HYDRAULIC MODELING OF
SIDE-CHANNEL SPILLWAY AT IVEN DAM
Reporter: Ayurzana.B, M Sc.
School of Civil Engineering and Architecture of MUST
MUST
School of Civil Engineering
and Architecture
EED
Hydraulics, Hydraulic structures
professor team
HYDRAULIC MODELING OF SIDE-CHANNEL SPILLWAY ON IVEN DAM
Research goals
Research object: Iven dam, Selenge province, Mongolia
•To determine and evaluate of flow regimes using Physical
and Numerical modeling with Probably Max discharge of
spillway at Iven dam
•To acquire and study usage of hydraulic modeling
methodology
•To identify approach of improve standard designing method
HYDRAULIC MODELING OF SIDE-CHANNEL SPILLWAY ON IVEN DAM
Pervious study
Hinds, 1926, Side channel spillways: Hydraulic theory and Experimental
determination of losses
Yen, Venzel et all, 1970, Spatially varied flow equation in Side
channel spillway
Sliskii.S, 1986, Hydraulic estimation of High-pressure hydraulic
structures
Mariana Maradjieva, 2007, Hydraulic research on side-channel
spillways based on physical modeling and optimization
Jerzy Machajski, 2010, Model investigations of side channel spillway
of The Pilchovice dam on the Bobr river
HYDRAULIC MODELING OF SIDE-CHANNEL SPILLWAY ON IVEN DAM
Pervious study
Physical model of The Pilchovice dam in Poland
HYDRAULIC MODELING OF SIDE-CHANNEL SPILLWAY ON IVEN DAM
Pervious study
R.Gabl, S.Achleitner et all, 2012, Side-channel spillway – Hybrid modeling
HYDRAULIC MODELING OF SIDE-CHANNEL SPILLWAY ON IVEN DAM
Research Methodology
Analytical Fluid dynamics AFD
Experimental Fluid dynamics EFD
Computational Fluid Dynamics CFD
HYDRAULIC MODELING OF SIDE-CHANNEL SPILLWAY ON IVEN DAM
Analytical Fluid dynamics AFD
We can obtain equation of
Side-channel spillway using
Momentum equation
/Reynolds Transport
theorem/ and Energy
equation
Momentum between from cross section 1 - 1 to 2 - 2
HYDRAULIC MODELING OF SIDE-CHANNEL SPILLWAY ON IVEN DAM
Analytical Fluid dynamics AFD
Spatially varied flow equation SVF
Energy Principle
Decreasing dischargeIncreasing discharge
Solving method: Fr = 1 and Finite difference method
HYDRAULIC MODELING OF SIDE-CHANNEL SPILLWAY ON IVEN DAM
Experimental Fluid Dynamics ЕFD
Geometry, kinematic, dynamic and mechanical similarity
Geometry similarity
Kinematic similarity
Dynamic similarity
Similarity criteria (numbers)
Otherwise
HYDRAULIC MODELING OF SIDE-CHANNEL SPILLWAY ON IVEN DAM
Experimental Fluid Dynamics ЕFD
Discharge relation
HYDRAULIC MODELING OF SIDE-CHANNEL SPILLWAY ON IVEN DAM
Computational Fluid Dynamics CFD
Шингэний динамикийг тооцоолон бодох арга
Computational fluid dynamic
Вычислительная гидродинамика
HYDRAULIC MODELING OF SIDE-CHANNEL SPILLWAY ON IVEN DAM
Computational Fluid Dynamics CFD
Reynolds Averaged
Navier-Stokes
(RANS)
Finite Volume method (FVM),
Finite Element Method (FEM),
Finite Difference method (FDM)
VoF (Volume of Fluid) have been given by Hoh, Woodward (1976)
K – E turbulence model
HYDRAULIC MODELING OF SIDE-CHANNEL SPILLWAY ON IVEN DAM
Computational Fluid Dynamics CFD
HYDRAULIC MODELING OF SIDE-CHANNEL SPILLWAY ON IVEN DAM
Standard design method- Flow regime
Probably max flow PMF - Design discharge Q5% = 131.0 m3/s
Water surface relation y = -0.0014x + 774.41
771.50
772.00
772.50
773.00
773.50
774.00
774.50
775.00
0 10 20 30 40 50 60
Elevation,m
Trough length , m
Water surface profile and bottom of channel (velocity increasing by linear relation)
HYDRAULIC MODELING OF SIDE-CHANNEL SPILLWAY ON IVEN DAM
Standard design method- Flow regime
Design discharge Q5% = 131.0 m3/s
Water surface relation y = -0.0019x + 774.4
771.50
772.00
772.50
773.00
773.50
774.00
774.50
775.00
0 10 20 30 40 50 60
Elevation,m
Trough bottom length , m
Water surface profile and bottom of channel (cross section area increasing by linear
relation)
HYDRAULIC MODELING OF SIDE-CHANNEL SPILLWAY ON IVEN DAM
Standard design method- Flow regime
Design discharge Q5% = 131.0 m3/s
773.03
772.53
772.21
771.99
771.82
771.68
772.69
772.12
771.87
771.77 771.73
771.73
771.50
772.00
772.50
773.00
773.50
774.00
774.50
775.00
0 10 20 30 40 50 60 70
Elevation,m
Length , m
Second solution
First solution
Fr Flow Cross section
1.78 Supercritical 0
0.77 Subcritical 1
0.80 Subcritical 2
0.82 Subcritical 3
0.84 Subcritical 4
0.85 Subcritical 5
0.87 Subcritical 6
HYDRAULIC MODELING OF SIDE-CHANNEL SPILLWAY ON IVEN DAM
Physical modeling
Physical model scale factor:
If prototype material is concrete which roughness is equal to
n = 0.017, model roughness would be:
Model discharge:
HYDRAULIC MODELING OF SIDE-CHANNEL SPILLWAY ON IVEN DAM
Physical modeling
HYDRAULIC MODELING OF SIDE-CHANNEL SPILLWAY ON IVEN DAM
Physical modeling
HYDRAULIC MODELING OF SIDE-CHANNEL SPILLWAY ON IVEN DAM
CFD modeling
K-Epsilon Turbulence, Turbulent,
Water and air - Segregated Flow, water
temperature is not change - Segregated Fluid
Isothermal,
Define interaction between air and water -
Volume of Fluid model
Selected model was Implicit Unsteady because Flow was Eulerian Phases, Three
dimensional, unsteady flow and Dominated force is Gravity, and automatically
selected Reynolds Averaged Navier-Stokes
CFD domain
Trimmer mesh
HYDRAULIC MODELING OF SIDE-CHANNEL SPILLWAY ON IVEN DAM
Results
0.40
0.50
0.60
0.70
0.80
0.90
0 1 2 3 4 5
Depth,m
Crest length, trough x - axis, m
X ̅
0.91
0.70
0.54
0.40
0.50
0.60
0.70
0.80
0.90
1.00
0 1 2 3 4 5
Depth,m
Crest length, trough x - axis, m
1
0.92
0.68
0.53
0.40
0.50
0.60
0.70
0.80
0.90
1.00
0 1 2 3 4 5
Defth,m
Crest length, trough x-axis
X
0.40
0.50
0.69
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0 1 2 3 4 5
Defth,m
Crest length, m
X
Average error 0,04m
HYDRAULIC MODELING OF SIDE-CHANNEL SPILLWAY ON IVEN DAM
Results
HYDRAULIC MODELING OF SIDE-CHANNEL SPILLWAY ON IVEN DAM
Results
3.08
3.24
3.52
y = 0.009x2 + 0.042x + 3.076
2.50
2.70
2.90
3.10
3.30
3.50
3.70
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Velocity,m/s
Crest length, m
X ̅
3.60
2.522.16
y = 0.057x2 + 2.16
2.00
2.20
2.40
2.60
2.80
3.00
3.20
3.40
3.60
3.80
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Velocity,m/s
Crest length, m
velocity
Physical modeling
CFD modeling
Relative error 2,27%
HYDRAULIC MODELING OF SIDE-CHANNEL SPILLWAY ON IVEN DAM
Results
HYDRAULIC MODELING OF SIDE-CHANNEL SPILLWAY ON IVEN DAM
Results
Test №2
Test №1
Relative error 1,8% Test№2 VS Test№3
Relative error 72,3% Test VS SDM
Test №3
Standard designing method
HYDRAULIC MODELING OF SIDE-CHANNEL SPILLWAY ON IVEN DAM
Results
131m3/s
HYDRAULIC MODELING OF SIDE-CHANNEL SPILLWAY ON IVEN DAM
Results
106.5m3/s
HYDRAULIC MODELING OF SIDE-CHANNEL SPILLWAY ON IVEN DAM
Results
HYDRAULIC MODELING OF SIDE-CHANNEL SPILLWAY ON IVEN DAM
Results
HYDRAULIC MODELING OF SIDE-CHANNEL SPILLWAY ON IVEN DAM
Results
HYDRAULIC MODELING OF SIDE-CHANNEL SPILLWAY ON IVEN DAM
Results
Cross section 3
HYDRAULIC MODELING OF SIDE-CHANNEL SPILLWAY ON IVEN DAM
Results
Cross section 6
HYDRAULIC MODELING OF SIDE-CHANNEL SPILLWAY ON IVEN DAM
Comparision Results
Water surface elevation
CFD
Physical model
HYDRAULIC MODELING OF SIDE-CHANNEL SPILLWAY ON IVEN DAM
Results
HYDRAULIC MODELING OF SIDE-CHANNEL SPILLWAY ON IVEN DAM
Conclusion
1. As a result of the study, capacity of the side channel
spillway at Iven dam should be increased.
2. Before any hydraulic structure (dam, channel, weir, and
bypass construction etc) is built, the hydraulic structure
should be validated using physical and CFD modeling
3. From the studies, approach results of the spillway SDM
that have been effective nowadays, are defined to be not
matching with physical and CFD models. This informs us to
update or create a new approach to do SDM.
HYDRAULIC MODELING OF SIDE-CHANNEL SPILLWAY ON IVEN DAM
Recommendation
There for to improve the accurate of standard design
method, we should be assume below condition, then to
study using Physical and CFD model.
-Bottom slope is not changed trough the Side-Channel
-Similarity of all cross section according to geometry
similarity
HYDRAULIC MODELING OF SIDE-CHANNEL SPILLWAY ON IVEN DAM
Thanks for your attention
HYDRAULICS AND HYDRAULIC ENGINEERING TEAM
Future goals
-Deeply learn HEC Package
-Storm water management modeling in UB city (SWMM)
-CFD modeling of special hydraulic structure and river habitat
(Spillway, outlet and fish passage/ladder)

English ayur

  • 1.
    HYDRAULIC MODELING OF SIDE-CHANNELSPILLWAY AT IVEN DAM Reporter: Ayurzana.B, M Sc. School of Civil Engineering and Architecture of MUST MUST School of Civil Engineering and Architecture EED Hydraulics, Hydraulic structures professor team
  • 2.
    HYDRAULIC MODELING OFSIDE-CHANNEL SPILLWAY ON IVEN DAM Research goals Research object: Iven dam, Selenge province, Mongolia •To determine and evaluate of flow regimes using Physical and Numerical modeling with Probably Max discharge of spillway at Iven dam •To acquire and study usage of hydraulic modeling methodology •To identify approach of improve standard designing method
  • 3.
    HYDRAULIC MODELING OFSIDE-CHANNEL SPILLWAY ON IVEN DAM Pervious study Hinds, 1926, Side channel spillways: Hydraulic theory and Experimental determination of losses Yen, Venzel et all, 1970, Spatially varied flow equation in Side channel spillway Sliskii.S, 1986, Hydraulic estimation of High-pressure hydraulic structures Mariana Maradjieva, 2007, Hydraulic research on side-channel spillways based on physical modeling and optimization Jerzy Machajski, 2010, Model investigations of side channel spillway of The Pilchovice dam on the Bobr river
  • 4.
    HYDRAULIC MODELING OFSIDE-CHANNEL SPILLWAY ON IVEN DAM Pervious study Physical model of The Pilchovice dam in Poland
  • 5.
    HYDRAULIC MODELING OFSIDE-CHANNEL SPILLWAY ON IVEN DAM Pervious study R.Gabl, S.Achleitner et all, 2012, Side-channel spillway – Hybrid modeling
  • 6.
    HYDRAULIC MODELING OFSIDE-CHANNEL SPILLWAY ON IVEN DAM Research Methodology Analytical Fluid dynamics AFD Experimental Fluid dynamics EFD Computational Fluid Dynamics CFD
  • 7.
    HYDRAULIC MODELING OFSIDE-CHANNEL SPILLWAY ON IVEN DAM Analytical Fluid dynamics AFD We can obtain equation of Side-channel spillway using Momentum equation /Reynolds Transport theorem/ and Energy equation Momentum between from cross section 1 - 1 to 2 - 2
  • 8.
    HYDRAULIC MODELING OFSIDE-CHANNEL SPILLWAY ON IVEN DAM Analytical Fluid dynamics AFD Spatially varied flow equation SVF Energy Principle Decreasing dischargeIncreasing discharge Solving method: Fr = 1 and Finite difference method
  • 9.
    HYDRAULIC MODELING OFSIDE-CHANNEL SPILLWAY ON IVEN DAM Experimental Fluid Dynamics ЕFD Geometry, kinematic, dynamic and mechanical similarity Geometry similarity Kinematic similarity Dynamic similarity Similarity criteria (numbers) Otherwise
  • 10.
    HYDRAULIC MODELING OFSIDE-CHANNEL SPILLWAY ON IVEN DAM Experimental Fluid Dynamics ЕFD Discharge relation
  • 11.
    HYDRAULIC MODELING OFSIDE-CHANNEL SPILLWAY ON IVEN DAM Computational Fluid Dynamics CFD Шингэний динамикийг тооцоолон бодох арга Computational fluid dynamic Вычислительная гидродинамика
  • 12.
    HYDRAULIC MODELING OFSIDE-CHANNEL SPILLWAY ON IVEN DAM Computational Fluid Dynamics CFD Reynolds Averaged Navier-Stokes (RANS) Finite Volume method (FVM), Finite Element Method (FEM), Finite Difference method (FDM) VoF (Volume of Fluid) have been given by Hoh, Woodward (1976) K – E turbulence model
  • 13.
    HYDRAULIC MODELING OFSIDE-CHANNEL SPILLWAY ON IVEN DAM Computational Fluid Dynamics CFD
  • 14.
    HYDRAULIC MODELING OFSIDE-CHANNEL SPILLWAY ON IVEN DAM Standard design method- Flow regime Probably max flow PMF - Design discharge Q5% = 131.0 m3/s Water surface relation y = -0.0014x + 774.41 771.50 772.00 772.50 773.00 773.50 774.00 774.50 775.00 0 10 20 30 40 50 60 Elevation,m Trough length , m Water surface profile and bottom of channel (velocity increasing by linear relation)
  • 15.
    HYDRAULIC MODELING OFSIDE-CHANNEL SPILLWAY ON IVEN DAM Standard design method- Flow regime Design discharge Q5% = 131.0 m3/s Water surface relation y = -0.0019x + 774.4 771.50 772.00 772.50 773.00 773.50 774.00 774.50 775.00 0 10 20 30 40 50 60 Elevation,m Trough bottom length , m Water surface profile and bottom of channel (cross section area increasing by linear relation)
  • 16.
    HYDRAULIC MODELING OFSIDE-CHANNEL SPILLWAY ON IVEN DAM Standard design method- Flow regime Design discharge Q5% = 131.0 m3/s 773.03 772.53 772.21 771.99 771.82 771.68 772.69 772.12 771.87 771.77 771.73 771.73 771.50 772.00 772.50 773.00 773.50 774.00 774.50 775.00 0 10 20 30 40 50 60 70 Elevation,m Length , m Second solution First solution Fr Flow Cross section 1.78 Supercritical 0 0.77 Subcritical 1 0.80 Subcritical 2 0.82 Subcritical 3 0.84 Subcritical 4 0.85 Subcritical 5 0.87 Subcritical 6
  • 17.
    HYDRAULIC MODELING OFSIDE-CHANNEL SPILLWAY ON IVEN DAM Physical modeling Physical model scale factor: If prototype material is concrete which roughness is equal to n = 0.017, model roughness would be: Model discharge:
  • 18.
    HYDRAULIC MODELING OFSIDE-CHANNEL SPILLWAY ON IVEN DAM Physical modeling
  • 19.
    HYDRAULIC MODELING OFSIDE-CHANNEL SPILLWAY ON IVEN DAM Physical modeling
  • 20.
    HYDRAULIC MODELING OFSIDE-CHANNEL SPILLWAY ON IVEN DAM CFD modeling K-Epsilon Turbulence, Turbulent, Water and air - Segregated Flow, water temperature is not change - Segregated Fluid Isothermal, Define interaction between air and water - Volume of Fluid model Selected model was Implicit Unsteady because Flow was Eulerian Phases, Three dimensional, unsteady flow and Dominated force is Gravity, and automatically selected Reynolds Averaged Navier-Stokes CFD domain Trimmer mesh
  • 21.
    HYDRAULIC MODELING OFSIDE-CHANNEL SPILLWAY ON IVEN DAM Results 0.40 0.50 0.60 0.70 0.80 0.90 0 1 2 3 4 5 Depth,m Crest length, trough x - axis, m X ̅ 0.91 0.70 0.54 0.40 0.50 0.60 0.70 0.80 0.90 1.00 0 1 2 3 4 5 Depth,m Crest length, trough x - axis, m 1 0.92 0.68 0.53 0.40 0.50 0.60 0.70 0.80 0.90 1.00 0 1 2 3 4 5 Defth,m Crest length, trough x-axis X 0.40 0.50 0.69 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0 1 2 3 4 5 Defth,m Crest length, m X Average error 0,04m
  • 22.
    HYDRAULIC MODELING OFSIDE-CHANNEL SPILLWAY ON IVEN DAM Results
  • 23.
    HYDRAULIC MODELING OFSIDE-CHANNEL SPILLWAY ON IVEN DAM Results 3.08 3.24 3.52 y = 0.009x2 + 0.042x + 3.076 2.50 2.70 2.90 3.10 3.30 3.50 3.70 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Velocity,m/s Crest length, m X ̅ 3.60 2.522.16 y = 0.057x2 + 2.16 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60 3.80 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Velocity,m/s Crest length, m velocity Physical modeling CFD modeling Relative error 2,27%
  • 24.
    HYDRAULIC MODELING OFSIDE-CHANNEL SPILLWAY ON IVEN DAM Results
  • 25.
    HYDRAULIC MODELING OFSIDE-CHANNEL SPILLWAY ON IVEN DAM Results Test №2 Test №1 Relative error 1,8% Test№2 VS Test№3 Relative error 72,3% Test VS SDM Test №3 Standard designing method
  • 26.
    HYDRAULIC MODELING OFSIDE-CHANNEL SPILLWAY ON IVEN DAM Results 131m3/s
  • 27.
    HYDRAULIC MODELING OFSIDE-CHANNEL SPILLWAY ON IVEN DAM Results 106.5m3/s
  • 28.
    HYDRAULIC MODELING OFSIDE-CHANNEL SPILLWAY ON IVEN DAM Results
  • 29.
    HYDRAULIC MODELING OFSIDE-CHANNEL SPILLWAY ON IVEN DAM Results
  • 30.
    HYDRAULIC MODELING OFSIDE-CHANNEL SPILLWAY ON IVEN DAM Results
  • 31.
    HYDRAULIC MODELING OFSIDE-CHANNEL SPILLWAY ON IVEN DAM Results Cross section 3
  • 32.
    HYDRAULIC MODELING OFSIDE-CHANNEL SPILLWAY ON IVEN DAM Results Cross section 6
  • 33.
    HYDRAULIC MODELING OFSIDE-CHANNEL SPILLWAY ON IVEN DAM Comparision Results Water surface elevation CFD Physical model
  • 34.
    HYDRAULIC MODELING OFSIDE-CHANNEL SPILLWAY ON IVEN DAM Results
  • 35.
    HYDRAULIC MODELING OFSIDE-CHANNEL SPILLWAY ON IVEN DAM Conclusion 1. As a result of the study, capacity of the side channel spillway at Iven dam should be increased. 2. Before any hydraulic structure (dam, channel, weir, and bypass construction etc) is built, the hydraulic structure should be validated using physical and CFD modeling 3. From the studies, approach results of the spillway SDM that have been effective nowadays, are defined to be not matching with physical and CFD models. This informs us to update or create a new approach to do SDM.
  • 36.
    HYDRAULIC MODELING OFSIDE-CHANNEL SPILLWAY ON IVEN DAM Recommendation There for to improve the accurate of standard design method, we should be assume below condition, then to study using Physical and CFD model. -Bottom slope is not changed trough the Side-Channel -Similarity of all cross section according to geometry similarity
  • 37.
    HYDRAULIC MODELING OFSIDE-CHANNEL SPILLWAY ON IVEN DAM Thanks for your attention
  • 38.
    HYDRAULICS AND HYDRAULICENGINEERING TEAM Future goals -Deeply learn HEC Package -Storm water management modeling in UB city (SWMM) -CFD modeling of special hydraulic structure and river habitat (Spillway, outlet and fish passage/ladder)

Editor's Notes

  • #3 Судалгааны ажлын зорилго, зорилтИвен голын боомтын ус хаях барилгын урсгалын горимыг тооцоот зарцуулгатай үед гидравлик загварчлал (физик ба ШДТБ загварчлал) ашиглан тодорхойлж үнэлгээ өгөхГидравлик загварчлалын аргуудыг судалж эзэмшихТраншейн ус хаях барилгын төсөл, тооцооны аргачлалд үнэлгээ өгөх, түүнийг боловсронгуй болгох арга замСудалгааны ажлын Resultsд үндэслэн дүгнэлт, санал боловсруулахСудалгааны объект: Сэлэнгэ аймаг Сант сум, Ивен голын адаг
  • #4 Хиндс 1926 онд "Траншейн ус халиагуур" онол, туршилтын судалгааны Results ба эдийн засгийн факторЕэн, Вензел нар 1970 онд траншейн ус халиагуурын математик загварыг гарган ирсэн. С.Слиский (1986) "Өндөр даралтат усны барилгын гидравлик тооцоо" номонд траншейн ус халиагуурыг туршсан ResultsМарина Мараджева 2007 онд бичсэн "Траншейн ус халиагуурын физик загвар болон оновчлолдсуурилсан гидравликийн судалгаа" 2010 онд Жерзи Мачажски 1912 онд Польшт баригдсан Аркан боомт бүхий УЦС - ийн траншейн ус халиагуурын физик загварчлалын судалгаа
  • #5 Польшийн Пилчовис боомтын траншейн ус халиагуурын физик загвар
  • #6 2012 онд Австрийн Иннсбург их сугуулийн Роман габл, Степан Ачлиетнер нар "Траншейн ус халиагуурын хосмог загварчлал" төслөө Эзингербоден усан сангийн ус хаюурын барилга
  • #7 Research MethodologyОнолын Research MethodologyAFDОнолын Research MethodologyAFDТооцоолон бодох Research Methodology (ШДТБ)CFD
  • #8 Траншейн ус хаюур нь хөндлөн огтлолын уртын туршид q хэмжээтэй нэгжзарцуулга траншейдтогтмолорж ирэх учир хөдөлгөөний тоо хэмжээний өөрчлөлтийн зарчим (моментийн тэгшитгэл) ашиглан математик загвар гарган авъя.
  • #9 хувьсах зарцуулгатай жигд бус урсгалын динамик тэгшитгэл Spatially varied flow SVFЭнергийн зарчимд тулгуурлан дээрх тэгшитгэлийг мөн гаргаж болно.Зарцуулгын нэмэгдэлтэй үедЗарцуулгын хорогдолтой үедЗарцуулгын хорогдолтой үед
  • #10 Натур (Физик)Research Methodology ЕFDГеометр, кинематик, динамик ба механикийн төсүүдГеометр төсКинематик төсДинамик төсТөсийн критери (тоо)Нөгөө талаас
  • #11 зарцуулгын харьцааг олбол
  • #12 зарцуулгын харьцааг олбол
  • #13 Тооцоолон бодох Research MethodologyШДТБРейнольдсын дундаж Навьер-Стокесийн тэгшитгэл (RANS)Хосолмол алгоритм - CFD багцад загварТөгсгөлөг эзлэхүүний арга (FVM), Төгсгөлөг элементийн арга (FEM), Төгсгөлөг ялгаварын арга (FDM)Шингэний эзлэхүүний аргыг (VoF) 1976 онд Нох болон Вүүдвард - нар дэвшүүлсэнK – E turbulence загвар
  • #15 Physical modeling - Flow regimsТооцоот зарцуулга Q5% = 131.0 м3/сУсны түвшин ба траншейн ёроол (Хурд шугаман хамаарлаар нэмэгдэх үед)Усны түвшний хамаарал y = -0.0014x + 774.41
  • #16 Physical modeling - Flow regims