SlideShare a Scribd company logo
1 of 6
Download to read offline
TELKOMNIKA Telecommunication, Computing, Electronics and Control
Vol. 18, No. 6, December 2020, pp. 3228~3233
ISSN: 1693-6930, accredited First Grade by Kemenristekdikti, Decree No: 21/E/KPT/2018
DOI: 10.12928/TELKOMNIKA.v18i6.13797  3228
Journal homepage: http://journal.uad.ac.id/index.php/TELKOMNIKA
Improving optical properties of remote phosphor LED using
green Y2O3:Ho3+
and red Mg4(F)(Ge, Sn)O6:Mn2+
layers
My Hanh Nguyen Thi1
, Nguyen Thi Phuong Loan2
, Nguyen Doan Quoc Anh3
1
Faculty of Mechanical Engineering, Industrial University of Ho Chi Minh City, Vietnam
2
Faculty of Fundamental 2, Posts and Telecommunications Institute of Technology, Vietnam
3
Power System Optimization Research Group, Faculty of Electrical and Electronics Engineering,
Ton Duc Thang University, Vietnam
Article Info ABSTRACT
Article history:
Received Aug 4, 2019
Revised Apr 6, 2020
Accepted Jul 9, 2002
The lighting device that employs diodes to create white light (WLEDs) with
quantum dots (QDs) and phosphor layers is a promising lighting method that
is increasingly used in many fields on account of the remarkable color
expressing ability. The QDs film is usually placed apart from the phosphor
layer according to the packaging configuration to prevent light loss due to
backscattering as well as preserve the consistency of the ligands on the QDs
surface. The article also conducted experiments to compare the lighting
properties and thermal output of the two packaging orders of QDs and
phosphor. The heat discharing ranges were simulated with thermography
technology, moreover, other parameters such as light energy emission and PL
spectra are acquired to evaluate the efficiency of the packaging order. The
results from the practical experiment show that while under 10% wt., the
luminous output (LO) of green QDs-on-phosphor structure reaches 1130 lm,
higher than the red QDs-on-phosphor structure with 878 lm, and the color
rendering value in the configuration with red QDs on phosphor is Ra = 74 are
higher than Ra = 68 index of the green QDs-on-phosphor structure. As a result,
the QDs-on-phosphor is determined as the better packaging configuration to
choose to achieve an overall improvement in lighting efficiency, color
rendering index
Keywords:
Color rendering index
Lumen output
Mg4(F)(Ge,Sn)O6:Mn2+
WLEDs
Y2O3:Ho3+
This is an open access article under the CC BY-SA license.
Corresponding Author:
Nguyen Doan Quoc Anh,
Power System Optimization Research Group,
Faculty of Electrical and Electronics Engineering,
Ton Duc Thang University,
Ho Chi Minh City, Vietnam.
Email: nguyendoanquocanh@tdtu.edu.vn
1. INTRODUCTION
White light-emitting diodes (WLEDs) with their phenomenon lighting properties such as high lighting
capacity, power saving and excellent endurance are being increasingly utilized in modern lighting applications
and flat monitor display [1-3]. Fabricating white light by merging discharged light from the blue chip and
the phosphor material Y3Al5O12:Ce3+
(YAG:Ce) is the most commonly used method. The idea of this method
is based on the color-integrating principle, which is combining red and yellow to create white light. While
this LEDs model has high lighting efficacy (LE), the red deficiency within the radiation spectrum, which is
a much-needed chromatic light to improve the color expression ability, prevents it from obtaining high quality
status [4]. Many solutions were suggested in previous researches to address this issue including adding red
TELKOMNIKA Telecommun Comput El Control 
Improving optical properties of remote phospor LED using green Y2O3:Ho3+
... (My Hanh Nguyen Thi)
3229
phosphor materials to enhance the color rendering ability of pc-LEDs [5-8]. The only problem with this method
is the inability of keeping the luminous efficacy index at an acceptable level due to part of their extensive red
emitting spectrum exceeds the human perception [9]. The solid-state lighting field in recent time is focusing
on the semiconductor quantum dots (QDs), an innovative material that can bring about immense changes to
the lighting performance of LEDs, with exceptional optical parameters, namely, the adjustable bandwidth,
small emitting range and high quantum productivity [10-13]. The positive effects of QDs on the color rendering
index (CRI), color gamut as well as the lighting efficacy of pc-LEDs have been verified both in theory and
through practices [14-16]. The most frequently used packaging configurations for pc-LEDs with QDs are applying
a compound of QDs and the phosphorous silicone resin or coating the QDs and the phosphor component separately.
The QDs and the phosphor are blended together and put on the LED chip in the first configuration,
the combined configuration [17, 18], while in the latter configuration the QDs and phosphor layer are applied
individually onto the chip, as separated configuration [19, 20]. The issue with the combined configuration is
the QDs in this structure is part of the reflector and, therefore, too close to the LED chip and results in high
optical density. The remote structure, on the other hand, with a gap between the QDs sheet and the chip
experiences low optical power density. However, the remote structure can stabilize the chemical discrepancy
among QDs molecules at the surface and phosphor silicone expoxy by alternating the polymeric condition that
the QDs sheet is in [21-23]. With this characteristic, the remote packaging configuration appears to be
the optimal solution and was normally applied to create WLEDs with QDs and phosphor.
2. PREPARATION AND SIMULATION
Figure 1 (a) illustrates the scenario where the green QDs particles are placed upon the phosphor layer.
Meanwhile, Figure 1 (b) the red QDs lay upon the phosphor layer. The package configuration is a deciding
factor to the emitted light and heat radiation, thus deciding the lighting performance of WLEDs. While
the relation between the package configuration and the QDs-WLEDs optical performance was thoroughly
expressed in previous studies, there was no practical experiment on the transition of lighting power between
QDs and phosphor. The findings from said research are an important contribution to the QDs-WLEDs
construction guideline, however, the amount of light energy loss during transition in both structures as well as
the effect of QDs on the optical performance are the important aspects that have not been discussed.
(a) (b)
Figure 1. Simulation diagram of two remote WLEDs types with different packaging sequences:
(a) green QDs-on-phosphor type, (b) red QDs-on-phosphor type
Therefore, the goal of this article is to gather the information needed for a quantitative research that
relates to the aspects mentioned above. The primary method is to analyze the decline of lighting power between
QDs and the phosphor layer in both structures, and then compare their operating efficiency to determine which
one is the optimal configuration. To serve this experiment, a red emitting QDs CdSe/ZnS and a WLEDs based
on yellow emitting phosphor and a band of QDs were created. The emission of lighting energy and PL range
indexes needed for the comparison process are computed using an integrating sphere system while
the temperature fields on the devices during operation are imitated by putting the optical indexes in thermal
simulation and then use an infrared thermal imager to analyze the result. The outcomes from the experiments
show that with better lighting efficiency and color rendering index in addition to lower device generated heat,
the QDs-on-phosphor is the ideal packaging order to choose for better performance.
 ISSN: 1693-6930
TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 6, December 2020: 3228 - 3233
3230
3. RESULTS AND DISCUSSION
The results in Figure 2 expressed the different changes occur in terms of concentration between green
phosphor Y2O3:Ho3+
, red phosphor Mg4(F)(Ge, Sn)O6:Mn2+
and yellow phosphor YAG:Ce3+
. These changes
in concentration affect the ability to absorb or scatter of the phosphor layers in WLEDs, which determine
the color quality and the amount of light emitted. Therefore, the concentration setting of the two phosphor
layers Y2O3:Ho3+
and Mg4(F)(Ge, Sn)O6:Mn2+
are extremely important to the optical performance of WLEDs.
Moreover, the decreases in the concentration of yellow phosphor YAG:Ce3+
corresponding to the increases in
concentrations of the Y2O3:Ho3+
and Mg4(F)(Ge, Sn)O6:Mn2+
is to maintain the average correlated color
temperatures. More specifically, YAG:Ce3+
concentration decline to preserve the ACCTs when
the concentrations of Y2O3:Ho3+
and Mg4(F)(Ge, Sn)O6: Mn2+
are rising in the range from 2 to 20% wt.
The influences of red phosphor Mg4(F)(Ge, Sn)O6:Mn2+
and green phosphor Y2O3:Ho3+
are expressed in Figure
3. According to Figure 3, the intensity in the range from 420-480 nm and 500 to 640 nm increase with
Y2O3:Ho3+
concentration which confirmed that the luminous flux in these ranges is also increase. Moreover,
the scattered blue light also increases, which means the scattering property is improved leading to better
correlated color. The advantages that occur when applying the Y2O3:Ho3+
are notable results that can be utilized
to validate the benefit of this green phosphor on the optical properties of WLEDs. In the case of
Mg4(F)(Ge,Sn)O6:Mn2+
, the presence of this phosphor cause the intensity from 648 to 738 nm to rise, however,
this effect is meaningless without the increase in the two remaining spectrum ranges, which are
420-480 nm and 500-640 nm. Similar to the green phosphor, if the intensity in the remaining spectrums of red
phosphor rise that would result in better blue light scattering effect. The emission spectrum that ties to
the emitted temperature is crucial in improving the optical performance, particularly, when the emission
spectrum increase, the color quality and luminous flux become better. These are important findings when
utilizing the red phosphor Mg4(F(Ge, Sn)O6:Mn2+
. The research results show that Mg4(F)(Ge, Sn)O6:Mn2+
guarantee improvement in color quality despite the color temperature, this is a valuable characteristic,
especially when maintaining high color quality at high temperature is considered hard to obtain. The final
decision relies on the manufacturers to choose the suitable option to reach their goal. For WLEDs that focus
on the high chromatic performance, it is advisable to give up a bit of emitted light to achieve highest color
quality possible.
Figure 2. The alteration in phosphor concentration
of remote WLEDs to maintain the average CCT
Figure 3. Emission spectra intensity in dual-layer
phosphor structures
The CRI expresses the chromatic outcome of the irradiated object. This index denotes the ability to
express the color of an object and is based on the balance of blue, yellow, and green. If the proportions of
the constituent colors are uneven, the color balance will loss and results in reduced color quality. According to
results of CRI presented in Figure 4, the green remote phosphor layer Y2O3:Ho3+
is detrimental to the CRI.
Although the color rendering index decreases slightly whenever there is a green phosphor layer in the structure,
this is not a serious defect due to CRI is only part of color quality scale (CQS). The CQS, as can be seen in
Figure 5 remain static when the concentration of Y2O3:Ho3+
is below 8%. In comparison to CRI, the CQS is
a priority because it covers more optical properties and is harder to obtain. As a result, it is acceptable to have
the concentration of Y2O3:Ho3+
under 8% if the luminous flux is also appropriate.
The following section is the calculating formula for the unequal SPD of single color LED with
Gaussian function [24, 25]:
TELKOMNIKA Telecommun Comput El Control 
Improving optical properties of remote phospor LED using green Y2O3:Ho3+
... (My Hanh Nguyen Thi)
3231
𝑃𝜆 = 𝑃𝑜𝑝𝑡
1
𝜎√2𝜋
𝑒𝑥𝑝 [−0.5 ∗
(𝜆−𝜆 𝑝𝑒𝑎𝑘)2
𝜎2 ] (1)
In this formula, 𝑃𝜆 is the spectral power distribution (SPD) (mW/nm) while λ indicates the wavelength (nm)
and 𝜆 𝑝𝑒𝑎𝑘 describes the peak wavelength (nm). 𝑃𝑜𝑝𝑡 are used to describe the optical power (W) of the WLED.
When 𝜎 relies on the peak wavelength 𝜆 𝑝𝑒𝑎𝑘, it is possible to define the full-width at half-maximum (FWHM)
Δ𝜆 (nm) as following with 𝜆1, 𝜆2 being the wavelengths at half of the peak intensity,ℎ represents Planck’s
constant (J.s) and c is the speed of light (m.s−1
).
𝜎 =
𝜆 𝑝𝑒𝑎𝑘
2
𝛥𝐸
2ℎ𝑐√2 𝑙𝑛 2
=
𝜆 𝑝𝑒𝑎𝑘
2
(
ℎ𝑐
𝜆1
−
ℎ𝑐
𝜆2
)
2ℎ𝑐√2 𝑙𝑛 2
=
𝜆 𝑝𝑒𝑎𝑘
2
(
ℎ𝑐𝛥𝜆
𝜆1 𝜆2
)
2ℎ𝑐√2 𝑙𝑛 2
(2)
Figure 4. The color rendering index corresponding
to the concentration of Y2O3:Ho3+
and
Mg4(F)(Ge, Sn)O6:Mn2+
phosphors
Figure 5. The color quality scale corresponding to
the concentration of Y2O3:Ho3+
and
Mg4(F)(Ge, Sn)O6:Mn2+
phosphors
In theory, WLED with YAG phosphor and blue light emitting chip has the combination between blue
and yellow spectra as SPD. In practical experiment, yellow phosphor actually active in both yellow and green
emission ranges. With that being said, it is possible to use the green spectrum to depict the discrepancy between
the SPD in practice and blue-yellow mixed spectrum in cases with blue and yellow are the chosen spectra.
As a result, the green spectrum is added to the model for practical circumstances and the analytical tri-spectrum
(B-G-Y) is expressed as in (3) then later on modified to (4):
𝑃𝜆 = 𝑃𝑜𝑝𝑡_𝑏
1
𝜎 𝑏√2𝜋
𝑒𝑥𝑝 [−0.5 ∗
(𝜆 − 𝜆 𝑝𝑒𝑎𝑘_𝑏)2
𝜎 𝑏
2 ]
𝑃𝑜𝑝𝑡 𝑔
1
𝜎 𝑔√2𝜋
𝑒𝑥𝑝 [−0.5 ∗
(𝜆−𝜆 𝑝𝑒𝑎𝑘 𝑔)2
𝜎 𝑔
2 ] (3)
𝑃𝑜𝑝𝑡_𝑦
1
𝜎 𝑦√2𝜋
𝑒𝑥𝑝 [−0.5 ∗
(𝜆 − 𝜆 𝑝𝑒𝑎𝑘_𝑦)2
𝜎 𝑦
2 ]
𝑃𝜆 = 𝜂 𝑏 𝑃𝑜𝑝𝑡 𝑡𝑜𝑡𝑎𝑙
1
𝜎 𝑏√2𝜋
𝑒𝑥𝑝 [−0.5 ∗
(𝜆 − 𝜆 𝑝𝑒𝑎𝑘 𝑏
)2
𝜎 𝑏
2 ]
𝜂 𝑔 𝑃𝑜𝑝𝑡 𝑡𝑜𝑡𝑎𝑙
1
𝜎𝑔√2𝜋
𝑒𝑥𝑝 [−0.5 ∗
(𝜆 − 𝜆 𝑝𝑒𝑎𝑘 𝑔
)2
𝜎𝑔
2 ]
𝜂 𝑦 𝑃𝑜𝑝𝑡_𝑡𝑜𝑡𝑎𝑙
1
𝜎 𝑦√2𝜋
𝑒𝑥𝑝 [−0.5 ∗
(𝜆−𝜆 𝑝𝑒𝑎𝑘_𝑦)2
𝜎 𝑦
2 ] (4)
where 𝑃𝑜𝑝𝑡_𝑏, 𝑃𝑜𝑝𝑡_𝑔, 𝑃𝑜𝑝𝑡_𝑦and 𝑃𝑜𝑝𝑡_𝑡𝑜𝑡𝑎𝑙 stand for the optical power (W) in each separate spectrum of blue,
green, yellow and white. 𝜆 𝑝𝑒𝑎𝑘_𝑏, 𝜆 𝑝𝑒𝑎𝑘_𝑔 and 𝜆 𝑝𝑒𝑎𝑘_𝑦in order are the peak wavelengths (nm) of the spectra
 ISSN: 1693-6930
TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 6, December 2020: 3228 - 3233
3232
emitting the chromatic lights. The non-dimensional ratios of chromatic lights spectra to the range of white
light, are expressed respectively as 𝜂 𝑏, 𝜂 𝑔 and 𝜂 𝑦. 𝜎𝑏, 𝜎𝑔 and 𝜎 𝑦 in turn are the coefficient of FWHM (nm) for
the wavelength ranges of chromatic lights. This mathematical models for SPC in WLEDs with phosphor layer
can be perceived as a tricolor spectrum and an extended Gaussian model. Next, we study the luminous flux of
QDs WLED with the QDs concentration as in Figure 6.
The content of Figure 6 demonstrates that when the concentration range of Y2O3:Ho3+
is from 2% wt
to 20% wt the luminous will sharply increase. However, the luminous flux in remote phosphor structure with
dual layers is a result of both phosphor layers including the red phosphor Mg4(F)(Ge, Sn)O6:Mn2+
.
The extinction coefficient increase with Mg4(F)(Ge, Sn)O6:Mn2+
concentration while opposing to light
transmission energy as the application of Beer’s Law suggests. Therefore, when choosing the concentration for
the phosphor layers it may occur the lumen output decreases when the concentration of Mg4(F)(Ge, Sn)O6:Mn2+
increases, and drastically decline especially when the concentration reaches 20%. Despite the drawback in
luminous flux, using red phosphor Mg4(F)(Ge,Sn)O6:Mn2+
is still beneficial because of the enhancements it
brings to the CRI and CQS, not to mention the luminous flux in these dual-layer phosphor structures is better
than the single-layer ones that do not have a red phosphor layer. These references help the manufacturers
choose the exact concentration of the phosphor to serve their purpose in mass production.
Figure 6. The luminous flux corresponding to the concentration of Y2O3:Ho3+
and Mg4(F)(Ge, Sn)O6:Mn2+
phosphors
4. CONCLUSION
The results of this research paper confirmed the benefits of green phosphor Y2O3:Ho3+
and red
phosphor Mg4(F)(Ge, Sn)O6:Mn2+
on the optical properites of remote structure with two phosphor layers.
Through the study of scattering characteristic with scattering theory and the Beer’s law, it is confirmed that
the red phosphor Mg4(F)(Ge, Sn)O6: Mn2+
is capable of boosting the chromatic quality. On the other hand,
the green phosphor Y2O3:Ho3+
is the excellent substance to improve the luminous flux, the effect is not only
applicable to low color temperature WLEDs but also with the ones at high color temperature. With
the aforementioned results, this research has succeeded in a very difficult task that is enhancing the color quality
in remote phosphor structure. On another note, the concentration of both phosphor layers Y2O3:Ho3+
or
Mg4(F)(Ge, Sn)O6:Mn2+
must be kept at an appropriate level as the excessive amount of phosphor can damage
the color quality as well as the luminous flux. Managing the concentration of phosphor is crucial in producing
WLEDs, however, this article has presented all the much-needed information about this topic to
the manufacturers so they can apply it to create WLEDs with the desired quality.
REFERENCES
[1] S. Sadeghi, et al., “Quantum dot white LEDs with high luminous efficiency,” Optica, vol. 5, no. 7, pp. 793-802, 2018.
[2] X. Kong, et al., “Assessing the temporal uniformity of CIELAB hue angle,” Journal of the Optical Society of Amerika
A, vol. 37, no. 4, pp. 521-528, March 2020.
[3] X. Li, et al., “Single-shot multispectral imaging through a thin scatterer,” Optica, vol. 6, pp. 864-871, 2019.
[4] S. Pan, et al., “Image restoration and color fusion of digital microscopes,” Applied Optics, vol. 58, no. 9,
pp. 2183-2189, March 2019.
[5] B. K. Tsai, et al., “Exposure study on UV-induced degradation of PTFE and ceramic optical diffusers,” Applied
Optics, vol. 58, no. 5, pp. 1215-1222, February 2019.
TELKOMNIKA Telecommun Comput El Control 
Improving optical properties of remote phospor LED using green Y2O3:Ho3+
... (My Hanh Nguyen Thi)
3233
[6] X. Wang, et al., “Modifying phase, shape and optical thermometry of NaGdF4:2%Er3+
phosphors through
Ca2+
doping,” Opt. Express, vol. 26, no. 17, pp. 21950-21959, August 2018.
[7] X. Fu, et al., “Micromachined extrinsic Fabry-Pérot cavity for low-frequency acoustic wave sensing,” Optics Express,
vol. 27, no. 17, pp. 24300-24310, August 2019.
[8] A. Ullah, et al., “Household light source for potent photo-dynamic antimicrobial effect and wound healing in
an infective animal model,” Biomed. Opt. Express, vol. 9, no. 3, pp. 1006-1019, March 2018.
[9] D. Durmus, et al., “Blur perception and visual clarity in light projection systems,” Opt. Express, vol. 27, no. 4,
pp. A216-A223, February 2019.
[10] A. Lihachev, et al., “Differentiation of seborrheic keratosis from basal cell carcinoma, nevi and melanoma by RGB
autofluorescence imaging,” Biomedical Optical Express, vol. 9, no. 4, pp. 1852-1858, April 2018.
[11] J. Zhou, et al., “Low-voltage wide-field-of-view lidar scanning system based on a MEMS mirror,” Applied Optics,
vol. 58, no. 5, pp. A283-A290, 2019.
[12] J. S. Li, et al., “High efficiency solid–liquid hybrid-state quantum dot light-emitting diodes,” Photonics Research,
vol. 6, no. 12, pp. 1107-1115, December 2018.
[13] S. Lee, et al., “Printed cylindrical lens pair for application to the seam concealment in tiled displays,” Optics Express,
vol. 26, no. 2, pp. 824-834, January 2018.
[14] H. Yuce, et al., “Phosphor-based white LED by various glassy particles: control over luminous efficiency,” Optics
Letters, vol. 44, no. 3, pp. 479-482, February 2019.
[15] Q. Zhang, et al., “Excellent luminous efficiency and high thermal stability of glass-in-LuAG ceramic for laser-diode-
pumped green-emitting phosphor,” Optiics Letters, vol. 43, no. 15, pp. 3566-3569, August 2018.
[16] V. Fuertes, et al., “Enhanced luminescence in rare-earth-free fast-sintering glass-ceramic,” Optica, vol. 6, no. 5,
pp. 668-679, May 2019.
[17] X. Huang, et al., “High-brightness and high-color purity red-emitting Ca3Lu, AlO.3, BO3.4: Eu3+phosphors with
internal quantum efficiency close to unity for near-ultraviolet-based white-light-emitting diodes,” Optics Letters,
vol. 43, no. 6, pp. 1307-1310, 2018.
[18] W. Gao, et al., “Color temperature tunable phosphor-coated white LEDs with excellent photometric and colorimetric
performances,” Applied Optics, vol. 57, no. 31, pp. 9322-9327, November 2018.
[19] H. L. Ke, et al., “Lumen degradation analysis of LED lamps based on the subsystem isolation method,” Applied
Optics, vol. 57, no. 4, pp. 849-854, February 2018.
[20] S. Beldi, et al., “High Q-factor near infrared and visible Al2O3-based parallel-plate capacitor kinetic inductance
detectors,” Opt. Express, vol. 27, no. 9, pp. 13319-13328, April 2019.
[21] H. Liu, et al., “Design of a six-gas NDIR gas sensor using an integrated optical gas chamber,” Optics Express,
vol. 28, no. 8, pp. 11451-11462, March 2020.
[22] D. Lu, et al., “Synthesis and photoluminescence characteristics of the LiGd3, MoO4.5: Eu3+red phosphor with high
color purity and brightness,” Optical Materials Express, vol. 8, no. 2, pp. 259-269, February 2018.
[23] L. Wu, et al., “Hybrid warm-white organic light-emitting device based on tandem structure,” Optics Express,
vol. 26, no. 26, pp. A996-A1006, December 2018.
[24] S. Elmalem, et al., “Learned phase coded aperture for the benefit of depth of field extension,” Optics Express,
vol. 26, no. 12, pp. 15316-15331, June 2018.
[25] J. H. Kim, et al., “Synthesis of Mn-doped CuGaS2 quantum dots and their application as single downconverters for
high-color rendering solid-state lighting devices,” Optical Materials Express, vol. 8, no. 2, pp. 221-230, February 2018.

More Related Content

What's hot

Improving color quality and luminous flux of white LED utilizing triple-layer...
Improving color quality and luminous flux of white LED utilizing triple-layer...Improving color quality and luminous flux of white LED utilizing triple-layer...
Improving color quality and luminous flux of white LED utilizing triple-layer...IJECEIAES
 
Influence of Dual-layer and Triple-layer Remote Phosphor Package on Optical P...
Influence of Dual-layer and Triple-layer Remote Phosphor Package on Optical P...Influence of Dual-layer and Triple-layer Remote Phosphor Package on Optical P...
Influence of Dual-layer and Triple-layer Remote Phosphor Package on Optical P...TELKOMNIKA JOURNAL
 
LaSiO 3 Cl:Ce 3+ ,Tb 3+ and Mg 2 TiO 4 :Mn 4+ : quantum dot phosphors for im...
LaSiO 3 Cl:Ce 3+ ,Tb 3+  and Mg 2 TiO 4 :Mn 4+ : quantum dot phosphors for im...LaSiO 3 Cl:Ce 3+ ,Tb 3+  and Mg 2 TiO 4 :Mn 4+ : quantum dot phosphors for im...
LaSiO 3 Cl:Ce 3+ ,Tb 3+ and Mg 2 TiO 4 :Mn 4+ : quantum dot phosphors for im...IJECEIAES
 
Ba[Mg2Al2N4]Eu2+ phosphor for enhancing the optical quality of the 6600K CPW-...
Ba[Mg2Al2N4]Eu2+ phosphor for enhancing the optical quality of the 6600K CPW-...Ba[Mg2Al2N4]Eu2+ phosphor for enhancing the optical quality of the 6600K CPW-...
Ba[Mg2Al2N4]Eu2+ phosphor for enhancing the optical quality of the 6600K CPW-...TELKOMNIKA JOURNAL
 
Y 2 O 3 :Ho 3+ and ZnO:Bi 3+ : a selection for enhancing color quality and ...
Y 2 O 3 :Ho 3+  and ZnO:Bi 3+ : a selection for enhancing  color quality and ...Y 2 O 3 :Ho 3+  and ZnO:Bi 3+ : a selection for enhancing  color quality and ...
Y 2 O 3 :Ho 3+ and ZnO:Bi 3+ : a selection for enhancing color quality and ...IJECEIAES
 
Benefits of triple-layer remote phosphor structure in improving color quality...
Benefits of triple-layer remote phosphor structure in improving color quality...Benefits of triple-layer remote phosphor structure in improving color quality...
Benefits of triple-layer remote phosphor structure in improving color quality...TELKOMNIKA JOURNAL
 
(Y,Gd)BO3:Eu red phosphor for dual-layer phosphor structure to enhance the op...
(Y,Gd)BO3:Eu red phosphor for dual-layer phosphor structure to enhance the op...(Y,Gd)BO3:Eu red phosphor for dual-layer phosphor structure to enhance the op...
(Y,Gd)BO3:Eu red phosphor for dual-layer phosphor structure to enhance the op...journalBEEI
 
Green-emitting Gd2O2S:Tb3+ and red-emitting Y3Al5O12:Cr3+ phosphors: a suitab...
Green-emitting Gd2O2S:Tb3+ and red-emitting Y3Al5O12:Cr3+ phosphors: a suitab...Green-emitting Gd2O2S:Tb3+ and red-emitting Y3Al5O12:Cr3+ phosphors: a suitab...
Green-emitting Gd2O2S:Tb3+ and red-emitting Y3Al5O12:Cr3+ phosphors: a suitab...TELKOMNIKA JOURNAL
 
The application of green YPO4:Ce3+,Tb3+ and red LiLaO2:Eu3+ layers to remote ...
The application of green YPO4:Ce3+,Tb3+ and red LiLaO2:Eu3+ layers to remote ...The application of green YPO4:Ce3+,Tb3+ and red LiLaO2:Eu3+ layers to remote ...
The application of green YPO4:Ce3+,Tb3+ and red LiLaO2:Eu3+ layers to remote ...TELKOMNIKA JOURNAL
 
Utilizing CaCO 3 , CaF 2 , SiO 2 , and TiO 2 particles to enhance color hom...
Utilizing CaCO 3 , CaF 2 , SiO 2 , and TiO 2  particles  to enhance color hom...Utilizing CaCO 3 , CaF 2 , SiO 2 , and TiO 2  particles  to enhance color hom...
Utilizing CaCO 3 , CaF 2 , SiO 2 , and TiO 2 particles to enhance color hom...IJECEIAES
 
Comparison of calcium carbonate and titania particles on improving color homo...
Comparison of calcium carbonate and titania particles on improving color homo...Comparison of calcium carbonate and titania particles on improving color homo...
Comparison of calcium carbonate and titania particles on improving color homo...TELKOMNIKA JOURNAL
 
Na3Ce(PO4)2:Tb3+ and Na(Mg2–xMnX)LiSi4O10F2:Mn phosphors: a suitable selectio...
Na3Ce(PO4)2:Tb3+ and Na(Mg2–xMnX)LiSi4O10F2:Mn phosphors: a suitable selectio...Na3Ce(PO4)2:Tb3+ and Na(Mg2–xMnX)LiSi4O10F2:Mn phosphors: a suitable selectio...
Na3Ce(PO4)2:Tb3+ and Na(Mg2–xMnX)LiSi4O10F2:Mn phosphors: a suitable selectio...TELKOMNIKA JOURNAL
 
The effects of ZnO particles on the color homogeneity of phosphor-converted h...
The effects of ZnO particles on the color homogeneity of phosphor-converted h...The effects of ZnO particles on the color homogeneity of phosphor-converted h...
The effects of ZnO particles on the color homogeneity of phosphor-converted h...IJECEIAES
 
Excellent color quality of phosphor converted white light emitting diodes wit...
Excellent color quality of phosphor converted white light emitting diodes wit...Excellent color quality of phosphor converted white light emitting diodes wit...
Excellent color quality of phosphor converted white light emitting diodes wit...TELKOMNIKA JOURNAL
 
SrBaSiO 4 :Eu 2+ phosphor: a novel application for improvingthe luminous flu...
SrBaSiO 4 :Eu 2+  phosphor: a novel application for improvingthe luminous flu...SrBaSiO 4 :Eu 2+  phosphor: a novel application for improvingthe luminous flu...
SrBaSiO 4 :Eu 2+ phosphor: a novel application for improvingthe luminous flu...IJECEIAES
 
Improvement of double-layer phosphor structure WLEDS in color homogeneity and...
Improvement of double-layer phosphor structure WLEDS in color homogeneity and...Improvement of double-layer phosphor structure WLEDS in color homogeneity and...
Improvement of double-layer phosphor structure WLEDS in color homogeneity and...journalBEEI
 
Study of red-emitting LaAsO4:Eu3+ phosphor for color rendering index improvem...
Study of red-emitting LaAsO4:Eu3+ phosphor for color rendering index improvem...Study of red-emitting LaAsO4:Eu3+ phosphor for color rendering index improvem...
Study of red-emitting LaAsO4:Eu3+ phosphor for color rendering index improvem...TELKOMNIKA JOURNAL
 
Excellent luminous flux of WLEDs with flat dual-layer remote phosphor geometry
Excellent luminous flux of WLEDs with flat dual-layer remote phosphor geometryExcellent luminous flux of WLEDs with flat dual-layer remote phosphor geometry
Excellent luminous flux of WLEDs with flat dual-layer remote phosphor geometryTELKOMNIKA JOURNAL
 
Long Term Stability of Solid State Dye Sensitized Solar Cell
Long Term Stability of Solid State Dye Sensitized Solar CellLong Term Stability of Solid State Dye Sensitized Solar Cell
Long Term Stability of Solid State Dye Sensitized Solar Cellrehman1oo
 

What's hot (20)

Improving color quality and luminous flux of white LED utilizing triple-layer...
Improving color quality and luminous flux of white LED utilizing triple-layer...Improving color quality and luminous flux of white LED utilizing triple-layer...
Improving color quality and luminous flux of white LED utilizing triple-layer...
 
Influence of Dual-layer and Triple-layer Remote Phosphor Package on Optical P...
Influence of Dual-layer and Triple-layer Remote Phosphor Package on Optical P...Influence of Dual-layer and Triple-layer Remote Phosphor Package on Optical P...
Influence of Dual-layer and Triple-layer Remote Phosphor Package on Optical P...
 
LaSiO 3 Cl:Ce 3+ ,Tb 3+ and Mg 2 TiO 4 :Mn 4+ : quantum dot phosphors for im...
LaSiO 3 Cl:Ce 3+ ,Tb 3+  and Mg 2 TiO 4 :Mn 4+ : quantum dot phosphors for im...LaSiO 3 Cl:Ce 3+ ,Tb 3+  and Mg 2 TiO 4 :Mn 4+ : quantum dot phosphors for im...
LaSiO 3 Cl:Ce 3+ ,Tb 3+ and Mg 2 TiO 4 :Mn 4+ : quantum dot phosphors for im...
 
Ba[Mg2Al2N4]Eu2+ phosphor for enhancing the optical quality of the 6600K CPW-...
Ba[Mg2Al2N4]Eu2+ phosphor for enhancing the optical quality of the 6600K CPW-...Ba[Mg2Al2N4]Eu2+ phosphor for enhancing the optical quality of the 6600K CPW-...
Ba[Mg2Al2N4]Eu2+ phosphor for enhancing the optical quality of the 6600K CPW-...
 
Y 2 O 3 :Ho 3+ and ZnO:Bi 3+ : a selection for enhancing color quality and ...
Y 2 O 3 :Ho 3+  and ZnO:Bi 3+ : a selection for enhancing  color quality and ...Y 2 O 3 :Ho 3+  and ZnO:Bi 3+ : a selection for enhancing  color quality and ...
Y 2 O 3 :Ho 3+ and ZnO:Bi 3+ : a selection for enhancing color quality and ...
 
Benefits of triple-layer remote phosphor structure in improving color quality...
Benefits of triple-layer remote phosphor structure in improving color quality...Benefits of triple-layer remote phosphor structure in improving color quality...
Benefits of triple-layer remote phosphor structure in improving color quality...
 
(Y,Gd)BO3:Eu red phosphor for dual-layer phosphor structure to enhance the op...
(Y,Gd)BO3:Eu red phosphor for dual-layer phosphor structure to enhance the op...(Y,Gd)BO3:Eu red phosphor for dual-layer phosphor structure to enhance the op...
(Y,Gd)BO3:Eu red phosphor for dual-layer phosphor structure to enhance the op...
 
Green-emitting Gd2O2S:Tb3+ and red-emitting Y3Al5O12:Cr3+ phosphors: a suitab...
Green-emitting Gd2O2S:Tb3+ and red-emitting Y3Al5O12:Cr3+ phosphors: a suitab...Green-emitting Gd2O2S:Tb3+ and red-emitting Y3Al5O12:Cr3+ phosphors: a suitab...
Green-emitting Gd2O2S:Tb3+ and red-emitting Y3Al5O12:Cr3+ phosphors: a suitab...
 
The application of green YPO4:Ce3+,Tb3+ and red LiLaO2:Eu3+ layers to remote ...
The application of green YPO4:Ce3+,Tb3+ and red LiLaO2:Eu3+ layers to remote ...The application of green YPO4:Ce3+,Tb3+ and red LiLaO2:Eu3+ layers to remote ...
The application of green YPO4:Ce3+,Tb3+ and red LiLaO2:Eu3+ layers to remote ...
 
Utilizing CaCO 3 , CaF 2 , SiO 2 , and TiO 2 particles to enhance color hom...
Utilizing CaCO 3 , CaF 2 , SiO 2 , and TiO 2  particles  to enhance color hom...Utilizing CaCO 3 , CaF 2 , SiO 2 , and TiO 2  particles  to enhance color hom...
Utilizing CaCO 3 , CaF 2 , SiO 2 , and TiO 2 particles to enhance color hom...
 
Comparison of calcium carbonate and titania particles on improving color homo...
Comparison of calcium carbonate and titania particles on improving color homo...Comparison of calcium carbonate and titania particles on improving color homo...
Comparison of calcium carbonate and titania particles on improving color homo...
 
Na3Ce(PO4)2:Tb3+ and Na(Mg2–xMnX)LiSi4O10F2:Mn phosphors: a suitable selectio...
Na3Ce(PO4)2:Tb3+ and Na(Mg2–xMnX)LiSi4O10F2:Mn phosphors: a suitable selectio...Na3Ce(PO4)2:Tb3+ and Na(Mg2–xMnX)LiSi4O10F2:Mn phosphors: a suitable selectio...
Na3Ce(PO4)2:Tb3+ and Na(Mg2–xMnX)LiSi4O10F2:Mn phosphors: a suitable selectio...
 
The effects of ZnO particles on the color homogeneity of phosphor-converted h...
The effects of ZnO particles on the color homogeneity of phosphor-converted h...The effects of ZnO particles on the color homogeneity of phosphor-converted h...
The effects of ZnO particles on the color homogeneity of phosphor-converted h...
 
Excellent color quality of phosphor converted white light emitting diodes wit...
Excellent color quality of phosphor converted white light emitting diodes wit...Excellent color quality of phosphor converted white light emitting diodes wit...
Excellent color quality of phosphor converted white light emitting diodes wit...
 
SrBaSiO 4 :Eu 2+ phosphor: a novel application for improvingthe luminous flu...
SrBaSiO 4 :Eu 2+  phosphor: a novel application for improvingthe luminous flu...SrBaSiO 4 :Eu 2+  phosphor: a novel application for improvingthe luminous flu...
SrBaSiO 4 :Eu 2+ phosphor: a novel application for improvingthe luminous flu...
 
Improvement of double-layer phosphor structure WLEDS in color homogeneity and...
Improvement of double-layer phosphor structure WLEDS in color homogeneity and...Improvement of double-layer phosphor structure WLEDS in color homogeneity and...
Improvement of double-layer phosphor structure WLEDS in color homogeneity and...
 
Study of red-emitting LaAsO4:Eu3+ phosphor for color rendering index improvem...
Study of red-emitting LaAsO4:Eu3+ phosphor for color rendering index improvem...Study of red-emitting LaAsO4:Eu3+ phosphor for color rendering index improvem...
Study of red-emitting LaAsO4:Eu3+ phosphor for color rendering index improvem...
 
Excellent luminous flux of WLEDs with flat dual-layer remote phosphor geometry
Excellent luminous flux of WLEDs with flat dual-layer remote phosphor geometryExcellent luminous flux of WLEDs with flat dual-layer remote phosphor geometry
Excellent luminous flux of WLEDs with flat dual-layer remote phosphor geometry
 
Synthesis and properties of
Synthesis and properties ofSynthesis and properties of
Synthesis and properties of
 
Long Term Stability of Solid State Dye Sensitized Solar Cell
Long Term Stability of Solid State Dye Sensitized Solar CellLong Term Stability of Solid State Dye Sensitized Solar Cell
Long Term Stability of Solid State Dye Sensitized Solar Cell
 

Similar to Improving optical properties of remote phosphor LED using green Y2O3:Ho3+ and red Mg4(F)(Ge, Sn)O6:Mn2+ layers

Acquiring higher lumen efficacy and color rendering index with green NaYF4:Er...
Acquiring higher lumen efficacy and color rendering index with green NaYF4:Er...Acquiring higher lumen efficacy and color rendering index with green NaYF4:Er...
Acquiring higher lumen efficacy and color rendering index with green NaYF4:Er...TELKOMNIKA JOURNAL
 
Chroma consistency and luminous efficacy for a WLED using remote phosphor con...
Chroma consistency and luminous efficacy for a WLED using remote phosphor con...Chroma consistency and luminous efficacy for a WLED using remote phosphor con...
Chroma consistency and luminous efficacy for a WLED using remote phosphor con...TELKOMNIKA JOURNAL
 
LaSiO 3 Cl:Ce 3+ ,Tb 3+ and Mg 2 TiO 4 :Mn 4+ : quantum dot phosphors for im...
LaSiO 3 Cl:Ce 3+ ,Tb 3+  and Mg 2 TiO 4 :Mn 4+ : quantum dot phosphors for im...LaSiO 3 Cl:Ce 3+ ,Tb 3+  and Mg 2 TiO 4 :Mn 4+ : quantum dot phosphors for im...
LaSiO 3 Cl:Ce 3+ ,Tb 3+ and Mg 2 TiO 4 :Mn 4+ : quantum dot phosphors for im...IJECEIAES
 
Improving color rendering index of WLEDs with convex-dual-layer remote phosph...
Improving color rendering index of WLEDs with convex-dual-layer remote phosph...Improving color rendering index of WLEDs with convex-dual-layer remote phosph...
Improving color rendering index of WLEDs with convex-dual-layer remote phosph...TELKOMNIKA JOURNAL
 
Application of dual-layer phosphor geometries for enhancing the optical prope...
Application of dual-layer phosphor geometries for enhancing the optical prope...Application of dual-layer phosphor geometries for enhancing the optical prope...
Application of dual-layer phosphor geometries for enhancing the optical prope...TELKOMNIKA JOURNAL
 
Quantum dot phosphors CaS:Ce3+ and CaS:Pb2+, Mn2+ for improvements of white ...
Quantum dot phosphors CaS:Ce3+ and CaS:Pb2+, Mn2+ for  improvements of white ...Quantum dot phosphors CaS:Ce3+ and CaS:Pb2+, Mn2+ for  improvements of white ...
Quantum dot phosphors CaS:Ce3+ and CaS:Pb2+, Mn2+ for improvements of white ...IJECEIAES
 
Enhancing light sources color homogeneity in high-power phosphor-based white ...
Enhancing light sources color homogeneity in high-power phosphor-based white ...Enhancing light sources color homogeneity in high-power phosphor-based white ...
Enhancing light sources color homogeneity in high-power phosphor-based white ...TELKOMNIKA JOURNAL
 
Research on advancing chromatic reproduction and luminosity of a WLED using t...
Research on advancing chromatic reproduction and luminosity of a WLED using t...Research on advancing chromatic reproduction and luminosity of a WLED using t...
Research on advancing chromatic reproduction and luminosity of a WLED using t...TELKOMNIKA JOURNAL
 
For improvements in chromatic scales and luminescent fluxes of white lights: ...
For improvements in chromatic scales and luminescent fluxes of white lights: ...For improvements in chromatic scales and luminescent fluxes of white lights: ...
For improvements in chromatic scales and luminescent fluxes of white lights: ...TELKOMNIKA JOURNAL
 
Enhancing the CRI and lumen output for the 6600 K WLED with convex-dual-layer...
Enhancing the CRI and lumen output for the 6600 K WLED with convex-dual-layer...Enhancing the CRI and lumen output for the 6600 K WLED with convex-dual-layer...
Enhancing the CRI and lumen output for the 6600 K WLED with convex-dual-layer...IJECEIAES
 
The improvement of the color rendering index using convex-dual-layer remote p...
The improvement of the color rendering index using convex-dual-layer remote p...The improvement of the color rendering index using convex-dual-layer remote p...
The improvement of the color rendering index using convex-dual-layer remote p...TELKOMNIKA JOURNAL
 
Application of green-emitting ZnS:Eu2+ for boosting the spectrum of white li...
Application of green-emitting ZnS:Eu2+ for boosting the  spectrum of white li...Application of green-emitting ZnS:Eu2+ for boosting the  spectrum of white li...
Application of green-emitting ZnS:Eu2+ for boosting the spectrum of white li...IJECEIAES
 
Improving luminous flux and color homogeneity of dual-layer phosphor sctructure
Improving luminous flux and color homogeneity of dual-layer phosphor sctructureImproving luminous flux and color homogeneity of dual-layer phosphor sctructure
Improving luminous flux and color homogeneity of dual-layer phosphor sctructureTELKOMNIKA JOURNAL
 
The usage of dual-layer remote phosphor configurations in enhancing color qua...
The usage of dual-layer remote phosphor configurations in enhancing color qua...The usage of dual-layer remote phosphor configurations in enhancing color qua...
The usage of dual-layer remote phosphor configurations in enhancing color qua...TELKOMNIKA JOURNAL
 

Similar to Improving optical properties of remote phosphor LED using green Y2O3:Ho3+ and red Mg4(F)(Ge, Sn)O6:Mn2+ layers (15)

Acquiring higher lumen efficacy and color rendering index with green NaYF4:Er...
Acquiring higher lumen efficacy and color rendering index with green NaYF4:Er...Acquiring higher lumen efficacy and color rendering index with green NaYF4:Er...
Acquiring higher lumen efficacy and color rendering index with green NaYF4:Er...
 
Chroma consistency and luminous efficacy for a WLED using remote phosphor con...
Chroma consistency and luminous efficacy for a WLED using remote phosphor con...Chroma consistency and luminous efficacy for a WLED using remote phosphor con...
Chroma consistency and luminous efficacy for a WLED using remote phosphor con...
 
LaSiO 3 Cl:Ce 3+ ,Tb 3+ and Mg 2 TiO 4 :Mn 4+ : quantum dot phosphors for im...
LaSiO 3 Cl:Ce 3+ ,Tb 3+  and Mg 2 TiO 4 :Mn 4+ : quantum dot phosphors for im...LaSiO 3 Cl:Ce 3+ ,Tb 3+  and Mg 2 TiO 4 :Mn 4+ : quantum dot phosphors for im...
LaSiO 3 Cl:Ce 3+ ,Tb 3+ and Mg 2 TiO 4 :Mn 4+ : quantum dot phosphors for im...
 
Improving color rendering index of WLEDs with convex-dual-layer remote phosph...
Improving color rendering index of WLEDs with convex-dual-layer remote phosph...Improving color rendering index of WLEDs with convex-dual-layer remote phosph...
Improving color rendering index of WLEDs with convex-dual-layer remote phosph...
 
Application of dual-layer phosphor geometries for enhancing the optical prope...
Application of dual-layer phosphor geometries for enhancing the optical prope...Application of dual-layer phosphor geometries for enhancing the optical prope...
Application of dual-layer phosphor geometries for enhancing the optical prope...
 
Quantum dot phosphors CaS:Ce3+ and CaS:Pb2+, Mn2+ for improvements of white ...
Quantum dot phosphors CaS:Ce3+ and CaS:Pb2+, Mn2+ for  improvements of white ...Quantum dot phosphors CaS:Ce3+ and CaS:Pb2+, Mn2+ for  improvements of white ...
Quantum dot phosphors CaS:Ce3+ and CaS:Pb2+, Mn2+ for improvements of white ...
 
Enhancing light sources color homogeneity in high-power phosphor-based white ...
Enhancing light sources color homogeneity in high-power phosphor-based white ...Enhancing light sources color homogeneity in high-power phosphor-based white ...
Enhancing light sources color homogeneity in high-power phosphor-based white ...
 
Research on advancing chromatic reproduction and luminosity of a WLED using t...
Research on advancing chromatic reproduction and luminosity of a WLED using t...Research on advancing chromatic reproduction and luminosity of a WLED using t...
Research on advancing chromatic reproduction and luminosity of a WLED using t...
 
For improvements in chromatic scales and luminescent fluxes of white lights: ...
For improvements in chromatic scales and luminescent fluxes of white lights: ...For improvements in chromatic scales and luminescent fluxes of white lights: ...
For improvements in chromatic scales and luminescent fluxes of white lights: ...
 
Enhancing the CRI and lumen output for the 6600 K WLED with convex-dual-layer...
Enhancing the CRI and lumen output for the 6600 K WLED with convex-dual-layer...Enhancing the CRI and lumen output for the 6600 K WLED with convex-dual-layer...
Enhancing the CRI and lumen output for the 6600 K WLED with convex-dual-layer...
 
The improvement of the color rendering index using convex-dual-layer remote p...
The improvement of the color rendering index using convex-dual-layer remote p...The improvement of the color rendering index using convex-dual-layer remote p...
The improvement of the color rendering index using convex-dual-layer remote p...
 
Application of green-emitting ZnS:Eu2+ for boosting the spectrum of white li...
Application of green-emitting ZnS:Eu2+ for boosting the  spectrum of white li...Application of green-emitting ZnS:Eu2+ for boosting the  spectrum of white li...
Application of green-emitting ZnS:Eu2+ for boosting the spectrum of white li...
 
Improving luminous flux and color homogeneity of dual-layer phosphor sctructure
Improving luminous flux and color homogeneity of dual-layer phosphor sctructureImproving luminous flux and color homogeneity of dual-layer phosphor sctructure
Improving luminous flux and color homogeneity of dual-layer phosphor sctructure
 
YAl3B4O12:Ce3+,Mn2
YAl3B4O12:Ce3+,Mn2YAl3B4O12:Ce3+,Mn2
YAl3B4O12:Ce3+,Mn2
 
The usage of dual-layer remote phosphor configurations in enhancing color qua...
The usage of dual-layer remote phosphor configurations in enhancing color qua...The usage of dual-layer remote phosphor configurations in enhancing color qua...
The usage of dual-layer remote phosphor configurations in enhancing color qua...
 

More from TELKOMNIKA JOURNAL

Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...TELKOMNIKA JOURNAL
 
Design, simulation, and analysis of microstrip patch antenna for wireless app...
Design, simulation, and analysis of microstrip patch antenna for wireless app...Design, simulation, and analysis of microstrip patch antenna for wireless app...
Design, simulation, and analysis of microstrip patch antenna for wireless app...TELKOMNIKA JOURNAL
 
Design and simulation an optimal enhanced PI controller for congestion avoida...
Design and simulation an optimal enhanced PI controller for congestion avoida...Design and simulation an optimal enhanced PI controller for congestion avoida...
Design and simulation an optimal enhanced PI controller for congestion avoida...TELKOMNIKA JOURNAL
 
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...TELKOMNIKA JOURNAL
 
Conceptual model of internet banking adoption with perceived risk and trust f...
Conceptual model of internet banking adoption with perceived risk and trust f...Conceptual model of internet banking adoption with perceived risk and trust f...
Conceptual model of internet banking adoption with perceived risk and trust f...TELKOMNIKA JOURNAL
 
Efficient combined fuzzy logic and LMS algorithm for smart antenna
Efficient combined fuzzy logic and LMS algorithm for smart antennaEfficient combined fuzzy logic and LMS algorithm for smart antenna
Efficient combined fuzzy logic and LMS algorithm for smart antennaTELKOMNIKA JOURNAL
 
Design and implementation of a LoRa-based system for warning of forest fire
Design and implementation of a LoRa-based system for warning of forest fireDesign and implementation of a LoRa-based system for warning of forest fire
Design and implementation of a LoRa-based system for warning of forest fireTELKOMNIKA JOURNAL
 
Wavelet-based sensing technique in cognitive radio network
Wavelet-based sensing technique in cognitive radio networkWavelet-based sensing technique in cognitive radio network
Wavelet-based sensing technique in cognitive radio networkTELKOMNIKA JOURNAL
 
A novel compact dual-band bandstop filter with enhanced rejection bands
A novel compact dual-band bandstop filter with enhanced rejection bandsA novel compact dual-band bandstop filter with enhanced rejection bands
A novel compact dual-band bandstop filter with enhanced rejection bandsTELKOMNIKA JOURNAL
 
Deep learning approach to DDoS attack with imbalanced data at the application...
Deep learning approach to DDoS attack with imbalanced data at the application...Deep learning approach to DDoS attack with imbalanced data at the application...
Deep learning approach to DDoS attack with imbalanced data at the application...TELKOMNIKA JOURNAL
 
Brief note on match and miss-match uncertainties
Brief note on match and miss-match uncertaintiesBrief note on match and miss-match uncertainties
Brief note on match and miss-match uncertaintiesTELKOMNIKA JOURNAL
 
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...TELKOMNIKA JOURNAL
 
Evaluation of the weighted-overlap add model with massive MIMO in a 5G system
Evaluation of the weighted-overlap add model with massive MIMO in a 5G systemEvaluation of the weighted-overlap add model with massive MIMO in a 5G system
Evaluation of the weighted-overlap add model with massive MIMO in a 5G systemTELKOMNIKA JOURNAL
 
Reflector antenna design in different frequencies using frequency selective s...
Reflector antenna design in different frequencies using frequency selective s...Reflector antenna design in different frequencies using frequency selective s...
Reflector antenna design in different frequencies using frequency selective s...TELKOMNIKA JOURNAL
 
Reagentless iron detection in water based on unclad fiber optical sensor
Reagentless iron detection in water based on unclad fiber optical sensorReagentless iron detection in water based on unclad fiber optical sensor
Reagentless iron detection in water based on unclad fiber optical sensorTELKOMNIKA JOURNAL
 
Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...TELKOMNIKA JOURNAL
 
A progressive learning for structural tolerance online sequential extreme lea...
A progressive learning for structural tolerance online sequential extreme lea...A progressive learning for structural tolerance online sequential extreme lea...
A progressive learning for structural tolerance online sequential extreme lea...TELKOMNIKA JOURNAL
 
Electroencephalography-based brain-computer interface using neural networks
Electroencephalography-based brain-computer interface using neural networksElectroencephalography-based brain-computer interface using neural networks
Electroencephalography-based brain-computer interface using neural networksTELKOMNIKA JOURNAL
 
Adaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imagingAdaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imagingTELKOMNIKA JOURNAL
 
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...TELKOMNIKA JOURNAL
 

More from TELKOMNIKA JOURNAL (20)

Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...
 
Design, simulation, and analysis of microstrip patch antenna for wireless app...
Design, simulation, and analysis of microstrip patch antenna for wireless app...Design, simulation, and analysis of microstrip patch antenna for wireless app...
Design, simulation, and analysis of microstrip patch antenna for wireless app...
 
Design and simulation an optimal enhanced PI controller for congestion avoida...
Design and simulation an optimal enhanced PI controller for congestion avoida...Design and simulation an optimal enhanced PI controller for congestion avoida...
Design and simulation an optimal enhanced PI controller for congestion avoida...
 
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
 
Conceptual model of internet banking adoption with perceived risk and trust f...
Conceptual model of internet banking adoption with perceived risk and trust f...Conceptual model of internet banking adoption with perceived risk and trust f...
Conceptual model of internet banking adoption with perceived risk and trust f...
 
Efficient combined fuzzy logic and LMS algorithm for smart antenna
Efficient combined fuzzy logic and LMS algorithm for smart antennaEfficient combined fuzzy logic and LMS algorithm for smart antenna
Efficient combined fuzzy logic and LMS algorithm for smart antenna
 
Design and implementation of a LoRa-based system for warning of forest fire
Design and implementation of a LoRa-based system for warning of forest fireDesign and implementation of a LoRa-based system for warning of forest fire
Design and implementation of a LoRa-based system for warning of forest fire
 
Wavelet-based sensing technique in cognitive radio network
Wavelet-based sensing technique in cognitive radio networkWavelet-based sensing technique in cognitive radio network
Wavelet-based sensing technique in cognitive radio network
 
A novel compact dual-band bandstop filter with enhanced rejection bands
A novel compact dual-band bandstop filter with enhanced rejection bandsA novel compact dual-band bandstop filter with enhanced rejection bands
A novel compact dual-band bandstop filter with enhanced rejection bands
 
Deep learning approach to DDoS attack with imbalanced data at the application...
Deep learning approach to DDoS attack with imbalanced data at the application...Deep learning approach to DDoS attack with imbalanced data at the application...
Deep learning approach to DDoS attack with imbalanced data at the application...
 
Brief note on match and miss-match uncertainties
Brief note on match and miss-match uncertaintiesBrief note on match and miss-match uncertainties
Brief note on match and miss-match uncertainties
 
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
 
Evaluation of the weighted-overlap add model with massive MIMO in a 5G system
Evaluation of the weighted-overlap add model with massive MIMO in a 5G systemEvaluation of the weighted-overlap add model with massive MIMO in a 5G system
Evaluation of the weighted-overlap add model with massive MIMO in a 5G system
 
Reflector antenna design in different frequencies using frequency selective s...
Reflector antenna design in different frequencies using frequency selective s...Reflector antenna design in different frequencies using frequency selective s...
Reflector antenna design in different frequencies using frequency selective s...
 
Reagentless iron detection in water based on unclad fiber optical sensor
Reagentless iron detection in water based on unclad fiber optical sensorReagentless iron detection in water based on unclad fiber optical sensor
Reagentless iron detection in water based on unclad fiber optical sensor
 
Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...
 
A progressive learning for structural tolerance online sequential extreme lea...
A progressive learning for structural tolerance online sequential extreme lea...A progressive learning for structural tolerance online sequential extreme lea...
A progressive learning for structural tolerance online sequential extreme lea...
 
Electroencephalography-based brain-computer interface using neural networks
Electroencephalography-based brain-computer interface using neural networksElectroencephalography-based brain-computer interface using neural networks
Electroencephalography-based brain-computer interface using neural networks
 
Adaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imagingAdaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imaging
 
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
 

Recently uploaded

Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
 
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptxthe ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptxhumanexperienceaaa
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...ranjana rawat
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...srsj9000
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations120cr0395
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
 

Recently uploaded (20)

Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
 
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptxthe ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 

Improving optical properties of remote phosphor LED using green Y2O3:Ho3+ and red Mg4(F)(Ge, Sn)O6:Mn2+ layers

  • 1. TELKOMNIKA Telecommunication, Computing, Electronics and Control Vol. 18, No. 6, December 2020, pp. 3228~3233 ISSN: 1693-6930, accredited First Grade by Kemenristekdikti, Decree No: 21/E/KPT/2018 DOI: 10.12928/TELKOMNIKA.v18i6.13797  3228 Journal homepage: http://journal.uad.ac.id/index.php/TELKOMNIKA Improving optical properties of remote phosphor LED using green Y2O3:Ho3+ and red Mg4(F)(Ge, Sn)O6:Mn2+ layers My Hanh Nguyen Thi1 , Nguyen Thi Phuong Loan2 , Nguyen Doan Quoc Anh3 1 Faculty of Mechanical Engineering, Industrial University of Ho Chi Minh City, Vietnam 2 Faculty of Fundamental 2, Posts and Telecommunications Institute of Technology, Vietnam 3 Power System Optimization Research Group, Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Vietnam Article Info ABSTRACT Article history: Received Aug 4, 2019 Revised Apr 6, 2020 Accepted Jul 9, 2002 The lighting device that employs diodes to create white light (WLEDs) with quantum dots (QDs) and phosphor layers is a promising lighting method that is increasingly used in many fields on account of the remarkable color expressing ability. The QDs film is usually placed apart from the phosphor layer according to the packaging configuration to prevent light loss due to backscattering as well as preserve the consistency of the ligands on the QDs surface. The article also conducted experiments to compare the lighting properties and thermal output of the two packaging orders of QDs and phosphor. The heat discharing ranges were simulated with thermography technology, moreover, other parameters such as light energy emission and PL spectra are acquired to evaluate the efficiency of the packaging order. The results from the practical experiment show that while under 10% wt., the luminous output (LO) of green QDs-on-phosphor structure reaches 1130 lm, higher than the red QDs-on-phosphor structure with 878 lm, and the color rendering value in the configuration with red QDs on phosphor is Ra = 74 are higher than Ra = 68 index of the green QDs-on-phosphor structure. As a result, the QDs-on-phosphor is determined as the better packaging configuration to choose to achieve an overall improvement in lighting efficiency, color rendering index Keywords: Color rendering index Lumen output Mg4(F)(Ge,Sn)O6:Mn2+ WLEDs Y2O3:Ho3+ This is an open access article under the CC BY-SA license. Corresponding Author: Nguyen Doan Quoc Anh, Power System Optimization Research Group, Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam. Email: nguyendoanquocanh@tdtu.edu.vn 1. INTRODUCTION White light-emitting diodes (WLEDs) with their phenomenon lighting properties such as high lighting capacity, power saving and excellent endurance are being increasingly utilized in modern lighting applications and flat monitor display [1-3]. Fabricating white light by merging discharged light from the blue chip and the phosphor material Y3Al5O12:Ce3+ (YAG:Ce) is the most commonly used method. The idea of this method is based on the color-integrating principle, which is combining red and yellow to create white light. While this LEDs model has high lighting efficacy (LE), the red deficiency within the radiation spectrum, which is a much-needed chromatic light to improve the color expression ability, prevents it from obtaining high quality status [4]. Many solutions were suggested in previous researches to address this issue including adding red
  • 2. TELKOMNIKA Telecommun Comput El Control  Improving optical properties of remote phospor LED using green Y2O3:Ho3+ ... (My Hanh Nguyen Thi) 3229 phosphor materials to enhance the color rendering ability of pc-LEDs [5-8]. The only problem with this method is the inability of keeping the luminous efficacy index at an acceptable level due to part of their extensive red emitting spectrum exceeds the human perception [9]. The solid-state lighting field in recent time is focusing on the semiconductor quantum dots (QDs), an innovative material that can bring about immense changes to the lighting performance of LEDs, with exceptional optical parameters, namely, the adjustable bandwidth, small emitting range and high quantum productivity [10-13]. The positive effects of QDs on the color rendering index (CRI), color gamut as well as the lighting efficacy of pc-LEDs have been verified both in theory and through practices [14-16]. The most frequently used packaging configurations for pc-LEDs with QDs are applying a compound of QDs and the phosphorous silicone resin or coating the QDs and the phosphor component separately. The QDs and the phosphor are blended together and put on the LED chip in the first configuration, the combined configuration [17, 18], while in the latter configuration the QDs and phosphor layer are applied individually onto the chip, as separated configuration [19, 20]. The issue with the combined configuration is the QDs in this structure is part of the reflector and, therefore, too close to the LED chip and results in high optical density. The remote structure, on the other hand, with a gap between the QDs sheet and the chip experiences low optical power density. However, the remote structure can stabilize the chemical discrepancy among QDs molecules at the surface and phosphor silicone expoxy by alternating the polymeric condition that the QDs sheet is in [21-23]. With this characteristic, the remote packaging configuration appears to be the optimal solution and was normally applied to create WLEDs with QDs and phosphor. 2. PREPARATION AND SIMULATION Figure 1 (a) illustrates the scenario where the green QDs particles are placed upon the phosphor layer. Meanwhile, Figure 1 (b) the red QDs lay upon the phosphor layer. The package configuration is a deciding factor to the emitted light and heat radiation, thus deciding the lighting performance of WLEDs. While the relation between the package configuration and the QDs-WLEDs optical performance was thoroughly expressed in previous studies, there was no practical experiment on the transition of lighting power between QDs and phosphor. The findings from said research are an important contribution to the QDs-WLEDs construction guideline, however, the amount of light energy loss during transition in both structures as well as the effect of QDs on the optical performance are the important aspects that have not been discussed. (a) (b) Figure 1. Simulation diagram of two remote WLEDs types with different packaging sequences: (a) green QDs-on-phosphor type, (b) red QDs-on-phosphor type Therefore, the goal of this article is to gather the information needed for a quantitative research that relates to the aspects mentioned above. The primary method is to analyze the decline of lighting power between QDs and the phosphor layer in both structures, and then compare their operating efficiency to determine which one is the optimal configuration. To serve this experiment, a red emitting QDs CdSe/ZnS and a WLEDs based on yellow emitting phosphor and a band of QDs were created. The emission of lighting energy and PL range indexes needed for the comparison process are computed using an integrating sphere system while the temperature fields on the devices during operation are imitated by putting the optical indexes in thermal simulation and then use an infrared thermal imager to analyze the result. The outcomes from the experiments show that with better lighting efficiency and color rendering index in addition to lower device generated heat, the QDs-on-phosphor is the ideal packaging order to choose for better performance.
  • 3.  ISSN: 1693-6930 TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 6, December 2020: 3228 - 3233 3230 3. RESULTS AND DISCUSSION The results in Figure 2 expressed the different changes occur in terms of concentration between green phosphor Y2O3:Ho3+ , red phosphor Mg4(F)(Ge, Sn)O6:Mn2+ and yellow phosphor YAG:Ce3+ . These changes in concentration affect the ability to absorb or scatter of the phosphor layers in WLEDs, which determine the color quality and the amount of light emitted. Therefore, the concentration setting of the two phosphor layers Y2O3:Ho3+ and Mg4(F)(Ge, Sn)O6:Mn2+ are extremely important to the optical performance of WLEDs. Moreover, the decreases in the concentration of yellow phosphor YAG:Ce3+ corresponding to the increases in concentrations of the Y2O3:Ho3+ and Mg4(F)(Ge, Sn)O6:Mn2+ is to maintain the average correlated color temperatures. More specifically, YAG:Ce3+ concentration decline to preserve the ACCTs when the concentrations of Y2O3:Ho3+ and Mg4(F)(Ge, Sn)O6: Mn2+ are rising in the range from 2 to 20% wt. The influences of red phosphor Mg4(F)(Ge, Sn)O6:Mn2+ and green phosphor Y2O3:Ho3+ are expressed in Figure 3. According to Figure 3, the intensity in the range from 420-480 nm and 500 to 640 nm increase with Y2O3:Ho3+ concentration which confirmed that the luminous flux in these ranges is also increase. Moreover, the scattered blue light also increases, which means the scattering property is improved leading to better correlated color. The advantages that occur when applying the Y2O3:Ho3+ are notable results that can be utilized to validate the benefit of this green phosphor on the optical properties of WLEDs. In the case of Mg4(F)(Ge,Sn)O6:Mn2+ , the presence of this phosphor cause the intensity from 648 to 738 nm to rise, however, this effect is meaningless without the increase in the two remaining spectrum ranges, which are 420-480 nm and 500-640 nm. Similar to the green phosphor, if the intensity in the remaining spectrums of red phosphor rise that would result in better blue light scattering effect. The emission spectrum that ties to the emitted temperature is crucial in improving the optical performance, particularly, when the emission spectrum increase, the color quality and luminous flux become better. These are important findings when utilizing the red phosphor Mg4(F(Ge, Sn)O6:Mn2+ . The research results show that Mg4(F)(Ge, Sn)O6:Mn2+ guarantee improvement in color quality despite the color temperature, this is a valuable characteristic, especially when maintaining high color quality at high temperature is considered hard to obtain. The final decision relies on the manufacturers to choose the suitable option to reach their goal. For WLEDs that focus on the high chromatic performance, it is advisable to give up a bit of emitted light to achieve highest color quality possible. Figure 2. The alteration in phosphor concentration of remote WLEDs to maintain the average CCT Figure 3. Emission spectra intensity in dual-layer phosphor structures The CRI expresses the chromatic outcome of the irradiated object. This index denotes the ability to express the color of an object and is based on the balance of blue, yellow, and green. If the proportions of the constituent colors are uneven, the color balance will loss and results in reduced color quality. According to results of CRI presented in Figure 4, the green remote phosphor layer Y2O3:Ho3+ is detrimental to the CRI. Although the color rendering index decreases slightly whenever there is a green phosphor layer in the structure, this is not a serious defect due to CRI is only part of color quality scale (CQS). The CQS, as can be seen in Figure 5 remain static when the concentration of Y2O3:Ho3+ is below 8%. In comparison to CRI, the CQS is a priority because it covers more optical properties and is harder to obtain. As a result, it is acceptable to have the concentration of Y2O3:Ho3+ under 8% if the luminous flux is also appropriate. The following section is the calculating formula for the unequal SPD of single color LED with Gaussian function [24, 25]:
  • 4. TELKOMNIKA Telecommun Comput El Control  Improving optical properties of remote phospor LED using green Y2O3:Ho3+ ... (My Hanh Nguyen Thi) 3231 𝑃𝜆 = 𝑃𝑜𝑝𝑡 1 𝜎√2𝜋 𝑒𝑥𝑝 [−0.5 ∗ (𝜆−𝜆 𝑝𝑒𝑎𝑘)2 𝜎2 ] (1) In this formula, 𝑃𝜆 is the spectral power distribution (SPD) (mW/nm) while λ indicates the wavelength (nm) and 𝜆 𝑝𝑒𝑎𝑘 describes the peak wavelength (nm). 𝑃𝑜𝑝𝑡 are used to describe the optical power (W) of the WLED. When 𝜎 relies on the peak wavelength 𝜆 𝑝𝑒𝑎𝑘, it is possible to define the full-width at half-maximum (FWHM) Δ𝜆 (nm) as following with 𝜆1, 𝜆2 being the wavelengths at half of the peak intensity,ℎ represents Planck’s constant (J.s) and c is the speed of light (m.s−1 ). 𝜎 = 𝜆 𝑝𝑒𝑎𝑘 2 𝛥𝐸 2ℎ𝑐√2 𝑙𝑛 2 = 𝜆 𝑝𝑒𝑎𝑘 2 ( ℎ𝑐 𝜆1 − ℎ𝑐 𝜆2 ) 2ℎ𝑐√2 𝑙𝑛 2 = 𝜆 𝑝𝑒𝑎𝑘 2 ( ℎ𝑐𝛥𝜆 𝜆1 𝜆2 ) 2ℎ𝑐√2 𝑙𝑛 2 (2) Figure 4. The color rendering index corresponding to the concentration of Y2O3:Ho3+ and Mg4(F)(Ge, Sn)O6:Mn2+ phosphors Figure 5. The color quality scale corresponding to the concentration of Y2O3:Ho3+ and Mg4(F)(Ge, Sn)O6:Mn2+ phosphors In theory, WLED with YAG phosphor and blue light emitting chip has the combination between blue and yellow spectra as SPD. In practical experiment, yellow phosphor actually active in both yellow and green emission ranges. With that being said, it is possible to use the green spectrum to depict the discrepancy between the SPD in practice and blue-yellow mixed spectrum in cases with blue and yellow are the chosen spectra. As a result, the green spectrum is added to the model for practical circumstances and the analytical tri-spectrum (B-G-Y) is expressed as in (3) then later on modified to (4): 𝑃𝜆 = 𝑃𝑜𝑝𝑡_𝑏 1 𝜎 𝑏√2𝜋 𝑒𝑥𝑝 [−0.5 ∗ (𝜆 − 𝜆 𝑝𝑒𝑎𝑘_𝑏)2 𝜎 𝑏 2 ] 𝑃𝑜𝑝𝑡 𝑔 1 𝜎 𝑔√2𝜋 𝑒𝑥𝑝 [−0.5 ∗ (𝜆−𝜆 𝑝𝑒𝑎𝑘 𝑔)2 𝜎 𝑔 2 ] (3) 𝑃𝑜𝑝𝑡_𝑦 1 𝜎 𝑦√2𝜋 𝑒𝑥𝑝 [−0.5 ∗ (𝜆 − 𝜆 𝑝𝑒𝑎𝑘_𝑦)2 𝜎 𝑦 2 ] 𝑃𝜆 = 𝜂 𝑏 𝑃𝑜𝑝𝑡 𝑡𝑜𝑡𝑎𝑙 1 𝜎 𝑏√2𝜋 𝑒𝑥𝑝 [−0.5 ∗ (𝜆 − 𝜆 𝑝𝑒𝑎𝑘 𝑏 )2 𝜎 𝑏 2 ] 𝜂 𝑔 𝑃𝑜𝑝𝑡 𝑡𝑜𝑡𝑎𝑙 1 𝜎𝑔√2𝜋 𝑒𝑥𝑝 [−0.5 ∗ (𝜆 − 𝜆 𝑝𝑒𝑎𝑘 𝑔 )2 𝜎𝑔 2 ] 𝜂 𝑦 𝑃𝑜𝑝𝑡_𝑡𝑜𝑡𝑎𝑙 1 𝜎 𝑦√2𝜋 𝑒𝑥𝑝 [−0.5 ∗ (𝜆−𝜆 𝑝𝑒𝑎𝑘_𝑦)2 𝜎 𝑦 2 ] (4) where 𝑃𝑜𝑝𝑡_𝑏, 𝑃𝑜𝑝𝑡_𝑔, 𝑃𝑜𝑝𝑡_𝑦and 𝑃𝑜𝑝𝑡_𝑡𝑜𝑡𝑎𝑙 stand for the optical power (W) in each separate spectrum of blue, green, yellow and white. 𝜆 𝑝𝑒𝑎𝑘_𝑏, 𝜆 𝑝𝑒𝑎𝑘_𝑔 and 𝜆 𝑝𝑒𝑎𝑘_𝑦in order are the peak wavelengths (nm) of the spectra
  • 5.  ISSN: 1693-6930 TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 6, December 2020: 3228 - 3233 3232 emitting the chromatic lights. The non-dimensional ratios of chromatic lights spectra to the range of white light, are expressed respectively as 𝜂 𝑏, 𝜂 𝑔 and 𝜂 𝑦. 𝜎𝑏, 𝜎𝑔 and 𝜎 𝑦 in turn are the coefficient of FWHM (nm) for the wavelength ranges of chromatic lights. This mathematical models for SPC in WLEDs with phosphor layer can be perceived as a tricolor spectrum and an extended Gaussian model. Next, we study the luminous flux of QDs WLED with the QDs concentration as in Figure 6. The content of Figure 6 demonstrates that when the concentration range of Y2O3:Ho3+ is from 2% wt to 20% wt the luminous will sharply increase. However, the luminous flux in remote phosphor structure with dual layers is a result of both phosphor layers including the red phosphor Mg4(F)(Ge, Sn)O6:Mn2+ . The extinction coefficient increase with Mg4(F)(Ge, Sn)O6:Mn2+ concentration while opposing to light transmission energy as the application of Beer’s Law suggests. Therefore, when choosing the concentration for the phosphor layers it may occur the lumen output decreases when the concentration of Mg4(F)(Ge, Sn)O6:Mn2+ increases, and drastically decline especially when the concentration reaches 20%. Despite the drawback in luminous flux, using red phosphor Mg4(F)(Ge,Sn)O6:Mn2+ is still beneficial because of the enhancements it brings to the CRI and CQS, not to mention the luminous flux in these dual-layer phosphor structures is better than the single-layer ones that do not have a red phosphor layer. These references help the manufacturers choose the exact concentration of the phosphor to serve their purpose in mass production. Figure 6. The luminous flux corresponding to the concentration of Y2O3:Ho3+ and Mg4(F)(Ge, Sn)O6:Mn2+ phosphors 4. CONCLUSION The results of this research paper confirmed the benefits of green phosphor Y2O3:Ho3+ and red phosphor Mg4(F)(Ge, Sn)O6:Mn2+ on the optical properites of remote structure with two phosphor layers. Through the study of scattering characteristic with scattering theory and the Beer’s law, it is confirmed that the red phosphor Mg4(F)(Ge, Sn)O6: Mn2+ is capable of boosting the chromatic quality. On the other hand, the green phosphor Y2O3:Ho3+ is the excellent substance to improve the luminous flux, the effect is not only applicable to low color temperature WLEDs but also with the ones at high color temperature. With the aforementioned results, this research has succeeded in a very difficult task that is enhancing the color quality in remote phosphor structure. On another note, the concentration of both phosphor layers Y2O3:Ho3+ or Mg4(F)(Ge, Sn)O6:Mn2+ must be kept at an appropriate level as the excessive amount of phosphor can damage the color quality as well as the luminous flux. Managing the concentration of phosphor is crucial in producing WLEDs, however, this article has presented all the much-needed information about this topic to the manufacturers so they can apply it to create WLEDs with the desired quality. REFERENCES [1] S. Sadeghi, et al., “Quantum dot white LEDs with high luminous efficiency,” Optica, vol. 5, no. 7, pp. 793-802, 2018. [2] X. Kong, et al., “Assessing the temporal uniformity of CIELAB hue angle,” Journal of the Optical Society of Amerika A, vol. 37, no. 4, pp. 521-528, March 2020. [3] X. Li, et al., “Single-shot multispectral imaging through a thin scatterer,” Optica, vol. 6, pp. 864-871, 2019. [4] S. Pan, et al., “Image restoration and color fusion of digital microscopes,” Applied Optics, vol. 58, no. 9, pp. 2183-2189, March 2019. [5] B. K. Tsai, et al., “Exposure study on UV-induced degradation of PTFE and ceramic optical diffusers,” Applied Optics, vol. 58, no. 5, pp. 1215-1222, February 2019.
  • 6. TELKOMNIKA Telecommun Comput El Control  Improving optical properties of remote phospor LED using green Y2O3:Ho3+ ... (My Hanh Nguyen Thi) 3233 [6] X. Wang, et al., “Modifying phase, shape and optical thermometry of NaGdF4:2%Er3+ phosphors through Ca2+ doping,” Opt. Express, vol. 26, no. 17, pp. 21950-21959, August 2018. [7] X. Fu, et al., “Micromachined extrinsic Fabry-Pérot cavity for low-frequency acoustic wave sensing,” Optics Express, vol. 27, no. 17, pp. 24300-24310, August 2019. [8] A. Ullah, et al., “Household light source for potent photo-dynamic antimicrobial effect and wound healing in an infective animal model,” Biomed. Opt. Express, vol. 9, no. 3, pp. 1006-1019, March 2018. [9] D. Durmus, et al., “Blur perception and visual clarity in light projection systems,” Opt. Express, vol. 27, no. 4, pp. A216-A223, February 2019. [10] A. Lihachev, et al., “Differentiation of seborrheic keratosis from basal cell carcinoma, nevi and melanoma by RGB autofluorescence imaging,” Biomedical Optical Express, vol. 9, no. 4, pp. 1852-1858, April 2018. [11] J. Zhou, et al., “Low-voltage wide-field-of-view lidar scanning system based on a MEMS mirror,” Applied Optics, vol. 58, no. 5, pp. A283-A290, 2019. [12] J. S. Li, et al., “High efficiency solid–liquid hybrid-state quantum dot light-emitting diodes,” Photonics Research, vol. 6, no. 12, pp. 1107-1115, December 2018. [13] S. Lee, et al., “Printed cylindrical lens pair for application to the seam concealment in tiled displays,” Optics Express, vol. 26, no. 2, pp. 824-834, January 2018. [14] H. Yuce, et al., “Phosphor-based white LED by various glassy particles: control over luminous efficiency,” Optics Letters, vol. 44, no. 3, pp. 479-482, February 2019. [15] Q. Zhang, et al., “Excellent luminous efficiency and high thermal stability of glass-in-LuAG ceramic for laser-diode- pumped green-emitting phosphor,” Optiics Letters, vol. 43, no. 15, pp. 3566-3569, August 2018. [16] V. Fuertes, et al., “Enhanced luminescence in rare-earth-free fast-sintering glass-ceramic,” Optica, vol. 6, no. 5, pp. 668-679, May 2019. [17] X. Huang, et al., “High-brightness and high-color purity red-emitting Ca3Lu, AlO.3, BO3.4: Eu3+phosphors with internal quantum efficiency close to unity for near-ultraviolet-based white-light-emitting diodes,” Optics Letters, vol. 43, no. 6, pp. 1307-1310, 2018. [18] W. Gao, et al., “Color temperature tunable phosphor-coated white LEDs with excellent photometric and colorimetric performances,” Applied Optics, vol. 57, no. 31, pp. 9322-9327, November 2018. [19] H. L. Ke, et al., “Lumen degradation analysis of LED lamps based on the subsystem isolation method,” Applied Optics, vol. 57, no. 4, pp. 849-854, February 2018. [20] S. Beldi, et al., “High Q-factor near infrared and visible Al2O3-based parallel-plate capacitor kinetic inductance detectors,” Opt. Express, vol. 27, no. 9, pp. 13319-13328, April 2019. [21] H. Liu, et al., “Design of a six-gas NDIR gas sensor using an integrated optical gas chamber,” Optics Express, vol. 28, no. 8, pp. 11451-11462, March 2020. [22] D. Lu, et al., “Synthesis and photoluminescence characteristics of the LiGd3, MoO4.5: Eu3+red phosphor with high color purity and brightness,” Optical Materials Express, vol. 8, no. 2, pp. 259-269, February 2018. [23] L. Wu, et al., “Hybrid warm-white organic light-emitting device based on tandem structure,” Optics Express, vol. 26, no. 26, pp. A996-A1006, December 2018. [24] S. Elmalem, et al., “Learned phase coded aperture for the benefit of depth of field extension,” Optics Express, vol. 26, no. 12, pp. 15316-15331, June 2018. [25] J. H. Kim, et al., “Synthesis of Mn-doped CuGaS2 quantum dots and their application as single downconverters for high-color rendering solid-state lighting devices,” Optical Materials Express, vol. 8, no. 2, pp. 221-230, February 2018.