomes worse if we add noise to 21cm
power spectrum.
without noise with noise
Evaluate accuracy: redshift
We evaluate accuracy of obtained parameters by chi-square. Smaller
chi-square means better accuracy.
multiple z
The accuracy of parameter estimation is improved when we
consider redshift evolution of 21cm power spectrum.
Single z
Both include noise
HERA results
“HERA Phase I Limits on the cosmic 21cm signal” (astro-ph/2108.07282)
First HERA results HERA(8/4)
Constraints on EoR and cosmology(8/16)
First HERA results HERA(8/4)
Constraints on EoR and cosmology(8/16)
Observation
•HERA phase I instrument (HERA/PAPER hybrid)
•HERA Phase I observation (2017/10-
2018/4)
•2017/12/10-2017/12/28. 18 nights.
10 hours/night. 18*10=180 hours
•52 antennas at the time of observation.
(350 antennas in the end). However, we
can only use 39 antennas
Calibration procedure
No treatment for foreground such as foreground removal. Just use foreground
avoidance (EoR window)
Observational results
band 1 (z=10.4)
band 2 (z=7.9)
Consistent with thermal noise level
Data Likelihood
:21cm power spectrum data z=7.9,10.3
:Likelihood function
:Posterior via Bayesʼ theorem
u: extant systematics
W: window function
m: cosmic 21cm signal for given parameter θ
Γ: inverse of covariance matrix of the data
Marginalizing over systematics
We have no explicit way of modeling u
We marginalize directly over the binned values u
Assuming Γ is diagonal and writing t=d-Wm
Inverse Likelihood
Given upper limits presented by HERA are still roughly two orders of magnitude
above
fi
ducial 21cm models
We introduce inverse likelihood
*LOFAR and MWA also adopted same manner
“With the inverse likelihood, the resulting marginalized distributions identify the
parameter combinations that can be ruled out by the HERA limits alone”
Disfavored parameter space !
Lower limits on spin temperature
Assumptions
•Full WF coupling (i.e. T_s=T_k)
•x_H=1
•Performing a spherical average of RSD
: Density driven approach
At z=7.9, 95% con
fi
dence level
is above adiabatic cooling !
Galaxy-driven models of the cosmic 21cm signal
“standard” galaxy formation models used by 21cmFAST (Park et al 2019)
•Stellar to Halo mass relation
empirical galaxy relations, which reproduces the observed UV luminosity
function of galaxies during the EoR
•ionizing escape fraction
•X-ray SED of high-z galaxies
Bayesian inference
Performing Bayesian inference by 21cmMC
(Greig et al 2015,2017,2018)
Including…
•Observed faint galaxy UV luminosity
functions at z=6-10
•High redshift QSO spectra at z~5.9
•CMB optical depth
•Length of 250cMpc
•128^3 grids
Note that this should not be interpreted as a
Bayesian posterior of disfavored models. The
models that exceed HERA reside in the parameter
space.
Spin temperature and neutral fraction disfavored by HERA
•At z=7.9, T_s <3 K is disfavored for T_s/T_{radio} <0.1 for 0.1 <x_H < 0.9.
•These constraints are somewhat tighter than LOFAR and MWA.
With HERA
Without HERA(galaxy UV luminosity function, Lyman alpha forest, CMB)
Posterior •HERA limits do not have
notable impact over most of
the astrophysical
parameters except X-ray
parameters.
First galaxies were more X-
ray luminous than their local
counterparts
<latexit sha1_base64="SuHINk+leEIw/jPRex7X06bbW+s=">AAACjHicbVFbS8MwFE7rveqc+uhLcAjzpbbr1IkKoiCCL4q7wVpHmmUzmLQlSYVR9mv8R775b0znlOl2IJyP73znknPChFGpHOfTMBcWl5ZXVtes9Y3NwlZxe6cp41Rg0sAxi0U7RJIwGpGGooqRdiII4iEjrfD1Jo+33oiQNI7qapiQgKNBRPsUI6WpbvG9cgozX3B4P4IXsN7NnnJ/4jk/bLlie/MU1V/Foe9bNfvsr2jsXdvzFeVEQtd59uBvSdc+nqP2dKNp+U95q1ssObYzNjgL3AkogYk9dIsffi/GKSeRwgxJ2XGdRAUZEopiRkaWn0qSIPyKBqSjYYR0zyAbL3MEDzTTg/1Y6BcpOGanMzLEpRzyUCs5Ui/yfywn58U6qerXgoxGSapIhL8b9VMGVQzzy8AeFQQrNtQAYUH1rBC/IIGw0vfLl+D+//IsaFZs98SuPFZLV9eTdayCPbAPysAFp+AK3IEH0ADYWDOOjJpxZhbMqnluXn5LTWOSswv+mHn7BXTeuSc=</latexit>
27K < TS < 630K(2.3K < TS < 640K)
8.9K < TK < 1.3 ⇥ 103
K(1.5K < TK < 3.3 ⇥ 103
K)
HERA observation disfavors low spin
temperature peaks seen at observations
without HERA.
Motivated from EDGESʼs results
•milli-charged dark matter (mQDM)
•Extra radio background
•HERA Band2 (z=7.9) result indicates some heating by z=7.9 (above adiabatic
cooling)
•An EDGES detection of mQDM is only compatible withe HERA if heating takes
place between z=17-10.4
If there are extra-radio back ground, 21cm
fl
uctuations are enhanced
•A
fl
uctuating, time-variable radio background generated by galaxies
•A smooth synchrotron background that decays with time
Models with an additional radio
background can easily exceed HERA
upper limits
•A
fl
uctuating, time-variable radio background generated by galaxies
<latexit sha1_base64="9rI0RlrwheQ4zRZXMwp/4fe8jzk=">AAACAXicbVDLSsNAFJ3UV42vqBvBzWARXIWkFR8gUnTjsoKthSaEyXTSDp1MwsxEKKVu/BU3LhRx61+482+ctFlo64ELh3Pu5d57wpRRqRzn2ygtLC4tr5RXzbX1jc0ta3unJZNMYNLECUtEO0SSMMpJU1HFSDsVBMUhI/fh4Dr37x+IkDThd2qYEj9GPU4jipHSUmDtRUEbXkLHrtWg55lRIOAFrJ27ZmBVHNuZAM4TtyAVUKARWF9eN8FZTLjCDEnZcZ1U+SMkFMWMjE0vkyRFeIB6pKMpRzGR/mjywRgeaqULo0To4gpO1N8TIxRLOYxD3Rkj1ZezXi7+53UyFZ35I8rTTBGOp4uijEGVwDwO2KWCYMWGmiAsqL4V4j4SCCsdWh6CO/vyPGlVbffErt4eV+pXRRxlsA8OwBFwwSmogxvQAE2AwSN4Bq/gzXgyXox342PaWjKKmV3wB8bnD8Lekz0=</latexit>
fX > 0.33
fr < 391
We constrain
with 1 sigma con
fi
dence level
high T_r is excluded when
T_k is less than 1000 K
•A smooth synchrotron background that decays with time
PAPER calibration
観測
データ較正:Antenna metrics
相関器からのデータは最初、antenna metricsステージ
に送られ、誤ったアンテナはフラッグされる。
antenna metricsは10分ごとに計算される。
Antenna metrics
antenna metricsはアンテナゲインが他のアンテナゲインと⽐べて値が低いかを計
算する。(ロストパワー、接続不良などが原因)
5σより⼤きければアンテナをフラッグする。
データ較正:Redundant baseline calibration
g: antennae gain
21cm cosmologyで重要なチャレンジの⼀つが装置由来のゲインを精密に⾏うこと
この式を解いてantenna gainを得たい。
”(HERA’s) Redundant-base line calibration
uses the principle that every redundant
baseline should measure the same visibility”
理想的なχ⼆乗分布からのズレ
>熱雑⾳以上の系統誤差が⼊っていることを
⽰唆。
データ較正:Absolute calibration
sky modelを使ったデータ較正。CASAを使⽤。また、bright point sourceに関し
てはMWA GLEAM surveyを使⽤。
データ較正:RFI
fl
agging
時間と周波数のデータポイント周りの分布でoutlierを検出する。
Raw HERA data, the gain solutions from redundant-baseline calibration and
redundant visibility solutions, its chi-square distribution, the absolute calibration
gain and their chi-square distribution
Input
Z-scoreを計算してFlagging
データ較正:Gain smoothing
redundant calibrationではgain phaseにギャップが⾒られるが、absolute calibration
ではギャップが解消されている。また、RFIを同定後、
fl
ag maskをFourier
fi
lter
algorithmに⽤いてdeconvolution。さらにmissing pixelをsmoothly varying
componentモデルを⽤いて埋めた(Gain smoothing)
データ較正:LST Binning
夜な夜な観測していると、LSTグリッドからわずかにずれが⽣じる。
0−24 hourを21.4秒間隔でbinning. bin内のデータはbinの中⼼とする。
毎晩のデータでconsistentになっているのを確認。
データ較正:Data inpainting
Inpaiting(画像の修復)
•強いサイドローブのせいで、フーリエドメインでのパワースペクトル解析は困難。
•強いサイドローブをマスクしたり、取り除いたデータから画像を修復するため
によく使われるのがCLEAN(Hogbom 1974)
•CLEANと似た⼿法を使ってinpainting (Parsons & Backer 2009, Ali et al 2015,
Kerrigan et al 2018)
データ較正:Systematic modeling
•HERA phase Iシステムではケーブル反射やchain
cross couplingが重⼤な系統誤差として存在。
•re
fl
ection calibrationとcross-coupling
fi
lteringで
系統誤差を軽減したが、もしこの較正が適切でな
ければ、cosmological signal lossが起きるかもし
れない。
Kern et al (2020b)
データ較正:Faraday rotated foreground emission
instrumental linear polarization
pseudo-Stokes polarization
Faraday depth
instrumental systematicsを除去した後もpower spectrumにlow level excess
Faraday rotation。ストークスラパメータを調べた
Stokes Q > stokes I leakageはstokes I power spectrum
に影響を与える。
パワースペクトル解析
band 1 (z=10.4)
band 2 (z=7.9)
パワースペクトル解析
ビジビリティーをdelay domainにフーリエ変換
Quadratic estimator (alpha band)
x: ビジビリティー
R: 重み⾏列
Q:共分散⾏列のバンドパワー微分。
結果
z=10.4
z=7.9
結果

More Related Content

What's hot

社会は研究者に何を求めるのか?:アウトリーチ活動で感じた事
社会は研究者に何を求めるのか?:アウトリーチ活動で感じた事社会は研究者に何を求めるのか?:アウトリーチ活動で感じた事
社会は研究者に何を求めるのか?:アウトリーチ活動で感じた事Hayato Shimabukuro
 
Exploring early universe with neutral hydrogen atom
Exploring early universe with neutral hydrogen atomExploring early universe with neutral hydrogen atom
Exploring early universe with neutral hydrogen atomHayato Shimabukuro
 
LSD-SLAM:Large Scale Direct Monocular SLAM
LSD-SLAM:Large Scale Direct Monocular SLAMLSD-SLAM:Large Scale Direct Monocular SLAM
LSD-SLAM:Large Scale Direct Monocular SLAMEndoYuuki
 
第39回日本基礎心理学会シンポジウム発表資料
第39回日本基礎心理学会シンポジウム発表資料第39回日本基礎心理学会シンポジウム発表資料
第39回日本基礎心理学会シンポジウム発表資料Masanori Kobayashi
 
#FTMA15 第二回課題 鬼コースサーベイ
#FTMA15 第二回課題 鬼コースサーベイ#FTMA15 第二回課題 鬼コースサーベイ
#FTMA15 第二回課題 鬼コースサーベイYoichi Ochiai
 
つくばチャレンジ2020運営の活動報告
つくばチャレンジ2020運営の活動報告つくばチャレンジ2020運営の活動報告
つくばチャレンジ2020運営の活動報告Yoshitaka HARA
 
SLAM勉強会(3) LSD-SLAM
SLAM勉強会(3) LSD-SLAMSLAM勉強会(3) LSD-SLAM
SLAM勉強会(3) LSD-SLAMIwami Kazuya
 
Holographic Whisper - CHI2017 oral presentation by Yoichi Ochiai
Holographic Whisper - CHI2017 oral presentation by Yoichi OchiaiHolographic Whisper - CHI2017 oral presentation by Yoichi Ochiai
Holographic Whisper - CHI2017 oral presentation by Yoichi OchiaiYoichi Ochiai
 
論文紹介:Multimodal Learning with Transformers: A Survey
論文紹介:Multimodal Learning with Transformers: A Survey論文紹介:Multimodal Learning with Transformers: A Survey
論文紹介:Multimodal Learning with Transformers: A SurveyToru Tamaki
 
条件付き確率場の推論と学習
条件付き確率場の推論と学習条件付き確率場の推論と学習
条件付き確率場の推論と学習Masaki Saito
 
SuperGlue; Learning Feature Matching with Graph Neural Networks (CVPR'20)
SuperGlue;Learning Feature Matching with Graph Neural Networks (CVPR'20)SuperGlue;Learning Feature Matching with Graph Neural Networks (CVPR'20)
SuperGlue; Learning Feature Matching with Graph Neural Networks (CVPR'20)Yusuke Uchida
 
SSII2021 [OS3-01] 設備や環境の高品質計測点群取得と自動モデル化技術
SSII2021 [OS3-01] 設備や環境の高品質計測点群取得と自動モデル化技術SSII2021 [OS3-01] 設備や環境の高品質計測点群取得と自動モデル化技術
SSII2021 [OS3-01] 設備や環境の高品質計測点群取得と自動モデル化技術SSII
 
コンピュータビジョンの最新ソフトウェア開発環境 SSII2015 チュートリアル hayashi
コンピュータビジョンの最新ソフトウェア開発環境 SSII2015 チュートリアル hayashiコンピュータビジョンの最新ソフトウェア開発環境 SSII2015 チュートリアル hayashi
コンピュータビジョンの最新ソフトウェア開発環境 SSII2015 チュートリアル hayashiMasaki Hayashi
 
SSII2019TS: プロジェクタ・カメラシステムが変わる! ~時間同期の制御で広がる応用~
SSII2019TS: プロジェクタ・カメラシステムが変わる! ~時間同期の制御で広がる応用~SSII2019TS: プロジェクタ・カメラシステムが変わる! ~時間同期の制御で広がる応用~
SSII2019TS: プロジェクタ・カメラシステムが変わる! ~時間同期の制御で広がる応用~SSII
 
オープンソース SLAM の分類
オープンソース SLAM の分類オープンソース SLAM の分類
オープンソース SLAM の分類Yoshitaka HARA
 
CVIM#11 3. 最小化のための数値計算
CVIM#11 3. 最小化のための数値計算CVIM#11 3. 最小化のための数値計算
CVIM#11 3. 最小化のための数値計算sleepy_yoshi
 
平滑化処理の繰り返しによる画像セグメンテーションのためのグラフカット
平滑化処理の繰り返しによる画像セグメンテーションのためのグラフカット平滑化処理の繰り返しによる画像セグメンテーションのためのグラフカット
平滑化処理の繰り返しによる画像セグメンテーションのためのグラフカットMPRG_Chubu_University
 
#devsumi 12-A-3 Physicalization of Computer Graphics
#devsumi 12-A-3 Physicalization of Computer Graphics#devsumi 12-A-3 Physicalization of Computer Graphics
#devsumi 12-A-3 Physicalization of Computer GraphicsYoichi Ochiai
 

What's hot (20)

社会は研究者に何を求めるのか?:アウトリーチ活動で感じた事
社会は研究者に何を求めるのか?:アウトリーチ活動で感じた事社会は研究者に何を求めるのか?:アウトリーチ活動で感じた事
社会は研究者に何を求めるのか?:アウトリーチ活動で感じた事
 
Exploring early universe with neutral hydrogen atom
Exploring early universe with neutral hydrogen atomExploring early universe with neutral hydrogen atom
Exploring early universe with neutral hydrogen atom
 
LSD-SLAM:Large Scale Direct Monocular SLAM
LSD-SLAM:Large Scale Direct Monocular SLAMLSD-SLAM:Large Scale Direct Monocular SLAM
LSD-SLAM:Large Scale Direct Monocular SLAM
 
Icra2020 v2
Icra2020 v2Icra2020 v2
Icra2020 v2
 
第39回日本基礎心理学会シンポジウム発表資料
第39回日本基礎心理学会シンポジウム発表資料第39回日本基礎心理学会シンポジウム発表資料
第39回日本基礎心理学会シンポジウム発表資料
 
#FTMA15 第二回課題 鬼コースサーベイ
#FTMA15 第二回課題 鬼コースサーベイ#FTMA15 第二回課題 鬼コースサーベイ
#FTMA15 第二回課題 鬼コースサーベイ
 
つくばチャレンジ2020運営の活動報告
つくばチャレンジ2020運営の活動報告つくばチャレンジ2020運営の活動報告
つくばチャレンジ2020運営の活動報告
 
SLAM勉強会(3) LSD-SLAM
SLAM勉強会(3) LSD-SLAMSLAM勉強会(3) LSD-SLAM
SLAM勉強会(3) LSD-SLAM
 
Holographic Whisper - CHI2017 oral presentation by Yoichi Ochiai
Holographic Whisper - CHI2017 oral presentation by Yoichi OchiaiHolographic Whisper - CHI2017 oral presentation by Yoichi Ochiai
Holographic Whisper - CHI2017 oral presentation by Yoichi Ochiai
 
論文紹介:Multimodal Learning with Transformers: A Survey
論文紹介:Multimodal Learning with Transformers: A Survey論文紹介:Multimodal Learning with Transformers: A Survey
論文紹介:Multimodal Learning with Transformers: A Survey
 
条件付き確率場の推論と学習
条件付き確率場の推論と学習条件付き確率場の推論と学習
条件付き確率場の推論と学習
 
SuperGlue; Learning Feature Matching with Graph Neural Networks (CVPR'20)
SuperGlue;Learning Feature Matching with Graph Neural Networks (CVPR'20)SuperGlue;Learning Feature Matching with Graph Neural Networks (CVPR'20)
SuperGlue; Learning Feature Matching with Graph Neural Networks (CVPR'20)
 
SSII2021 [OS3-01] 設備や環境の高品質計測点群取得と自動モデル化技術
SSII2021 [OS3-01] 設備や環境の高品質計測点群取得と自動モデル化技術SSII2021 [OS3-01] 設備や環境の高品質計測点群取得と自動モデル化技術
SSII2021 [OS3-01] 設備や環境の高品質計測点群取得と自動モデル化技術
 
コンピュータビジョンの最新ソフトウェア開発環境 SSII2015 チュートリアル hayashi
コンピュータビジョンの最新ソフトウェア開発環境 SSII2015 チュートリアル hayashiコンピュータビジョンの最新ソフトウェア開発環境 SSII2015 チュートリアル hayashi
コンピュータビジョンの最新ソフトウェア開発環境 SSII2015 チュートリアル hayashi
 
20190825 vins mono
20190825 vins mono20190825 vins mono
20190825 vins mono
 
SSII2019TS: プロジェクタ・カメラシステムが変わる! ~時間同期の制御で広がる応用~
SSII2019TS: プロジェクタ・カメラシステムが変わる! ~時間同期の制御で広がる応用~SSII2019TS: プロジェクタ・カメラシステムが変わる! ~時間同期の制御で広がる応用~
SSII2019TS: プロジェクタ・カメラシステムが変わる! ~時間同期の制御で広がる応用~
 
オープンソース SLAM の分類
オープンソース SLAM の分類オープンソース SLAM の分類
オープンソース SLAM の分類
 
CVIM#11 3. 最小化のための数値計算
CVIM#11 3. 最小化のための数値計算CVIM#11 3. 最小化のための数値計算
CVIM#11 3. 最小化のための数値計算
 
平滑化処理の繰り返しによる画像セグメンテーションのためのグラフカット
平滑化処理の繰り返しによる画像セグメンテーションのためのグラフカット平滑化処理の繰り返しによる画像セグメンテーションのためのグラフカット
平滑化処理の繰り返しによる画像セグメンテーションのためのグラフカット
 
#devsumi 12-A-3 Physicalization of Computer Graphics
#devsumi 12-A-3 Physicalization of Computer Graphics#devsumi 12-A-3 Physicalization of Computer Graphics
#devsumi 12-A-3 Physicalization of Computer Graphics
 

Similar to Exploring universe with neutral hydrogen + machine learning

An introduction of 21cm cosmology
An introduction of 21cm cosmologyAn introduction of 21cm cosmology
An introduction of 21cm cosmologyHayato Shimabukuro
 
上海天文台コロキウム
上海天文台コロキウム上海天文台コロキウム
上海天文台コロキウムHayato Shimabukuro
 
21cm cosmology with machine learning
21cm cosmology with machine learning21cm cosmology with machine learning
21cm cosmology with machine learningHayato Shimabukuro
 
Application of machine learning in 21cm cosmology
Application of machine learning in 21cm cosmologyApplication of machine learning in 21cm cosmology
Application of machine learning in 21cm cosmologyHayato Shimabukuro
 
21cm cosmology with machine learning (Review))
21cm cosmology with machine learning (Review))21cm cosmology with machine learning (Review))
21cm cosmology with machine learning (Review))Hayato Shimabukuro
 
21cm cosmology+machine learning_update
21cm cosmology+machine learning_update21cm cosmology+machine learning_update
21cm cosmology+machine learning_updateHayato Shimabukuro
 
Cosmic Histories and human perspectives: A journey through time and space
Cosmic Histories and human perspectives:  A journey through time and spaceCosmic Histories and human perspectives:  A journey through time and space
Cosmic Histories and human perspectives: A journey through time and spaceHayato Shimabukuro
 
The Large Interferometer For Exoplanets (LIFE): the science of characterising...
The Large Interferometer For Exoplanets (LIFE): the science of characterising...The Large Interferometer For Exoplanets (LIFE): the science of characterising...
The Large Interferometer For Exoplanets (LIFE): the science of characterising...Advanced-Concepts-Team
 
Cosmology with the 21cm line
Cosmology with the 21cm lineCosmology with the 21cm line
Cosmology with the 21cm lineCosmoAIMS Bassett
 
Non-linear optics by means of dynamical Berry phase
Non-linear optics  by means of  dynamical Berry phaseNon-linear optics  by means of  dynamical Berry phase
Non-linear optics by means of dynamical Berry phaseClaudio Attaccalite
 
Young Scientist Award in JPS (invited talk)
Young Scientist Award in JPS (invited talk)Young Scientist Award in JPS (invited talk)
Young Scientist Award in JPS (invited talk)Alto Osada
 
High-resolution observations of solar tornadoes and solar prominences
High-resolution observations of solar tornadoes and solar prominencesHigh-resolution observations of solar tornadoes and solar prominences
High-resolution observations of solar tornadoes and solar prominencesUniversity of Glasgow
 
Sara Seager - Lecture3 - MIT
Sara Seager - Lecture3 - MITSara Seager - Lecture3 - MIT
Sara Seager - Lecture3 - MITAtner Yegorov
 
LIGO - General Information
LIGO - General InformationLIGO - General Information
LIGO - General InformationIan Rothbarth
 
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...Alexander Decker
 

Similar to Exploring universe with neutral hydrogen + machine learning (20)

An introduction of 21cm cosmology
An introduction of 21cm cosmologyAn introduction of 21cm cosmology
An introduction of 21cm cosmology
 
Colloquium at CCNU
Colloquium at CCNUColloquium at CCNU
Colloquium at CCNU
 
上海天文台コロキウム
上海天文台コロキウム上海天文台コロキウム
上海天文台コロキウム
 
21cm cosmology with machine learning
21cm cosmology with machine learning21cm cosmology with machine learning
21cm cosmology with machine learning
 
Job talk
Job talkJob talk
Job talk
 
Application of machine learning in 21cm cosmology
Application of machine learning in 21cm cosmologyApplication of machine learning in 21cm cosmology
Application of machine learning in 21cm cosmology
 
21cm cosmology with machine learning (Review))
21cm cosmology with machine learning (Review))21cm cosmology with machine learning (Review))
21cm cosmology with machine learning (Review))
 
21cm cosmology+machine learning_update
21cm cosmology+machine learning_update21cm cosmology+machine learning_update
21cm cosmology+machine learning_update
 
21cm cosmology with ANN
21cm cosmology with ANN21cm cosmology with ANN
21cm cosmology with ANN
 
Cosmic Histories and human perspectives: A journey through time and space
Cosmic Histories and human perspectives:  A journey through time and spaceCosmic Histories and human perspectives:  A journey through time and space
Cosmic Histories and human perspectives: A journey through time and space
 
The Large Interferometer For Exoplanets (LIFE): the science of characterising...
The Large Interferometer For Exoplanets (LIFE): the science of characterising...The Large Interferometer For Exoplanets (LIFE): the science of characterising...
The Large Interferometer For Exoplanets (LIFE): the science of characterising...
 
Cosmology with the 21cm line
Cosmology with the 21cm lineCosmology with the 21cm line
Cosmology with the 21cm line
 
Non-linear optics by means of dynamical Berry phase
Non-linear optics  by means of  dynamical Berry phaseNon-linear optics  by means of  dynamical Berry phase
Non-linear optics by means of dynamical Berry phase
 
Brazil2
Brazil2Brazil2
Brazil2
 
Young Scientist Award in JPS (invited talk)
Young Scientist Award in JPS (invited talk)Young Scientist Award in JPS (invited talk)
Young Scientist Award in JPS (invited talk)
 
High-resolution observations of solar tornadoes and solar prominences
High-resolution observations of solar tornadoes and solar prominencesHigh-resolution observations of solar tornadoes and solar prominences
High-resolution observations of solar tornadoes and solar prominences
 
Strong Motion Seismology
Strong Motion SeismologyStrong Motion Seismology
Strong Motion Seismology
 
Sara Seager - Lecture3 - MIT
Sara Seager - Lecture3 - MITSara Seager - Lecture3 - MIT
Sara Seager - Lecture3 - MIT
 
LIGO - General Information
LIGO - General InformationLIGO - General Information
LIGO - General Information
 
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
 

More from Hayato Shimabukuro (20)

21cm線で探る宇宙暗黒時代と宇宙の夜明け
21cm線で探る宇宙暗黒時代と宇宙の夜明け21cm線で探る宇宙暗黒時代と宇宙の夜明け
21cm線で探る宇宙暗黒時代と宇宙の夜明け
 
論文紹介1
論文紹介1論文紹介1
論文紹介1
 
『宇宙のこども時代ってどうだった?』
『宇宙のこども時代ってどうだった?』『宇宙のこども時代ってどうだった?』
『宇宙のこども時代ってどうだった?』
 
21cm cosmology with ML
21cm cosmology with ML21cm cosmology with ML
21cm cosmology with ML
 
CEEDトーク_宇宙論
CEEDトーク_宇宙論CEEDトーク_宇宙論
CEEDトーク_宇宙論
 
lecture31&32
lecture31&32lecture31&32
lecture31&32
 
lecture29
lecture29lecture29
lecture29
 
lecture30
lecture30lecture30
lecture30
 
lecture28
lecture28lecture28
lecture28
 
lecture27
lecture27lecture27
lecture27
 
lecture26
lecture26lecture26
lecture26
 
lecture25
lecture25lecture25
lecture25
 
lecture23
lecture23lecture23
lecture23
 
lecture24
lecture24lecture24
lecture24
 
lecture22
lecture22lecture22
lecture22
 
lecture21
lecture21lecture21
lecture21
 
lecture20
lecture20lecture20
lecture20
 
lecture19
lecture19lecture19
lecture19
 
lecture18
lecture18lecture18
lecture18
 
lecture17
lecture17lecture17
lecture17
 

Recently uploaded

Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bSérgio Sacani
 
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝soniya singh
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...RohitNehra6
 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 sciencefloriejanemacaya1
 
Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxyaramohamed343013
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRDelhi Call girls
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Nistarini College, Purulia (W.B) India
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxUmerFayaz5
 
Luciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptxLuciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptxAleenaTreesaSaji
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCEPRINCE C P
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsSérgio Sacani
 
Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhousejana861314
 
Cultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxCultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxpradhanghanshyam7136
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfnehabiju2046
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfmuntazimhurra
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxAArockiyaNisha
 
zoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzohaibmir069
 

Recently uploaded (20)

Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
 
The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
 
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...
 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 science
 
Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docx
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptx
 
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
 
Luciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptxLuciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptx
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
 
Engler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomyEngler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomy
 
Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhouse
 
Cultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxCultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptx
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdf
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdf
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
 
zoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistan
 

Exploring universe with neutral hydrogen + machine learning

  • 1. Exploring early universe with neutral hydrogen + machine learning @東京⼤学宇宙理論(2022/5/16) ©Aman Chokshi Hayato Shimabukuro(島袋隼⼠) (Yunnan university, Nagoya university) Aman Chokshi 1
  • 2. •Born in Okinawa •Ph.D from Nagoya university(2016) •Postdoc at Paris observatory(2016-2018) About me •Postdoc at Tsinghua University(2018-2019) 2
  • 3. •Born in Okinawa •Ph.D from Nagoya university(2016) •Postdoc at Paris observatory(2016-2018) About me •Postdoc at Tsinghua University(2018-2019) •Yunnan university(2019ー) 2
  • 4. How is Yunnan province? 3
  • 5. How is Yunnan province? High altitude (~2000m) 3
  • 6. How is Yunnan province? High altitude (~2000m) Some old cities 3
  • 7. How is Yunnan province? High altitude (~2000m) Some old cities Mushroom ! 3
  • 8. Outline • Introduction (4 pages) • Basics of 21cm line (7 pages) • Current 21cm cosmology status and future ( 4 pages) • 21cm signal analysis with machine learning (17 pages) • Summary 4
  • 10. The history of the universe ©NAOJ Dark Ages・・・No luminous object exists. Epoch of Reionization(EoR)・・・UV photons by luminous objects ionize neutral hydrogen in the IGM (z~6-15). Cosmic Dawn・・・First stars and galaxies form (z~20-30). 6
  • 11. The history of the universe ©NAOJ Dark Ages・・・No luminous object exists. Epoch of Reionization(EoR)・・・UV photons by luminous objects ionize neutral hydrogen in the IGM (z~6-15). Cosmic Dawn・・・First stars and galaxies form (z~20-30). 6
  • 12. (C)Kenji Hasegawa(Nagoya University) Credit: M. Alvarez, R. Kaehler and T.Abel
  • 13. (C)Kenji Hasegawa(Nagoya University) Credit: M. Alvarez, R. Kaehler and T.Abel
  • 14. (Naidu et al 2020) Current observations tell us Current observations such as Quasar absorption lines and Lyman-alpha emitter galaxies constraint on average neutral(ionized) hydrogen fraction (Global history). 8
  • 15. (Naidu et al 2020) Current observations tell us Current observations such as Quasar absorption lines and Lyman-alpha emitter galaxies constraint on average neutral(ionized) hydrogen fraction (Global history). Current observations tell us only global history. 8
  • 16. We want to know EoR much more (ex) •EoR theory •Morphology and topology of ionized bubble •Ionizing sources •Relation to galaxy formation and evolution etc… 9
  • 17. We want to know EoR much more We should observe IGM at the EoR directly ! (ex) •EoR theory •Morphology and topology of ionized bubble •Ionizing sources •Relation to galaxy formation and evolution etc… 9
  • 18. We want to know EoR much more We should observe IGM at the EoR directly ! (ex) •EoR theory •Morphology and topology of ionized bubble •Ionizing sources •Relation to galaxy formation and evolution etc… ✕ Synergy with galaxy observation by ALMA, JWST, Subaru 9
  • 19. We want to know EoR much more We should observe IGM at the EoR directly ! (ex) •EoR theory •Morphology and topology of ionized bubble •Ionizing sources •Relation to galaxy formation and evolution etc… ✕ Synergy with galaxy observation by ALMA, JWST, Subaru 9
  • 20. We want to know EoR much more We should observe IGM at the EoR directly ! (ex) •EoR theory •Morphology and topology of ionized bubble •Ionizing sources •Relation to galaxy formation and evolution etc… ✕ Synergy with galaxy observation by ALMA, JWST, Subaru 9
  • 21. Basics of 21cm line 10
  • 22. 21cm line •21cm line radiation : Neutral hydrogen atom in IGM emits the radiation due to the hyperfine structure. z=6 → 1.5m or 202 MHz z=20 → 4.4m or 68MHz Radio wavelength. Proton Electron 21cm line emission(1.4GHz) (Neutral) hydrogen atom is good tracer for IGM. 11 signlet Triplet
  • 23. Spin temperature n"" n"# = 3 exp ✓ h⌫21cm kTS ◆ Key quantity in 21cm line physics T 1 S = T 1 CMB + xcT 1 K + x↵T 1 c 1 + xc + x↵ Spin temperature is determined by •interaction with CMB photons •collision with hydrogen atoms •interaction with Ly-alpha photons (TCMB) (TK, xc) (Tc ⇠ TK, x↵) Properties of X-ray sources (e.g. spectral energy distribution (SED)) Relevant astrophysics Properties of first stars (e.g. Initial mass function) 12 Spin temperature
  • 24. Mesinger et al 2010 heating WF e ff ect Wouthuysen-Field(WF) effect Spin temperature couples to IGM kinetic temperature via Ly-alpha photons from first stars. Thermal history X-ray heating X-ray photons drastically heat kinetic temperature of the IGM Spin temperature Kinetic temperature CMB temperature 13
  • 25. 21cm line signal Red : cosmology Blue : astrophysics Tb = TS T 1 + z (1 exp(⌧⌫)) ⇠ 27xH(1 + m) ✓ H dvr/dr + H ◆ ✓ 1 T TS ◆ ✓ 1 + z 10 0.15 ⌦mh2 ◆1/2 ✓ ⌦bh2 0.023 ◆ [mK] Brightness temperature *We actually observe brightness temperature We can map the distribution of HI in the IGM with 21cm line 14
  • 26. 21cm line signal Red : cosmology Blue : astrophysics Tb = TS T 1 + z (1 exp(⌧⌫)) ⇠ 27xH(1 + m) ✓ H dvr/dr + H ◆ ✓ 1 T TS ◆ ✓ 1 + z 10 0.15 ⌦mh2 ◆1/2 ✓ ⌦bh2 0.023 ◆ [mK] Brightness temperature *We actually observe brightness temperature We can map the distribution of HI in the IGM with 21cm line 14
  • 27. 21cm power spectrum (PS) : Scale dependence Pober et al (2014) EoR X-ray heating WF effect z Redshift dependence 21cm power spectrum h Tb(k) Tb(k 0 )i = (2⇡)3 (k + k 0 )P21 We first try to detect the 21cm line signal statistically with ongoing telescopes. 15
  • 28. Current upper limits on 21cm PS Current 21cm experiments put upper limit of the 21cm line power spectrum 2-3 order of magnitude higher than theoretical expectation. Challenges: ionosphere, RFI, foreground, etc Shimabukuro et al 2022b 16
  • 29. 21cm line global signal Global signal has characteristic peaks and troughs according to key epochs Global signal (sky averaged brightness temperature) So far, we introduced 21cm line power spectrum to measure 21cm line signal, global signal is another observable. These behavior inherits the behavior of the spin temperature (and ionization history) 17
  • 30. Current 21cm cosmology status and future project 18
  • 31. EDGES (Bouman et al 2018) Too deep trough Too flat We detected the 21cm line signal? 19
  • 32. EDGES (Bouman et al 2018) Too deep trough Too flat We detected the 21cm line signal? SARAS3 did not detect signal (Singh + 2022, Nature astronomy) 19
  • 33. EDGES (Bouman et al 2018) Too deep trough Too flat We detected the 21cm line signal? SARAS3 did not detect signal (Singh + 2022, Nature astronomy) Very strange result ! Need exotic physics? mis-calibration? unknown systematics? 19
  • 34. Current radio interferometers MWA LOFAR HERA GMRT Radio interferometer •Array of radio telescope antennas •Measure time delay between antennas •Work together as a single telescope 20
  • 35. 21
  • 37. We want to know EoR much more We should observe IGM at the EoR directly ! (ex) •EoR theory •Morphology and topology of ionized bubble •Ionizing sources •Relation to galaxy formation and evolution etc… ✕ Synergy with galaxy observation by ALMA, JWST, Subaru 23
  • 38. We want to know EoR much more We should observe IGM at the EoR directly ! (ex) •EoR theory •Morphology and topology of ionized bubble •Ionizing sources •Relation to galaxy formation and evolution etc… ✕ Synergy with galaxy observation by ALMA, JWST, Subaru 23
  • 39. 21cm signal analysis with machine learning 24
  • 40. Artificial Neural Network (ANN) An ANN is a mathematical model of human brain network. ex.) Rumelhart et. al (1986) LeCun et. al (1989) Recently, it has been applied to field of astronomy. 25
  • 41. Artificial Neural Network (ANN) •Training network with training dataset, ANN can approximate any function which associates input and output values. y = f(x) • Applying trained network to unknown data(test data) for prediction. yANN = f(xtest) • ANN consists of input layer, hidden layer and output layer. Each layer has neurons. non linear regression Problem 26
  • 42. •Emulator •parameter estimate •Distinguish EoR sources (e.g) Hassan +2019 •Others (e.g.) Li + 2019, Chardin + 2019, Yoshiura + 2020, Shimabukuro + 2022 (e.g.) Kern + 2017, Schmit + 2018, Aviad + 2020, Bevins + 2021, Bevins+ 2021 (e.g.) Shimabukuro + 2017, Gilet+ 2018, Nicolas +2019, Doussot +2019, Choudhury+ 2020,2021a,b, Zhao+ 2022a,b 21cm study+machine learning 27
  • 43. 1.EoR parameter estimation with ANN Based on Shimabukuro and Semelin 2017 28
  • 44. Statistical challenge in 21cm cosmology (Mesinger 2018) Cosmology CMB map (angular) power spectrum cosmological parameter 21cm 21cm 3D map 21cm power spectrum astrophysical parameter Based on Bayesian inference 29
  • 45. Statistical challenge in 21cm cosmology (Mesinger 2018) Cosmology CMB map (angular) power spectrum cosmological parameter 21cm 21cm 3D map 21cm power spectrum astrophysical parameter Based on Bayesian inference We proposed alternative method. 29
  • 46. Dataset ⇣ : the ionizing efficiency. : the minimum viral temperature of halos producing ionizing photons : the mean free path of ionizing photons through the IGM (Maximum HII bubble size) Tvir Rmfp ~ d = [P(k), ~ ✓] 21cm power spectrum (input) EoR parameter (output) EoR Parameter ✓EoR = f(P21) 30
  • 47. z=11, PS without any noise Reconstructed by 21cmPS at z=11 10 20 30 40 50 60 10 20 30 40 50 60 R mfp,ANN [Mpc] Rmfp,true[Mpc] z=12 10 20 30 40 50 60 10 20 30 40 50 60 ANN true z=12 1 10 100 1 10 100 T vir,ANN [K/10 3 ] Tvir,true[K/103 ] z=12 14 neurons, 100’000 iterations • True value .vs. Reconstructed value •The scatter of is large. Rmfp ⇣ Tvir •Other reconstructed parameters match true one relatively well. Shimabukuro & Semelin (2017) Rmfp 31
  • 48. z=11, PS without any noise Reconstructed by 21cmPS at z=11 10 20 30 40 50 60 10 20 30 40 50 60 R mfp,ANN [Mpc] Rmfp,true[Mpc] z=12 10 20 30 40 50 60 10 20 30 40 50 60 ANN true z=12 1 10 100 1 10 100 T vir,ANN [K/10 3 ] Tvir,true[K/103 ] z=12 14 neurons, 100’000 iterations • True value .vs. Reconstructed value •The scatter of is large. Rmfp ⇣ Tvir •Other reconstructed parameters match true one relatively well. Shimabukuro & Semelin (2017) Rmfp 31
  • 49. z=9, 10, 11. PS with thermal noise and cosmic variance Reconstructed by 21cm PS at z=9,10,11 Rmfp ⇣ Tvir 10 20 30 40 50 60 10 20 30 40 50 60 R mfp,ANN [Mpc] Rmfp,true[Mpc] 10 20 30 40 50 60 10 20 30 40 50 60 ANN true 1 10 100 1 10 100 T vir,ANN [K/10 3 ] Tvir,true[K/10 3 ] Red : z=9,10,11 Blue : z=9 The parameters obtained by the ANN match true values. ANN work well ! 32
  • 50. Emulator EoR parameters 21cmPS ANN MCMC Before : 2.5days on 6 cores After: 4minutes speed up by 3 orders of magnitude (Schmit et al 2018) (input) (output) 33
  • 51. parameters 21cm map ANN (input) (output) Parameter estimate Gillet +2018 34
  • 52. 2.Recovering HII bubble size distribution with ANN Based on Shimabukuro et al 2022 35
  • 53. Bubble size distribution (BSD) ''How large bubbles are distributed ?’' Giri 2019 What can we learn from BSD? Giri et al 2017 •EoR source (galaxy or AGN?) •ionizing efficiency, recombination, radiative feedback. (ex.) 36
  • 54. BSD from 21cm observation Kakiichi et al 2017 IFT 21cm Image BSD Incomplete IFT due to limited number of antenna in interferometer. visibility We do not observe 21cm image directly by radio interferometer! We first observe visibility and perform Inverse Fourier Transformation (IFT) to obtain 21cm image. Then, compute BSD. 37
  • 55. BSD from 21cm PS Kakiichi et al 2017 21cm power spectrum BSD visibility We can directly compute 21cm power spectrum from visibility without Inverse Fourier Transformation. Avoid information loss by incomplete IFT. 38
  • 56. BSD from 21cm PS Kakiichi et al 2017 21cm power spectrum BSD visibility We can directly compute 21cm power spectrum from visibility without Inverse Fourier Transformation. Can we recover BSD from 21cm PS ? Avoid information loss by incomplete IFT. 38
  • 57. 21cm power spectrum Input Output ionised bubble size distribution Our datasets consist of 21cm power spectrum as input data and bubble size distribution as output data. Our strategy We try to recover ionised bubble size distribution from 21cm PS 39
  • 58. Recovered BSD Black: Distribution obtained by 21cm 3D image directly. Red: Distribution obtained by ANN. 40
  • 59. Different stage of reionization 41
  • 60. Effect of thermal noise 42 21cm PS with thermal noises (SKA level) Errors are estimated by 10 realizations thermal noises
  • 61. Accuracy for all test data Relative error between two size distributions at fixed bubble radius for all test data. Good recovery for all test data. 43
  • 62. Reconstruction of HI distribution from LAE map is marked in angles (degrees) and the projected distances (comoving megaparsecs). Fig. 5. Same as Figure 4, but for the LAEs z = 6.6. The large red open squares indicate the LAEs with spatially extended Lyα emission including Himiko (Ouchi et al. 2009a) and CR7 (Sobral et al. 2015). See Shibuya et al. (2017b) for more details. Input : Lyman-alpha emitter galaxies Output : HI distribution Yoshiura,HS +2021 44 cGAN
  • 63. Take home messages of my talk are… •The epoch from the Dark Ages to cosmic reionization is the frontier in the history of the universe. •21cm signal is a promising tool to study this epoch. •SKA will bring us fruitful information on the epoch through Dark Ages to EoR •We proposed a method based on machine learning to analyze the 21cm line signal. 45
  • 64. •"21cm cosmology" (Prithcard & Loeb, astro-ph/1109.6012) Textbook Review paper •"Cosmology at low frequencies" (Furlanetto et al, astro-ph/0608032) •''In the beginning : the first sources of light and the deionization of the universe” R,Bakana & A,Loeb (astro-ph/0010468) References 46
  • 65. Coming soon 47 Shimabukuro et al 2022b, accepted in PASJ
  • 68. Foreground problem Jelic et al 2008 The 21cm signal is buried under strong foreground ! Remove foreground ? or Avoid (strong)foreground? Santos 2005 ~8 order Dillon et al 2013
  • 70. Red: 21cm power spectrum > ANN > bubble size distribution Blue: 21cm power spectrum > MCMC > parameter > bubble size distribution 21cm PS > parameter > BSD
  • 71. Algorithm for calculating bubble size distribution 2. Generating density field 3. Generating ionization field from density field with excursion-set formalism for modeling Reionization 1.Input EoR & cosmological parameters 21cmFAST Roughly speaking, it evaluates whether isolated region is ionized or not (Furlanetto+2004, Zahn+ 2010). 4. Evaluating ionized bubble size distribution (Zahn+2007, Mesinger & Furlanetto 2007, See also Giri+ 2018) •Randomly choose a pixel of ionized region. •Record the distance from that pixel to neutral region along randomly chosen direction. •Repeat Monte Carlo procedure times. 107 Ionized region R Neutral region
  • 73. Current observations for EoR •Lyman alpha emitter galaxies(LAE) •Lyman alpha forest Konno et al (2014) (http://pages.astronomy.ua.edu/keel/agn/forest.html) QSO HI cloud >The number of ionizing photons Sensitive to neutral hydrogen fraction
  • 74. Current observations for EoR •Lyman alpha emitter galaxies(LAE) •Lyman alpha forest Konno et al (2014) (http://pages.astronomy.ua.edu/keel/agn/forest.html) QSO HI cloud >The number of ionizing photons Sensitive to neutral hydrogen fraction
  • 75. Current observations for EoR •Lyman alpha emitter galaxies(LAE) •Lyman alpha forest Konno et al (2014) (http://pages.astronomy.ua.edu/keel/agn/forest.html) QSO HI cloud >The number of ionizing photons Sensitive to neutral hydrogen fraction
  • 76. n"" n"# = 3 exp ✓ h⌫21cm kTS ◆ The spin temperature is determined by following equilibrium T 1 S = T 1 CMB + xcT 1 K + x↵T 1 c 1 + xc + x↵ de-excitation rate by collision de-excitation rate by UV photons excitation rate by UV photons excitation rate by collision Stimulated by CMB photons Spontaneous de- excitation with Einstein coefficient
  • 77. Wouthuysen Field (WF)effect •The mechanism that couples the spin temperature of neutral hydrogen atom to Lyman-alpha photons(Wouthuysen 1952,Field 1959) •The hyperfine state is changed via 2P state Solid lines : allowed path Dashed lines : not allowed path
  • 78. The impact of IMF on 21cm signal Jones+ 2022, Magg+ 2021 IMF Lower mass dominated IMF causes delayed 21cm signal.
  • 79. 21cm PS with SKA SKA covers wide epoch and range of the 21cm PS !! Redshift evolution Scale dependence z=8.95 z=15.98 Koopmans et al. (2014) Pritchard et al. (2014)
  • 80.
  • 82. • 1000 EoR models • 48000 training datasets (20% of which is used for validation) • 2000 test datasets • 21cm PS is ranged from k=0.11/Mpc to 1.1/Mpc with 14 bins • 5 hidden layers • 212 neurons at each hidden layer • 2000 iterations Setup
  • 83. Evaluate accuracy: noise We evaluate accuracy of obtained parameters by chi-square. Smaller chi-square means better accuracy. single z As expected, accuracy becomes worse if we add noise to 21cm power spectrum. without noise with noise
  • 84. Evaluate accuracy: redshift We evaluate accuracy of obtained parameters by chi-square. Smaller chi-square means better accuracy. multiple z The accuracy of parameter estimation is improved when we consider redshift evolution of 21cm power spectrum. Single z Both include noise
  • 85. HERA results “HERA Phase I Limits on the cosmic 21cm signal” (astro-ph/2108.07282)
  • 86. First HERA results HERA(8/4) Constraints on EoR and cosmology(8/16)
  • 87. First HERA results HERA(8/4) Constraints on EoR and cosmology(8/16)
  • 88. Observation •HERA phase I instrument (HERA/PAPER hybrid) •HERA Phase I observation (2017/10- 2018/4) •2017/12/10-2017/12/28. 18 nights. 10 hours/night. 18*10=180 hours •52 antennas at the time of observation. (350 antennas in the end). However, we can only use 39 antennas
  • 89. Calibration procedure No treatment for foreground such as foreground removal. Just use foreground avoidance (EoR window)
  • 90. Observational results band 1 (z=10.4) band 2 (z=7.9) Consistent with thermal noise level
  • 91.
  • 92. Data Likelihood :21cm power spectrum data z=7.9,10.3 :Likelihood function :Posterior via Bayesʼ theorem u: extant systematics W: window function m: cosmic 21cm signal for given parameter θ Γ: inverse of covariance matrix of the data
  • 93. Marginalizing over systematics We have no explicit way of modeling u We marginalize directly over the binned values u Assuming Γ is diagonal and writing t=d-Wm
  • 94. Inverse Likelihood Given upper limits presented by HERA are still roughly two orders of magnitude above fi ducial 21cm models We introduce inverse likelihood *LOFAR and MWA also adopted same manner “With the inverse likelihood, the resulting marginalized distributions identify the parameter combinations that can be ruled out by the HERA limits alone”
  • 96. Lower limits on spin temperature Assumptions •Full WF coupling (i.e. T_s=T_k) •x_H=1 •Performing a spherical average of RSD : Density driven approach At z=7.9, 95% con fi dence level is above adiabatic cooling !
  • 97. Galaxy-driven models of the cosmic 21cm signal “standard” galaxy formation models used by 21cmFAST (Park et al 2019) •Stellar to Halo mass relation empirical galaxy relations, which reproduces the observed UV luminosity function of galaxies during the EoR •ionizing escape fraction •X-ray SED of high-z galaxies
  • 98. Bayesian inference Performing Bayesian inference by 21cmMC (Greig et al 2015,2017,2018) Including… •Observed faint galaxy UV luminosity functions at z=6-10 •High redshift QSO spectra at z~5.9 •CMB optical depth •Length of 250cMpc •128^3 grids Note that this should not be interpreted as a Bayesian posterior of disfavored models. The models that exceed HERA reside in the parameter space.
  • 99. Spin temperature and neutral fraction disfavored by HERA •At z=7.9, T_s <3 K is disfavored for T_s/T_{radio} <0.1 for 0.1 <x_H < 0.9. •These constraints are somewhat tighter than LOFAR and MWA.
  • 100. With HERA Without HERA(galaxy UV luminosity function, Lyman alpha forest, CMB) Posterior •HERA limits do not have notable impact over most of the astrophysical parameters except X-ray parameters. First galaxies were more X- ray luminous than their local counterparts
  • 102. Motivated from EDGESʼs results •milli-charged dark matter (mQDM) •Extra radio background •HERA Band2 (z=7.9) result indicates some heating by z=7.9 (above adiabatic cooling) •An EDGES detection of mQDM is only compatible withe HERA if heating takes place between z=17-10.4
  • 103. If there are extra-radio back ground, 21cm fl uctuations are enhanced •A fl uctuating, time-variable radio background generated by galaxies •A smooth synchrotron background that decays with time Models with an additional radio background can easily exceed HERA upper limits
  • 104. •A fl uctuating, time-variable radio background generated by galaxies <latexit sha1_base64="9rI0RlrwheQ4zRZXMwp/4fe8jzk=">AAACAXicbVDLSsNAFJ3UV42vqBvBzWARXIWkFR8gUnTjsoKthSaEyXTSDp1MwsxEKKVu/BU3LhRx61+482+ctFlo64ELh3Pu5d57wpRRqRzn2ygtLC4tr5RXzbX1jc0ta3unJZNMYNLECUtEO0SSMMpJU1HFSDsVBMUhI/fh4Dr37x+IkDThd2qYEj9GPU4jipHSUmDtRUEbXkLHrtWg55lRIOAFrJ27ZmBVHNuZAM4TtyAVUKARWF9eN8FZTLjCDEnZcZ1U+SMkFMWMjE0vkyRFeIB6pKMpRzGR/mjywRgeaqULo0To4gpO1N8TIxRLOYxD3Rkj1ZezXi7+53UyFZ35I8rTTBGOp4uijEGVwDwO2KWCYMWGmiAsqL4V4j4SCCsdWh6CO/vyPGlVbffErt4eV+pXRRxlsA8OwBFwwSmogxvQAE2AwSN4Bq/gzXgyXox342PaWjKKmV3wB8bnD8Lekz0=</latexit> fX > 0.33 fr < 391 We constrain with 1 sigma con fi dence level high T_r is excluded when T_k is less than 1000 K
  • 105. •A smooth synchrotron background that decays with time
  • 107. 観測
  • 108. データ較正:Antenna metrics 相関器からのデータは最初、antenna metricsステージ に送られ、誤ったアンテナはフラッグされる。 antenna metricsは10分ごとに計算される。 Antenna metrics antenna metricsはアンテナゲインが他のアンテナゲインと⽐べて値が低いかを計 算する。(ロストパワー、接続不良などが原因) 5σより⼤きければアンテナをフラッグする。
  • 109. データ較正:Redundant baseline calibration g: antennae gain 21cm cosmologyで重要なチャレンジの⼀つが装置由来のゲインを精密に⾏うこと この式を解いてantenna gainを得たい。 ”(HERA’s) Redundant-base line calibration uses the principle that every redundant baseline should measure the same visibility” 理想的なχ⼆乗分布からのズレ >熱雑⾳以上の系統誤差が⼊っていることを ⽰唆。
  • 111. データ較正:RFI fl agging 時間と周波数のデータポイント周りの分布でoutlierを検出する。 Raw HERA data, the gain solutions from redundant-baseline calibration and redundant visibility solutions, its chi-square distribution, the absolute calibration gain and their chi-square distribution Input Z-scoreを計算してFlagging
  • 112. データ較正:Gain smoothing redundant calibrationではgain phaseにギャップが⾒られるが、absolute calibration ではギャップが解消されている。また、RFIを同定後、 fl ag maskをFourier fi lter algorithmに⽤いてdeconvolution。さらにmissing pixelをsmoothly varying componentモデルを⽤いて埋めた(Gain smoothing)
  • 115. データ較正:Systematic modeling •HERA phase Iシステムではケーブル反射やchain cross couplingが重⼤な系統誤差として存在。 •re fl ection calibrationとcross-coupling fi lteringで 系統誤差を軽減したが、もしこの較正が適切でな ければ、cosmological signal lossが起きるかもし れない。 Kern et al (2020b)
  • 116. データ較正:Faraday rotated foreground emission instrumental linear polarization pseudo-Stokes polarization Faraday depth instrumental systematicsを除去した後もpower spectrumにlow level excess Faraday rotation。ストークスラパメータを調べた Stokes Q > stokes I leakageはstokes I power spectrum に影響を与える。
  • 118. パワースペクトル解析 ビジビリティーをdelay domainにフーリエ変換 Quadratic estimator (alpha band) x: ビジビリティー R: 重み⾏列 Q:共分散⾏列のバンドパワー微分。