Are alternatives needed for the workhorses
Eu2+ and Ce3+ in phosphor converted LEDs?
June 18 2018
http://LumiLab.UGent.be
Philippe Smet
philippe.smet@ugent.be
@pfsmet
EMRS Spring meeting – Strasbourg – 18 to 22 June 2018
@UGentLumiLab
Presentation can be downloaded at http://www.slideshare.net/pfsmet
Lighting accounts for an estimated 18% of the world’s
electricity consumption.
Fluorescent and LED lighting use rare earth elements.
The RE elements regularly make headlines.
Do we really need RE for lighting?
@pfsmet
Luminous efficacy of radiation (LER) – lumen/Watt
V(λ)
400nm 700nm550nm
Luminous efficacy (LE)
Luminous efficacy (LE)
185nm
405nm 365nm
Discharge lamps: Na, Hg
Fluorescent lighting - principle
Conversion by photoluminescent materials
(hence “fluorescence lamps”)
Emission spectrum fluorescent lighting
0,0
0,2
0,4
0,6
0,8
1,0
350 450 550 650 750
Emission wavelength (nm)
Intensity
Tb3+
Tb3+
Eu3+
Hg
254nm
(La,Ce)PO4:Tb3+
Y2O3:Eu3+
(BaMgAl10O17:Eu2+)
@pfsmet
Luminous efficacy (LE)
°1907 – SiC – yellow emission
1940s: theoretical framework (cfr. transistor, p-n junction)
1955: EL in III-V compounds
1962: IR emission in GaAs (+ laser)
1960s: green and red LEDs based on GaP
Blue: predicted in GaN-based LEDs in 1950s!
LEDs – direcht conversion of electricity into light
Nobel prize physics 2014
Isamu Akasaki Hiroshi Amano Shuji Nakamura
"for the invention of efficient blue light-emitting diodes (LEDs)
which has enabled bright and energy-saving white light sources"
Light emitting diodes (LEDs)
Nobel prize communication
p
n
Direct bandgap needed!
Nearly monochromatic light.
RGB LEDs – the green gap.
Source: OSRAM
(In,Ga)N
(Al,Ga,In)P
Green gap
Color rendering
Filmpje bellpepper
@pfsmet
Phosphor converted LEDs.
a
b
c
x
y
z
Materials (2010) 3, 2834
0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1
400 500 600 700
Normalizedintensity
Wavelength (nm)
Y3Al5O12:Ce
yellow phosphor
.new application
..new requirements
...new phosphors
Phosphors for LEDs
Blue
LED
Photoluminescent materials (phosphors)
SrGa2S4:Eu2+
Sr2Si5N8:Eu2+
Tunability of Eu2+ based phosphors
Phosphors for LEDs
Journal of Luminescence (2003) 104, p. 239@pfsmet
Phosphors for LEDs
Thousands of different phosphors can be made...
... but only a handful are actually used.
• garnets (YAG:Ce, LuAG:Ce,...)
• silicates ((Ca,Sr,Ba)2SiO4:Eu,...)
• oxynitrides (SrSi2O2N2:Eu, SiAlONs,...)
• nitrides ((Ba,Sr)2Si5N8:Eu, CaAlSiN3:Eu...)
6 (scientific) requirements for LED phosphors
• Suitable emission spectrum (peak, width)
• High (quantum) efficiency (QY, QE)
• Strong absorption at +/- 460nm (EQE)
• Chemically stable
• Short luminescence lifetime
• Thermal stability
Phosphors for LEDs
+ cost, embedding,…
ECS Journal of the Electrochemical Society (2011) 158, p. R37@pfsmet
ECS Journal of the Electrochemical Society (2011) 158, p. R37
Only handful of phosphors are
suitable for high brightness LEDs.
Two dopants: Ce3+ and Eu2+
6 (scientific) requirements for LED phosphors
• Suitable emission spectrum (peak, width)
• Strong absorption at +/- 460nm
• High (quantum) efficiency
• Chemically stable
• Short luminescence lifetime (no saturation)
• Thermal stability
LED
Heat sink
Phosphor
Phosphors for LEDs
Nature Materials (2017) 16, p. 500
(Thermal) losses for phosphor converted LEDs
Assuming QE for phosphor of 90%, overall luminous efficacy 180 lum/W.
@pfsmet
Luminous efficacy (LE)
Lab record – CREE
303 lum/watt
IKEA
PHILIPS
NICHIA
Luminous efficacy (LE)
Fluorescent lighting threshold
DoE
RE usage
• Host: yttrium (YAG), dopants: cerium, europium.
• Phosphors and pigments: 7% of RE usage (2013, Roskill)
• Key applications (CRT displays, fluorescent (+ Tb3+)) + LEDs
• On chip: very low phosphor quantities
• In first order, phosphor use does not scale with luminance
• Narrow red phosphor
Chemically stable, thermally stable, with high saturation level.
• Narrow banded cyan/green phosphors.
• Phosphors for high brightness applications
Headlights, projectors.
• Improved thermal quenching (quantum deficit)
• Rare earth free (?)
Key issues in phosphor research
Red components: Eu2+ doped
http://dx.doi.org/10.1155/2014/290952
CaAlSiN3:Eu2+
Red Mn4+ doped fluoride phosphors
K2SiF6:Mn4+
Synthesis methods
HF + KMnO4
@pfsmet
ECS Journal of Solid State Science and Technology (2016) 5, p. R3040
Quantum dots as an alternative?
Colloidal Quantum Dots | what?
̶ 1983, first discovery in Bell Labs
̶ Since 1990’s, accelerated development
Size-Tunable Optical Properties
5nm
diameter
wavelength
produced
as
printable
inks
CdSe/CdS, InP/ZnSe, perovskites,…
Lowering synthesis cost of InP QDs
Aminophosphines – a new phosphorous precursor
Song, J. Nanoparticle Res. 2013
Tessier, Chem. Mater. 2015
Kim, Angew. Chemie Int. Ed. 2016
Buffard, Chem. Mater. 2016 Full Green-to-red color range accessible
Samsung KS7500
“25% more colour”
QDs for displays
Colour filtering: balance between color gamut and efficiency
ߣ (nm)
350 450 550 650
transmission
100%
Liquid crystal display Colour filters
Displays
• (AM)OLEDs vs LED backlight
Blue OLEDs degrade faster
• Main drivers: colour gamut and efficiency
• Quantum dots (Cd-free…) vs phosphors (Mn4+)
• Electroluminescence from QDs (no filtering, printing,…)
Trends
General lighting
• Further efficiency increase needed
• Long lifetime required (>50 khrs)
• Color quality after brightness increase
• Blue LED flux strongly increased
• Very competitive market
Trends
Displays
Other applications
Conclusions
• Phosphor converted LEDs : relevant energy saving technology
• RE – based phosphors are key elements (Y, Ce, Eu, Tb)
• Mass to luminance ratio is decreasing
• Some alternative materials available (red Mn4+ fluorides)
• Display backlighting: competitive non-RE technologies
• Phosphors: recycling is an issue!
Contact & resources
Philippe Smet
philippe.smet@ugent.be
@pfsmet
http://LumiLab.UGent.be
@UGentLumiLab
Presentation can be downloaded at http://www.slideshare.net/pfsmet
Looking forward to your feedback!

EMRS 2018 Replacing rare earth ions in LEDs (?)

  • 1.
    Are alternatives neededfor the workhorses Eu2+ and Ce3+ in phosphor converted LEDs? June 18 2018 http://LumiLab.UGent.be Philippe Smet philippe.smet@ugent.be @pfsmet EMRS Spring meeting – Strasbourg – 18 to 22 June 2018 @UGentLumiLab Presentation can be downloaded at http://www.slideshare.net/pfsmet
  • 3.
    Lighting accounts foran estimated 18% of the world’s electricity consumption. Fluorescent and LED lighting use rare earth elements. The RE elements regularly make headlines. Do we really need RE for lighting?
  • 6.
  • 7.
    Luminous efficacy ofradiation (LER) – lumen/Watt V(λ) 400nm 700nm550nm
  • 8.
  • 9.
  • 10.
  • 11.
    Fluorescent lighting -principle Conversion by photoluminescent materials (hence “fluorescence lamps”)
  • 12.
    Emission spectrum fluorescentlighting 0,0 0,2 0,4 0,6 0,8 1,0 350 450 550 650 750 Emission wavelength (nm) Intensity Tb3+ Tb3+ Eu3+ Hg 254nm (La,Ce)PO4:Tb3+ Y2O3:Eu3+ (BaMgAl10O17:Eu2+) @pfsmet
  • 14.
  • 15.
    °1907 – SiC– yellow emission 1940s: theoretical framework (cfr. transistor, p-n junction) 1955: EL in III-V compounds 1962: IR emission in GaAs (+ laser) 1960s: green and red LEDs based on GaP Blue: predicted in GaN-based LEDs in 1950s! LEDs – direcht conversion of electricity into light
  • 16.
    Nobel prize physics2014 Isamu Akasaki Hiroshi Amano Shuji Nakamura "for the invention of efficient blue light-emitting diodes (LEDs) which has enabled bright and energy-saving white light sources"
  • 17.
    Light emitting diodes(LEDs) Nobel prize communication p n Direct bandgap needed! Nearly monochromatic light.
  • 18.
    RGB LEDs –the green gap. Source: OSRAM (In,Ga)N (Al,Ga,In)P Green gap
  • 19.
  • 20.
  • 21.
    Materials (2010) 3,2834 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 400 500 600 700 Normalizedintensity Wavelength (nm) Y3Al5O12:Ce yellow phosphor .new application ..new requirements ...new phosphors Phosphors for LEDs Blue LED
  • 22.
  • 23.
    Tunability of Eu2+based phosphors Phosphors for LEDs Journal of Luminescence (2003) 104, p. 239@pfsmet
  • 24.
    Phosphors for LEDs Thousandsof different phosphors can be made... ... but only a handful are actually used. • garnets (YAG:Ce, LuAG:Ce,...) • silicates ((Ca,Sr,Ba)2SiO4:Eu,...) • oxynitrides (SrSi2O2N2:Eu, SiAlONs,...) • nitrides ((Ba,Sr)2Si5N8:Eu, CaAlSiN3:Eu...)
  • 25.
    6 (scientific) requirementsfor LED phosphors • Suitable emission spectrum (peak, width) • High (quantum) efficiency (QY, QE) • Strong absorption at +/- 460nm (EQE) • Chemically stable • Short luminescence lifetime • Thermal stability Phosphors for LEDs + cost, embedding,… ECS Journal of the Electrochemical Society (2011) 158, p. R37@pfsmet
  • 26.
    ECS Journal ofthe Electrochemical Society (2011) 158, p. R37 Only handful of phosphors are suitable for high brightness LEDs. Two dopants: Ce3+ and Eu2+ 6 (scientific) requirements for LED phosphors • Suitable emission spectrum (peak, width) • Strong absorption at +/- 460nm • High (quantum) efficiency • Chemically stable • Short luminescence lifetime (no saturation) • Thermal stability LED Heat sink Phosphor Phosphors for LEDs
  • 27.
    Nature Materials (2017)16, p. 500 (Thermal) losses for phosphor converted LEDs Assuming QE for phosphor of 90%, overall luminous efficacy 180 lum/W. @pfsmet
  • 28.
  • 29.
    Lab record –CREE 303 lum/watt IKEA PHILIPS NICHIA Luminous efficacy (LE) Fluorescent lighting threshold DoE
  • 31.
    RE usage • Host:yttrium (YAG), dopants: cerium, europium. • Phosphors and pigments: 7% of RE usage (2013, Roskill) • Key applications (CRT displays, fluorescent (+ Tb3+)) + LEDs • On chip: very low phosphor quantities • In first order, phosphor use does not scale with luminance
  • 32.
    • Narrow redphosphor Chemically stable, thermally stable, with high saturation level. • Narrow banded cyan/green phosphors. • Phosphors for high brightness applications Headlights, projectors. • Improved thermal quenching (quantum deficit) • Rare earth free (?) Key issues in phosphor research
  • 33.
    Red components: Eu2+doped http://dx.doi.org/10.1155/2014/290952 CaAlSiN3:Eu2+
  • 34.
    Red Mn4+ dopedfluoride phosphors K2SiF6:Mn4+
  • 36.
  • 38.
    ECS Journal ofSolid State Science and Technology (2016) 5, p. R3040
  • 39.
    Quantum dots asan alternative?
  • 40.
    Colloidal Quantum Dots| what? ̶ 1983, first discovery in Bell Labs ̶ Since 1990’s, accelerated development Size-Tunable Optical Properties 5nm diameter wavelength produced as printable inks CdSe/CdS, InP/ZnSe, perovskites,…
  • 41.
    Lowering synthesis costof InP QDs Aminophosphines – a new phosphorous precursor Song, J. Nanoparticle Res. 2013 Tessier, Chem. Mater. 2015 Kim, Angew. Chemie Int. Ed. 2016 Buffard, Chem. Mater. 2016 Full Green-to-red color range accessible
  • 42.
  • 43.
    QDs for displays Colourfiltering: balance between color gamut and efficiency ߣ (nm) 350 450 550 650 transmission 100% Liquid crystal display Colour filters
  • 44.
    Displays • (AM)OLEDs vsLED backlight Blue OLEDs degrade faster • Main drivers: colour gamut and efficiency • Quantum dots (Cd-free…) vs phosphors (Mn4+) • Electroluminescence from QDs (no filtering, printing,…) Trends
  • 45.
    General lighting • Furtherefficiency increase needed • Long lifetime required (>50 khrs) • Color quality after brightness increase • Blue LED flux strongly increased • Very competitive market Trends Displays Other applications
  • 46.
    Conclusions • Phosphor convertedLEDs : relevant energy saving technology • RE – based phosphors are key elements (Y, Ce, Eu, Tb) • Mass to luminance ratio is decreasing • Some alternative materials available (red Mn4+ fluorides) • Display backlighting: competitive non-RE technologies • Phosphors: recycling is an issue!
  • 47.
    Contact & resources PhilippeSmet philippe.smet@ugent.be @pfsmet http://LumiLab.UGent.be @UGentLumiLab Presentation can be downloaded at http://www.slideshare.net/pfsmet Looking forward to your feedback!