1 
ECE 5318/6352 
Antenna Engineering 
Chapter 4 
Linear Wire Antennas
2 
ƒƒINFINITESIMAL DIPOLE 
(constant current) 
l<<λ ; thin wire ; 
G 
(only electrical current present) 
l ≤ λ/50 
I 
l / 2 
l / 2 
Io 
θ 
Impinging 
Wave 
z 
o z I z I( ' ) = aˆ 
I = 0 ⇒F =0 
m 
[4-1]
3 
ƒƒINFINITESIMAL DIPOLE 
(CONT) 
r = x2+y2+z2 
l ≤ λ/50 
Fig. 4.1(a) Geometrical arrangement 
of an infinitesimal dipole
4 
ƒƒINFINITESIMAL DIPOLE 
ƒƒ mixed coordinates in 
expression - change to 
spherical 
for A << λ 
R ≅ x 2 + y 2 + z 2 
( ' , ' , ' ) ' 
μ 
4 
A 
G G 
d 
R 
(x,y,z) x y z e 
jkR 
c 
e 
o 
− 
A ≅ ∫ I 
π 
(x,y,z) 
source 
points 
(x’,y’,z’) 
l 
[4-2] 
(CONT) 
l ≤ λ/50 
( ) ( ) ( ) R = x − x' 2 + y − y' 2 + z − z' 2
5 
ƒƒINFINITESIMAL DIPOLE 
ƒƒ mixed coordinates in expression 
change to spherical 
[4-4] 
∫ 
− 
− 
(x,y,z) ≅ 
e 
/ 2 
/ 2 
' 
4 
ˆ 
A 
A 
G G 
d z 
r 
jkr 
o μ 
A a I o z π 
G GA a I z 
μ 
4 
ˆ A 
o o e jkr 
r 
(x,y,z) ≅ − 
π 
(x,y,z) 
source 
points 
(x’,y’,z’) 
l 
(CONT) 
l ≤ λ/50
6 
ƒƒINFINITESIMAL DIPOLE 
R ≅ (x − x' )2 + (y − y' )2 + (z − z' )2 
θ 
μ 
A = − A = I A − 
sin o o jkr 
z e 
θ θ sin 
4 
r 
π 
θ 
μ 
A = − A = I A − 
cos o o jkr 
r z e 
θ cos 
4 
r 
π 
∫c 
d A' along source 
= 0 φ A 
(x,y,z) 
source 
points 
(x’,y’,z’) 
l 
[4-6] 
(CONT) 
ƒ mixed coordinates in expression 
need to change to spherical 
l ≤ λ/50
7 
ƒƒINFINITESIMAL DIPOLE 
ƒƒUsing Vector Potential A , 
calculate H & E fields 
G G G 
= 1 ∇× = ˆ 1 ∇× 
[ ]φ φ μ μ 
H A a A 
) ( 1 A G 
[ ] ⎡ 
⎤ 
⎥⎦ 
⎢⎣ 
∂ 
r A − 
A 
r ∂ 
∂ 
∂ 
∇× = 
θ φ θ 
r r 
[4-7] 
(CONT) 
l ≤ λ/50
8 
ƒƒUsing Vector Potential A , 
calculate H fields 
[4-8] 
⇒ 
G = 1 
G 
∇× 
H A 
μ 
⎤ 
⎢⎣ ⎡ 
H = j k I A 
sin 1+ 1 
− ⎥⎦ 
o e jkr 
r jkr 
4 
θ 
π φ 
= 0 r H 
= 0 θ H 
ƒƒINFINITESIMAL DIPOLE 
(CONT) 
l ≤ λ/50
9 
ƒƒINFINITESIMAL DIPOLE 
ƒƒUsing Maxwell’’s Eqns to 
calculate E fields 
G G 
= ∇× 
E I − ⎥⎦ 
⎤ 
⎡ 
E = j k I sin 1 + 1 − 1 
− 2 2 
⎥⎦ 
[4-10] 
⇒ 
1 
E H 
jωε 
η A 
o jkr 
r e 
r jkr 
⎤ 
⎢⎣ ⎡ 
= cos 1+ 1 
2 2 θ 
π 
= 0 φ E 
o e jkr 
r jkr k r 
⎢⎣ 
4 
θ 
π 
η 
θ 
A 
Fig. 4.1(b) Geometrical arrangement 
of an infinitesimal dipole and its 
associated electric-field components 
on a spherical surface 
(CONT) 
l ≤ λ/50
10 
ƒƒINFINITESIMAL DIPOLE 
ƒƒUsing Hφφ, Er, Eθθ, calculate the complex Poynting vector 
= × ∗ = ( ∗ − ∗ ) θ φ θ φ E H E H r r W E H a aG G G G 
( ) 1 
2 
ˆ 
2 
1 
⎥⎦ ⎤ 
⎢⎣ ⎡ 
⎤ 
⎢⎣ ⎡ 
W η o A 
θ 
= − ⎥⎦ 
1 1 2 
( )3 
2 sin2 
j 
8 r 
kr 
I 
r 
λ 
( )2 [4-12] 
k Io cos sin = j ⎡ 2 3 1 + j 
1 ⎤ 16 ⎢⎣ ( ) 
2 ⎥⎦ 
W η θ θ 
θ π 
r kr 
A 
(CONT) 
l ≤ λ/50
11 
ƒƒINFINITESIMAL DIPOLE 
ƒƒFind total outward flux through a closed sphere 
(only contributions from Wr) 
P W dsG G 
2 2 
0 ∫ ∫ = = 
φ θ θ π 
π 
φ 
= ∫∫ • [4-14] 
s 
⎤ 
⎥⎦ 
d W r d r sin 
⎡ 
− ⎥⎦ 
1 1 
θ 
= ⎡ 3 
⎢⎣ 
⎤ 
⎢⎣ 
2 
3 kr 
( ) 
I j oλ 
ηπ A 
0 
= 
(CONT) 
l ≤ λ/50
12 
ƒƒINFINITESIMAL DIPOLE 
(CONT) 
ƒƒFind total outward flux through a closed sphere 
Real P = total radiated power Prad 
rad P I I 2 R 
o r 
ηπ A 
o 
2 
1 
2 
= ⎡ 
3 
⎤ 
= ⎥⎦ 
⎢⎣ 
λ 
Radiation resistance 
for free space where 
λ 
2 
= π A r R 
η = 120π 2 
= = ⇒ = r λ R 
[4-19] 
[4-16] 
0.02 0.316 
50 
A 
2 
80 2 
λ 
ƒƒExample [Ω] 
l ≤ λ/50 
(Impedance would also have a large capacitive term that is not calculated here.)
13 
ƒƒINFINITESIMAL DIPOLE 
(CONT) 
Imaginary part of P = reactive power in the radial direction 
2 1 
( )3 
Io ⎤ 
⎥⎦ 
ηπ A 
= − ⎡ 
⎢⎣ 
3 λ 
kr 
[4-17] 
(Note: this → 0 as kr → ∞, so it is 
essentially not present in far field; 
only important in near field considerations) 
l ≤ λ/50
14 
ƒƒINFINITESIMAL DIPOLE 
ƒƒNear Field approximations 
[ kr <<<< 1 ] 
(field point very close or very low frequency case) 
jkr 
jkr 
θ 
E j I e 
E ≅ − j I A 
e 
H I e 
o 
jkr 
− 
≅ A 
o 
− 
o 
φ sin 
π 4 r2 
Dominant terms ⇒ 
[4-20] 
θ 
π 
η 
cos 
2 k r3 
r 
− 
≅ − A 
θ 
π 
η 
θ sin 
4 k r3 
Like ‘quasistationary” fields 
E near static electric dipole 
H near static current element 
(CONT) 
l ≤ λ/50
15 
ƒƒINFINITESIMAL DIPOLE 
ƒƒNear Field approximations 
[ kr <<<< 1 ] 
Biot – Savart Law : 
infinitesimal ∧ 
current 
element in az direction 
(same as above when kr →0) 
(note E and H are 90° out of 
phase) 
IG oA 
H ≅ a 
ˆ r2 
NO RADIAL POWER FLOW -- 
REACTIVE FIELDS 
θ 
π φ sin 
4 
G G G 
avg 
W = 1 E×H∗ 
Re [ ] 
2 
= 0 avg W G 
[4-21] 
[4-22] 
(CONT) 
l ≤ λ/50
16 
ƒƒIntermediate Fields 
[ kr > 1] 
(beginnings of radial power flow; still have radial fields) 
E 1 
r θ ∼ E 1 
1 
r 2 φ ∼ 
r E 
r 
∼ 
ƒƒINFINITESIMAL DIPOLE 
(CONT) 
l ≤ λ/50
r = λ/2π (Radian Distance) 
(Radius of Radian Sphere) 
17 
ƒƒINFINITESIMAL DIPOLE 
Energy 
basically 
imaginary 
(stored) 
Energy 
basically 
real 
(radiated) 
(CONT) 
Fig. 4.2 Radiated field terms magnitude 
variation versus radial distance 
l ≤ λ/50
18 
ƒƒINFINITESIMAL DIPOLE 
(CONT) 
ƒƒFar Field [ kr >> 1 ] 
Dominant terms ⇒ 
θ 
E j k I e 
jkr 
− 
≅ A 
θ sin 
θ [4-26] 
o 
4 π 
r 
η 
H j k I e 
π φ sin 
4 r 
jkr 
o 
− 
≅ A 
0 r r E E H H φ θ ≅ ≅ ≅ ≅ 
l ≤ λ/50
19 
ƒƒINFINITESIMAL DIPOLE 
ƒƒFar Field [ kr >> 1 ] 
η 
E 
θ = 
H 
φ 
( both E and H are TEM to ) 
r aˆ 
Similar to plane wave but propagation in direction 
With 1 
and sinθ 
variations 
r 
[4-27] 
(CONT) 
r aˆ 
l ≤ λ/50
20 
ƒƒDirectivity (use Far Field approx.) 
G G G 
avg 2 
W = 1 E×H∗ 
RADIATION INTENSITY 
Re[ ] 
2 
2 
2 sin 
⎡ 
= a A 
2 4 
ˆ 
r 
k Io 
r 
θ 
π 
η 
⎤ 
⎥ ⎥ ⎥ 
⎦ 
⎢ ⎢ ⎢ 
⎣ 
θ 
⎤ 
⎡ = = k IoA 
2 η 2 2 
2 4 π 
sin 
⎥ ⎥⎦ 
⎢ ⎢⎣ 
avg U r W 
2 2 sin 
Io 
= ⎡ A ⎤ 
Real ( W 
r ) avg W θ 
( Note: 2 as before for ) 
8 λ 
r 
η 
⎥⎦ 
⎢⎣ 
[4-28] 
[4-29] 
ƒƒINFINITESIMAL DIPOLE 
(CONT) 
l ≤ λ/50
3 
ƒƒINFINITESIMAL DIPOLE 
8 
⎤ 
⎡ 
A 
I 
D 
(CONT) 
(in θ = 90° direction) [4-31] 
21 
D = 4π Umax 
o P 
rad 
2 
⎤ 
⎡ 
η oA U k I 
⎢⎣ 
= 
max 2 4 π 
⎥⎦ 
2 
⎤ 
P I 
η π oA 
= ⎡ 
3 ⎥⎦ 
⎢⎣ 
λ 
rad 
1.5 
2 
3 
2 
2 
= = 
⎤ 
⎥⎦ 
⎡ 
⎢⎣ 
⎥⎦ 
⎢⎣ 
= 
λ 
ηπ 
λ 
η 
A 
o 
o 
o I 
ƒƒDirectivity 
l ≤ λ/50
22 
ƒƒSMALL DIPOLE 
Uniform current assumption - only valid for ideal case 
( approximated by capacitor plate antenna) 
value of fields compared 
to constant current case 
1_2 
λ/50 < l < λ/10 
λ/50 < l < λ/10 
θ 
E j k I e 
π 
η 
θ sin 
8 r 
jkr 
o 
− 
= A 
θ 
H j k I e 
π φ sin 
8 r 
jkr 
o 
− 
= A 
[4-36]
23 
ƒƒSMALL DIPOLE 
(CONT) 
For physical small dipole 
triangular current distribution 
value of case of 
constant current 
1_4 
⎤ 
P I 
ηπ oA 
= ⎡ 
⎤ 
π A 
= ⎡ 
same as constant 
current case 
λ/50  l  λ/10 
[4-37] 
2 
12 ⎥⎦ 
⎢⎣ 
λ 
rad 
2 
20 2 ⎥⎦ 
⎢⎣ 
λ 
r R 
= 1.5 o D
24 
ƒƒFINITE LENGTH DIPOLE 
(length comparable to λ) 
⎛ ′ 2 
⎞ 
R r z z 
' cos 1 sin2 
= − + ⎜ ⎟ + 
θ θ 
2 
r 
⎝ ⎠ 
approx. error 
(max error where θ = 90° ; 4th term = 0 there) 
 
[4.41] 
Fig. 4.5 Finite dipole geometry 
and far-field approximations
25 
ƒƒFINITE LENGTH DIPOLE 
ƒƒPhase and Magnitude considerations 
ƒIn calculating phase assume 
can tolerate phase error of π/8 (22°) 
ƒMust choose r far enough 
away so that …. 
(CONT)
26 
ƒƒPhase and Magnitude considerations 
max z' = A 
2 
2 
′ π 
k z 
r 
≤ 
2 8 
2 2 π 
λ 
2A2 ≤ ⇒ r  
λ 
ORIGIN OF 
DEFINITION 
OF FAR FIELD 
8 8 
π 
r 
A 
1 R = r 
ƒFor magnitude term ⇒ use 
r 
e− jkr 
ƒFor phase term ⇒ use R = r − z' cosθ 
[4-45] 
ƒƒFINITE LENGTH DIPOLE 
(CONT)
27 
ƒƒFINITE LENGTH DIPOLE 
(CONT) 
ƒƒFinite dipole Current distribution 
(“thin” wire, center fed, zero current at end points) 
λ / 2  l  λ 
[4-56] 
⎤ 
⎥⎦ 
⎡ 
a A 
ˆ I sin k z z o 
⎢⎣ 
⎞ 
⎟⎠ 
⎛ − ' 
2 
⎜⎝ 
0 ≤ z' ≤ A 
2 
⎤ 
a A 0 
⎥⎦ 
⎡ 
ˆ I sin k z z o 
⎢⎣ 
⎞ 
⎟⎠ 
⎛ + ' 
2 
⎜⎝ 
− A ≤ z' ≤ 
2 
G 
(x' = 0, y' = 0, z' ) = e I 
(see Fig. 4.8)
28 
ƒƒCurrent distribution for linear wire antenna 
Fig. 4.8 Current distribution along 
the length of a linear wire antenna 
DIPOLE
29 
ƒƒFINITE LENGTH DIPOLE 
ƒƒRadiated fields at (x, y, z) 
of finite dipole 
ƒFor infinitesimal dipole at z’ of length Δ z’ 
' 
' 
G 
d E j k z e 
( ) sin 
d z 
4 
R 
jkR 
e θ 
π 
η θ 
− 
≅ I 
ƒSince source 
is only 
along the z axis 
( x' = 0, y' = 0 ) 
⇒ R = x 2 + y 2 + (z − z' )2 
(CONT)
30 
ƒƒFINITE LENGTH DIPOLE 
(CONT) 
ƒƒRadiated fields of finite dipole at (x, y, z) 
ƒIn far field region 
in phase term 
⇒ ( let R = r − z ' cos θ ) 
G 
d E j k z e jkz 
( ) e d z 
cos ' 
' 
' sin 
4 
r 
jkr 
e θ 
θ θ 
π 
η 
− 
≅ I 
[4-58]
31 
ƒƒFar Field E  H Radiating fields 
ƒTotal Field 
= / 2 
∫− 
/ 2 
A 
θ A θ E d E 
− 
E j k e jkz 
/ 2 cos ' 
/ 2 
η ∫− 
≅ A 
' ' sin ( ) 
4 
I z e d z 
r 
e 
jkr 
θ 
θ θ 
π 
A 
[4-58a] 
ƒƒFINITE LENGTH DIPOLE 
(CONT)
32 
ƒƒFar Field E  H Radiating fields 
⎤ 
⎥ ⎥ ⎥ ⎥ 
⎦ 
⎡ 
⎢ ⎢ ⎢ ⎢ 
⎣ 
⎞ 
⎟⎠ 
− ⎛ ⎟⎠ 
⎜⎝ 
⎞ 
⎛ 
⎜⎝ 
≅ 
− 
θ 
θ 
π 
η 
θ sin 
2 
cos cos 
2 
cos 
2 
kA kA 
r 
E j I e 
jkr 
o 
ƒFor sinusoidal current distribution 
[4-62] 
H ≅ E 
θ 
η 
φ 
ƒƒFINITE LENGTH DIPOLE 
(CONT)
33 
ƒƒ Power Density 
2 
⎡ ⎛ ⎞ ⎛ ⎞ ⎤ ⎢ ⎜ ⎟ − ⎜ ⎟ ⎥ = ⎢ ⎝ ⎠ ⎝ ⎠ ⎥ 
2 
2 2 
A A 
cos cos cos 
2 2 
o 
8 sin 
r avg 
k k 
W I 
r 
θ 
η 
π θ 
⎢ ⎥ 
⎢⎣ ⎥⎦ 
[4-63] 
ƒƒFINITE LENGTH DIPOLE 
(CONT)
34 
ƒƒFINITE LENGTH DIPOLE 
(CONT) 
ƒƒ Radiation Intensity 
2 
2 
2 
2 
− ⎛ ⎟⎠ 
θ 
sin 
2 
cos cos 
2 
⎛ 
cos 
η 
8 
⎤ 
⎥ ⎥ ⎥ ⎥ 
⎦ 
⎡ 
⎢ ⎢ ⎢ ⎢ 
⎣ 
⎞ 
⎟⎠ 
⎜⎝ 
⎞ 
⎜⎝ 
= = 
θ 
π 
kA kA 
U r W Io 
avg [4-64] 
l ≥ λ/2
35 
ƒƒFINITE LENGTH DIPOLE 
(CONT) 
ƒƒ 3-dB BEAMWIDTH 
3-dB BEAMWIDTH 
90° 
87° 
78° 
64° 
48° 
A 
.25 .5 .75 1 λ
36 
ƒƒFINITE LENGTH DIPOLE 
ƒƒ 3-dB BEAMWIDTH 
If allow A  λ new 
lobes begin to appear 
Fig. 4.7(b) 2-D amplitude pattern for a thin dipole 
l = 1.25 λ and sinusoidal current distribution 
(CONT)
37 
Elevation plane amplitude patterns for a thin dipole with sinusoidal current distribution 
Fig. 4.6
38 
ƒƒFINITE LENGTH DIPOLE 
(CONT) 
ƒƒRadiated power 
rad avg P dsG GW 
= ∫∫ • 
s 
[4.66] 
ƒResults of integration give terms involving Ci  Si [4-68]
39 
ƒƒFINITE LENGTH DIPOLE 
ƒƒRadiated power 
ƒsin and cos integrals 
(tabulated functions like trig. functions, but not as common) 
ƒCan find Rr and Do in terms of Ci and Si 
ƒDo, Rr, Rin plotted in fig. 4.9 
[4-70] [4-75] 
(CONT)
40 
Radiation resistance, input resistance and directivity of a thin dipole with sinusoidal 
current distribution 
Fig. 4.9 
FINITE LENGTH 
DIPOLE
41 
ƒƒInput Resistance 
(note that Rr uses Imax in its derivation) 
Z V in = 
at input 
I terminals 
λ 
2 
for A ≥ 
in o I ≠ I 
z’ 
Ie (z’) 
max I I o = 
ƒƒFINITE LENGTH DIPOLE 
(CONT)
42 
ƒƒInput Resistance 
So, even for lossless antenna ( RL = 0 ) 
⎡ 
R I 
⎤ 
o 
in R 
[4-77a] 
r 
in 
I 
2 
⎥⎦ 
⎢⎣ 
r in = R ≠ R ⇒ 
⎞ 
⎟⎠ 
sin2 ⎛ 
kA 
⎜⎝ 
= 
2 
Rr 
z’ 
Ie (z’) 
max I I o = 
ƒƒFINITE LENGTH DIPOLE 
(CONT)
43 
ƒƒFINITE LENGTH DIPOLE 
(CONT) 
ƒƒInput Resistance (cont) 
Note: when A = n λ ; and →∞ in →0 R in I 
Not true in practical case, current not 
exactly sinusoidal at the feed point 
(due to non-zero radius of wire and 
finite feed gap at terminals) 
Numerous ways to account 
for more exact current distribution, 
result in currents that are both in 
and out of phase, and in Rin + j Xin 
(subject of extensive research, 
numerical and analytical)
Ω in R 
ƒƒFINITE LENGTH DIPOLE 
π A ⇒ G = 
) 76 max ( ⎥⎦ ⎤ 
⎢⎣ ⎡ 
(CONT) 
G = kA for dipole of length A 
≤ G ≤ π ) 200 max ( ⎥⎦ ⎤ 
44 
ƒƒEmpirical formula for Rin 
 Ω in R 
) 12 max ( ⎥⎦ ⎤ 
⎢⎣ ⎡ 
4 
0 
λ 
≤ A ≤ 
4 
0 
π 
R 20G2 ≤ G ≤ in ≅ 
R 24.7G2.5 in ≅ 
R 11.14G4.17 in ≅ 
λ λ 
≤ A ≤ 
4 2 
λ 
λ 
0.64 
2 
≤ A ≤ 
π π 
≤ G ≤ 
4 2 
2 
2 
 Ω in R 
⎢⎣ ⎡ 
let 2 
λ 
[4-107] → [4-110]
45 
ƒƒFor MONOPOLE 
for wavelength monopole 1 
4 
Z 1 j in ≅ + 
[73 42.5] 
2 
G = k A 
R 1 in (monopole) = Rin (dipole) 
2 
Z ≅ 36.5 + j 21.2 [Ω] in 
1 
1 
same current; voltage ⇒ impedance 
2 
2 
[4-106]
46 
ƒƒHALF WAVE DIPOLE 
⎤ 
⎥ ⎥ ⎥ ⎥ 
⎦ 
⎡ 
⎢ ⎢ ⎢ ⎢ 
⎣ 
π θ 
⎞ 
⎟⎠ 
⎛ 
cos 
⎜⎝ 
E ≅ 
j I e 
− 
cos 
2 
θ 
π 
η 
θ 2 r 
sin 
jkr 
o 
2 
2 
H j I e 
jkr 
2 2 
⎛ 
cos 
2 
cos 
2 
cos 
sin 
⎛ 
⎡ 
cos 
o 
η 
8 
⎞ 
⎤ 
⎥ ⎥ ⎥ ⎥ 
⎦ 
⎡ 
⎢ ⎢ ⎢ ⎢ 
⎣ 
⎞ 
⎟⎠ 
⎜⎝ 
= 
θ 
θ 
π 
π 
r 
W Io 
avg 
⎤ 
⎥ ⎥ ⎥ ⎥ 
⎦ 
⎢ ⎢ ⎢ ⎢ 
⎣ 
⎟⎠ 
⎜⎝ 
≅ 
− 
θ 
θ 
π 
φ 2 π r 
sin 
l = λλ/2 
0 20 40 60 80 100 120 140 160 180 
1 
0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 
0 
θ (deg) 
Normalized Power 
sin 2θ 
sin 3θ 
[4-84] 
θ 
⎞ 
⎛ 
cos 
2 
η π P Io d 
rad ∫ 
θ 
θ 
π 
π 
⎟⎠ 
⎜⎝ 
= 
0 
2 
2 
sin 
cos 
4 
[4-85] 
[4-86] 
[4-88]
l = λλ/2 
47 
ƒƒHALF WAVE DIPOLE 
(CONT) 
rad P = I C [4-89] 
Slightly more 
directive than 
inf. dipole with 
Do = 1.5 
η 
= 4 max ≅ 1.64 
o P 
rad 
D π U 
where in (2π ) ≅ 2.435 (2 ) C 
2 
8 
π 
π 
in 
o 
[4-91]
l = λλ/2 
48 
ƒƒHALF WAVE DIPOLE 
(CONT) 
η 
R P 
= = ≅ 73 [Ω] 
r C 
2 2 (2 ) π 
4 
π 
in 
rad 
o 
I 
since (if lossless) in r R ≅ R in I = I max 
X ≅ 42.5 [Ω] ⇒ Z ≅ 73 + j 42.5 [Ω] in in 
[4-93]
49 
ƒƒPRACTICAL DIPOLE 
Usually choose l slightly less than 2 so that is totally real. 
ƒFolded dipole 
≅ 300 [Ω] in R 
Useful for matching to two-wire 
lines where 
≅ 300 [Ω] o Z 
l slightly  λλ/2 
λ 
2 
A ≅ 
λ 
in in X →0  Z
50 
ƒƒPRACTICAL DIPOLE 
(CONT) 
ƒResistance and Reactance Variations 
(pure real for length slightly less than λ ) 
2 
l slightly  λλ/2 
0.5 1.0 A λ 
G , B 
G 
B
51 
ƒƒIMAGE THEORY 
ƒLinear antennas near an infinite ground plane 
could approximate case of earth. 
h1 
Direct 
Reflected 
ƒCan calculate the fields in the UHP by removing the conductor 
and finding the field due to the actual and image sources. 
h2
52 
ƒƒIMAGE THEORY 
(CONT) 
h 
Observation 
Point 
μο, εο ⇒ 
→ → 
h 
h 
ƒIn the Lower Half Plane, E = H = 0 
Observation 
Point 
μο, εο 
μο, εο 
Image 
σ = ∞ 
Actual Problem Equivalent Problem
53 
ƒƒIMAGE THEORY 
(CONT) 
ƒFields due to image source are actually produced 
by the induced currents in the ground plane 
+ 
− 
+ 
− 
⇓ ⇓ 
⇓ 
actual 
image 
I 
I 
actual 
image 
I 
I 
actual 
image 
I 
I
Electric dipoles above an infinite perfect electric conductor 
54 
VERTICAL DIPOLE HORIZONTAL DIPOLE 
Fig. 4.12(a) Vertical electric dipole above an 
Infinite, flat, perfect electric conductor 
Fig. 4.24 Horizontal electric dipole, and its associated 
image, above an infinite, flat, perfect electric conductor
55 
Electric dipoles above ground plane 
VERTICAL DIPOLE HORIZONTAL DIPOLE 
Fig. 4.14(a) 
Fig. 4.25(a)
Electric dipoles above an infinite perfect electric conductor 
56 
Far Field 
Fig. 4.14(b) Fig. 4.25(b)
57 
ƒƒFAR FIELD RADIATING FIELDS 
VERTICAL DIPOLE HORIZONTAL DIPOLE 
r1 
h 
h 
r 
r2 
θ 
h cos θ 
x 
y 
z 
h 
h 
r1 
r 
r 
2 
x 
y 
z 
ψ 
approx. in 
phase terms 
cosθ 1 r ≅ r − h 
cosθ 2 r ≅ r + h 
[4-97] 
1 2 3 in magnitude terms r ≅ r ≅ r 
[4-98]
58 
VERTICAL DIPOLE HORIZONTAL DIPOLE 
E ≅ Ed + 
ErSumming two contributions 
θ θ1 θ 2 E Ed Er ψ ψ1 ψ 2 ≅ + 
total = incident + reflected total = actual + imaginary 
1 
E j k I e 
1 
sin 
4 
1 
θ 
π 
η 
θ r 
jkr 
d o 
− 
≅ A 
2 
E j k I e 
2 
sin 
4 
2 
θ 
π 
η 
θ r 
jkr 
r o 
− 
≅ A 
ψ 
E j k I e 
π 
η 
ψ sin 
4 1 
1 
r 
jkr 
d o 
− 
≅ A 
ψ 
E j k I e 
π 
η 
ψ sin 
4 2 
2 
r 
jkr 
r o 
− 
≅ − A 
[4-94] 
[4-95] 
[4-111] 
[4-112] 
ƒƒFAR FIELD RADIATING FIELDS 
(CONT)
ƒƒFAR FIELD RADIATING FIELDS 
cosψ = sinθ sinφ 
sinψ = 1− sin2θ sin2φ 
− A 
E ≅ j k I e − − 
η cos cos sin 
4 
59 
VERTICAL DIPOLE 
HORIZONTAL DIPOLE 
[ θ θ ] 
− A 
E ≅ j k I e − + 
η cos cos sin 
θ θ 
4 
π 
jkh jkh 
jkr 
o e e 
r 
[ θ θ ] 
ψ ψ 
π 
jkh jkh 
jkr 
o e e 
r 
(CONT)
θ φ [ ( θ )] 
60 
− 
ƒƒFAR FIELD RADIATING FIELDS 
η 
E j k I o A 
e kh 
≅ ⎡⎣ ⎤⎦ 
r θ 
[4-99] 
[4-116] 
VERTICAL DIPOLE HORIZONTAL DIPOLE 
sin 2 cos ( cos ) 
4 
jkr 
θ θ 
π 
Single source at origin array factor 
− A 
E j k I e 
π 
Single source at origin array factor 
η 
ψ 1 sin sin 2 sin cos 
4 
2 2 j kh 
r 
jkr 
≅ o − 
= 0 for θ E z  0 
(CONT)
≅ 2 h [4-100] [4-117] 
61 
Amplitude patterns at different heights 
Fig. 4.15 
Fig. 4.26 
VERTICAL DIPOLE HORIZONTAL DIPOLE 
Note minor lobes that are 
formed for 
Number of lobes 
Note minor lobes that are 
formed for 
Number of lobes 
h 
λ 
≅ 2 + 1 
λ 
4 
h ≥ 
λ 
2 
h ≥ 
λ
62 
Amplitude patterns at different heights 
(CONT) 
VERTICAL DIPOLE HORIZONTAL DIPOLE 
Fig. 4.16 
Note max radiation is in θ = 90° direction 
Fig. 4.28
63 
ƒƒ RADIATION POWER 
VERTICAL DIPOLE 
HORIZONTAL DIPOLE 
sin 2 
P Io 1 
cos 2 
kh 
rad λ 
kh 
= ⎡ 2 3 
+ − ⎥⎦ 
[4-102] 
[4-118] 
sin 2 
cos 2 
P Io 1 
sin 2 
kh 
rad λ 
kh 
kh 
= ⎡ 2 3 
+ − − ⎥⎦ 
R(kh) 
( ) 
( ) 
( ) 
⎤ 
( ) ⎥⎦ 
⎡ 
⎢⎣ 
⎤ 
⎢⎣ 
2 
2 
2 
3 
kh 
kh 
ηπ A 
( ) 
( ) 
( ) 
( ) 
( ) 
⎤ 
( ) ⎥⎦ 
⎡ 
⎢⎣ 
⎤ 
⎢⎣ 
2 
2 
2 
2 
3 
kh 
kh 
kh 
ηπ A
4sin2 π λ kh kh h 
⎞ 
64 
4 2 
P kh 
[4-104] 
≤ ⎛ ≤ 
4 π λ 
kh h 
[4-123] 
ƒƒDIRECTIVITY 
VERTICAL DIPOLE HORIZONTAL DIPOLE 
Fig. 4.29 Radiation resistance and max. directivity 
of a horizontal infinitesimal electric dipole as a 
function of its height above an infinite perfect 
electric conductor. 
( ) 
( ) 
⎤ 
( ) 
( ) ⎥ ⎥ ⎥ ⎥ ⎥ 
⎦ 
⎡ 
⎢ ⎢ ⎢ ⎢ ⎢ 
⎣ 
⎤ 
⎥⎦ 
⎢⎣ ⎡ 
cos 2 
− + 
= = 
sin 2 
kh 
2 3 
max 
2 
2 
1 
3 
kh 
kh 
D U 
rad 
o π 
⎞ 
⎟⎠ 
≥ ⎛ ≥ 
⎜⎝ 
R(kh) 2 4 
D 4π Umax 
= = 
o P 
rad 
( ) 
⎟⎠ 
⎜⎝ 
R(kh) 2 4 
Fig. 4.18 Directivity and radiation resistance 
Of a vertical infinitesimal electric dipole as a 
function of its height above an infinite perfect 
electric conductor.
65 
ƒƒDIRECTIVITY 
(CONT) 
VERTICAL DIPOLE 
HORIZONTAL DIPOLE 
Limiting case of kh→ 0 
Note: 
 
x2 x4 x = − + 
3! 5! 
sin 
x3 x5 x = x − + 
 
2 4! 
cos 1 
cos 1 1 2 
= − + x 
x 
2 2 ⋅ ⋅ 
sin 1 1 2 
= − + x 
x 
3 2 ⋅ ⋅ ⋅ 
6 5 4 3 2 
x x 
2 4 3 2 
x x 
⇒ − x + 
cos sin 
2 3 
1 
3 
x 
x 
x 
1 2 
2 
3 
⎡ 
1 1 
≅ 1 + − = 4 
= 
6 
1 
6 
1 
2 
3 
⎤ 
⎥⎦ 
⎡ 
⎢⎣ 
⋅ ⋅ ⋅ 
⎤ 
1 1 
+ − + ⎥⎦ 
⎢⎣ 
⋅ ⋅ 
≅ − − + 
6 5 4 3 2 
2 4 3 2 
3 
2 
2 
2 
x 
x 
x 
x 
Note: direction of maximum radiation 
changes as “h” is varied. Dg (θ=0) 
Dg 
(θ=0) 
h/λ
66 
VERTICAL DIPOLE HORIZONTAL DIPOLE 
2 
Do 
kh 
2 
Do 
kh 
kh h/λ Do 
0 0 3 
2.88 .458 6.57 
∞ ∞ 6.0 
⎡ 
kh 
lim ( ) 
h/λ Do 
0 7.5 
slightly 
 6.0 
.615+n/2 
(n=1,2,3…) 
∞ 6.0 
6 
3 
1 
lim 
→ = 
→∞ 
3 
3 
2 
0 
lim 
→ = 
→ 
( ) 2 
0 
⎤ 
7.5 sin ⎥⎦ 
⎢⎣ 
= 
→ 
kh 
Do 
kh 
[4-124] 
ƒƒDIRECTIVITY 
(CONT)
67 
Input Impedance of a λλ/2 dipole above a 
flat lossy electric conductive surface 
VERTICAL DIPOLE 
Fig. 4.20 
in in in Z ≅ R + X Z ≅ 73 + j 42.5 [Ω] in
68 
Input Impedance of a λλ/2 dipole above a 
flat lossy electric conductive surface 
HORIZONTAL DIPOLE 
Fig. 4.30 in in in Z ≅ R + X Z ≅ 73 + j 42.5 [Ω] in
69 
ƒƒGROUND EFFECTS 
(“real” earth as ground plane) 
ƒFinite conductivity σearth 
h1 
10 → 1 [S/m] 
h2 
Direct 
Reflected 
σearth 
ƒAssume earth flat (ok. for Rearth  λ)
70 
ƒƒGROUND EFFECTS 
(CONT) 
(real earth as ground plane) 
VERTICAL DIPOLE 
Fig. 4.31 Elevation plane amplitude patterns 
of an infinitesimal vertical dipole above a perfect 
electric conductor σ=∞ and a flat earth σ= 0.01 [S/m] 
HORIZONTAL DIPOLE 
Fig. 4.32 Elevation plane ( φ = 90°)amplitude patterns 
of an infinitesimal horizontal dipole above a perfect 
electric conductor σ=∞ and a flat earth σ= 0.01 [S/m]
71 
ƒƒGROUND EFFECTS 
(CONT) 
(real earth as ground plane) 
σσ = ∞∞ 
σσearth 
For low and medium frequency applications when 
height is comparable to skin depth [ δ = 2/ωμσ ] 
of the ground ⇒ increasing changes in input 
impedance; less efficient; use of ground wires)
72 
ƒƒGROUND EFFECTS 
(CONT) 
EARTH CURVATURE 
Usually negligible effect 
for observation angle ψ 
greater than 3°. 
Fig. 4.34 Geometry for reflections from a spherical surface
Divergence 
factor 
E 
r 
s 
E 
= rf 
= ___________________ 
73 
EARTH CURVATURE 
Curved surfaces spreads out radiation (divergent) that is 
reflected more than from flat surface. 
(can introduce a divergence factor) 
Fig. 4.35 Divergence factor for a 4/3 radius earth 
(ae = 5,280 mi = 8,497.3 km) as a function of 
grazing angle ψ. 
reflected field from spherical surface 
reflected field from flat surface 
ƒƒGROUND EFFECTS 
(CONT)
74 
DIPOLE SUMMARY 
(Resonant ⇒ XA=0; f = 100 MHz; σ = 5.7 x 107 S/m; Zc = 50; b = 3x10-4l) 
l=λ/50 l=λ/10 l=λ/2 l=λ 
Rhf 0.0279 0.2792 0.698 1.3962 
RL 0.0279 0.1396 0.349 0.6981 
Rr 0.3158 1.9739 73 199 
Rin 0.3158 1.9739 73 ∞ 
0.9965 
(-0.015 dB) 
2.411 
(3.822 dB) 
2.4026 
(3.807 dB) 
0.9952 
(-0.021 dB) 
1.6409 
(2.151 dB) 
1.6331 
(2.13 dB) 
0.9339 
(-0.296 dB) 
1.5 
(1.761 dB) 
1.4009 
(1.464 dB) 
0.9188 
(-0.368 dB) 
1.5 
(1.761 dB) 
1.3782 
(1.393 dB) 
ecd 
D0 
G0 
Γ -0.9863 -0.9189 0.18929 1 
0 
(-∞ Db) 
0.9642 
(-0.158 dB) 
0.1556 
(-8.08 dB) 
0.0271 
(-15.67 dB) 
er 
G0abs 0.0374 (-14.27 dB) 0.2181 (-6.613 dB) 1.5746 (1.972 dB) 0 (-∞ dB)

Ece5318 ch4

  • 1.
    1 ECE 5318/6352 Antenna Engineering Chapter 4 Linear Wire Antennas
  • 2.
    2 ƒƒINFINITESIMAL DIPOLE (constant current) l<<λ ; thin wire ; G (only electrical current present) l ≤ λ/50 I l / 2 l / 2 Io θ Impinging Wave z o z I z I( ' ) = aˆ I = 0 ⇒F =0 m [4-1]
  • 3.
    3 ƒƒINFINITESIMAL DIPOLE (CONT) r = x2+y2+z2 l ≤ λ/50 Fig. 4.1(a) Geometrical arrangement of an infinitesimal dipole
  • 4.
    4 ƒƒINFINITESIMAL DIPOLE ƒƒ mixed coordinates in expression - change to spherical for A << λ R ≅ x 2 + y 2 + z 2 ( ' , ' , ' ) ' μ 4 A G G d R (x,y,z) x y z e jkR c e o − A ≅ ∫ I π (x,y,z) source points (x’,y’,z’) l [4-2] (CONT) l ≤ λ/50 ( ) ( ) ( ) R = x − x' 2 + y − y' 2 + z − z' 2
  • 5.
    5 ƒƒINFINITESIMAL DIPOLE ƒƒ mixed coordinates in expression change to spherical [4-4] ∫ − − (x,y,z) ≅ e / 2 / 2 ' 4 ˆ A A G G d z r jkr o μ A a I o z π G GA a I z μ 4 ˆ A o o e jkr r (x,y,z) ≅ − π (x,y,z) source points (x’,y’,z’) l (CONT) l ≤ λ/50
  • 6.
    6 ƒƒINFINITESIMAL DIPOLE R ≅ (x − x' )2 + (y − y' )2 + (z − z' )2 θ μ A = − A = I A − sin o o jkr z e θ θ sin 4 r π θ μ A = − A = I A − cos o o jkr r z e θ cos 4 r π ∫c d A' along source = 0 φ A (x,y,z) source points (x’,y’,z’) l [4-6] (CONT) ƒ mixed coordinates in expression need to change to spherical l ≤ λ/50
  • 7.
    7 ƒƒINFINITESIMAL DIPOLE ƒƒUsing Vector Potential A , calculate H & E fields G G G = 1 ∇× = ˆ 1 ∇× [ ]φ φ μ μ H A a A ) ( 1 A G [ ] ⎡ ⎤ ⎥⎦ ⎢⎣ ∂ r A − A r ∂ ∂ ∂ ∇× = θ φ θ r r [4-7] (CONT) l ≤ λ/50
  • 8.
    8 ƒƒUsing VectorPotential A , calculate H fields [4-8] ⇒ G = 1 G ∇× H A μ ⎤ ⎢⎣ ⎡ H = j k I A sin 1+ 1 − ⎥⎦ o e jkr r jkr 4 θ π φ = 0 r H = 0 θ H ƒƒINFINITESIMAL DIPOLE (CONT) l ≤ λ/50
  • 9.
    9 ƒƒINFINITESIMAL DIPOLE ƒƒUsing Maxwell’’s Eqns to calculate E fields G G = ∇× E I − ⎥⎦ ⎤ ⎡ E = j k I sin 1 + 1 − 1 − 2 2 ⎥⎦ [4-10] ⇒ 1 E H jωε η A o jkr r e r jkr ⎤ ⎢⎣ ⎡ = cos 1+ 1 2 2 θ π = 0 φ E o e jkr r jkr k r ⎢⎣ 4 θ π η θ A Fig. 4.1(b) Geometrical arrangement of an infinitesimal dipole and its associated electric-field components on a spherical surface (CONT) l ≤ λ/50
  • 10.
    10 ƒƒINFINITESIMAL DIPOLE ƒƒUsing Hφφ, Er, Eθθ, calculate the complex Poynting vector = × ∗ = ( ∗ − ∗ ) θ φ θ φ E H E H r r W E H a aG G G G ( ) 1 2 ˆ 2 1 ⎥⎦ ⎤ ⎢⎣ ⎡ ⎤ ⎢⎣ ⎡ W η o A θ = − ⎥⎦ 1 1 2 ( )3 2 sin2 j 8 r kr I r λ ( )2 [4-12] k Io cos sin = j ⎡ 2 3 1 + j 1 ⎤ 16 ⎢⎣ ( ) 2 ⎥⎦ W η θ θ θ π r kr A (CONT) l ≤ λ/50
  • 11.
    11 ƒƒINFINITESIMAL DIPOLE ƒƒFind total outward flux through a closed sphere (only contributions from Wr) P W dsG G 2 2 0 ∫ ∫ = = φ θ θ π π φ = ∫∫ • [4-14] s ⎤ ⎥⎦ d W r d r sin ⎡ − ⎥⎦ 1 1 θ = ⎡ 3 ⎢⎣ ⎤ ⎢⎣ 2 3 kr ( ) I j oλ ηπ A 0 = (CONT) l ≤ λ/50
  • 12.
    12 ƒƒINFINITESIMAL DIPOLE (CONT) ƒƒFind total outward flux through a closed sphere Real P = total radiated power Prad rad P I I 2 R o r ηπ A o 2 1 2 = ⎡ 3 ⎤ = ⎥⎦ ⎢⎣ λ Radiation resistance for free space where λ 2 = π A r R η = 120π 2 = = ⇒ = r λ R [4-19] [4-16] 0.02 0.316 50 A 2 80 2 λ ƒƒExample [Ω] l ≤ λ/50 (Impedance would also have a large capacitive term that is not calculated here.)
  • 13.
    13 ƒƒINFINITESIMAL DIPOLE (CONT) Imaginary part of P = reactive power in the radial direction 2 1 ( )3 Io ⎤ ⎥⎦ ηπ A = − ⎡ ⎢⎣ 3 λ kr [4-17] (Note: this → 0 as kr → ∞, so it is essentially not present in far field; only important in near field considerations) l ≤ λ/50
  • 14.
    14 ƒƒINFINITESIMAL DIPOLE ƒƒNear Field approximations [ kr <<<< 1 ] (field point very close or very low frequency case) jkr jkr θ E j I e E ≅ − j I A e H I e o jkr − ≅ A o − o φ sin π 4 r2 Dominant terms ⇒ [4-20] θ π η cos 2 k r3 r − ≅ − A θ π η θ sin 4 k r3 Like ‘quasistationary” fields E near static electric dipole H near static current element (CONT) l ≤ λ/50
  • 15.
    15 ƒƒINFINITESIMAL DIPOLE ƒƒNear Field approximations [ kr <<<< 1 ] Biot – Savart Law : infinitesimal ∧ current element in az direction (same as above when kr →0) (note E and H are 90° out of phase) IG oA H ≅ a ˆ r2 NO RADIAL POWER FLOW -- REACTIVE FIELDS θ π φ sin 4 G G G avg W = 1 E×H∗ Re [ ] 2 = 0 avg W G [4-21] [4-22] (CONT) l ≤ λ/50
  • 16.
    16 ƒƒIntermediate Fields [ kr > 1] (beginnings of radial power flow; still have radial fields) E 1 r θ ∼ E 1 1 r 2 φ ∼ r E r ∼ ƒƒINFINITESIMAL DIPOLE (CONT) l ≤ λ/50
  • 17.
    r = λ/2π(Radian Distance) (Radius of Radian Sphere) 17 ƒƒINFINITESIMAL DIPOLE Energy basically imaginary (stored) Energy basically real (radiated) (CONT) Fig. 4.2 Radiated field terms magnitude variation versus radial distance l ≤ λ/50
  • 18.
    18 ƒƒINFINITESIMAL DIPOLE (CONT) ƒƒFar Field [ kr >> 1 ] Dominant terms ⇒ θ E j k I e jkr − ≅ A θ sin θ [4-26] o 4 π r η H j k I e π φ sin 4 r jkr o − ≅ A 0 r r E E H H φ θ ≅ ≅ ≅ ≅ l ≤ λ/50
  • 19.
    19 ƒƒINFINITESIMAL DIPOLE ƒƒFar Field [ kr >> 1 ] η E θ = H φ ( both E and H are TEM to ) r aˆ Similar to plane wave but propagation in direction With 1 and sinθ variations r [4-27] (CONT) r aˆ l ≤ λ/50
  • 20.
    20 ƒƒDirectivity (useFar Field approx.) G G G avg 2 W = 1 E×H∗ RADIATION INTENSITY Re[ ] 2 2 2 sin ⎡ = a A 2 4 ˆ r k Io r θ π η ⎤ ⎥ ⎥ ⎥ ⎦ ⎢ ⎢ ⎢ ⎣ θ ⎤ ⎡ = = k IoA 2 η 2 2 2 4 π sin ⎥ ⎥⎦ ⎢ ⎢⎣ avg U r W 2 2 sin Io = ⎡ A ⎤ Real ( W r ) avg W θ ( Note: 2 as before for ) 8 λ r η ⎥⎦ ⎢⎣ [4-28] [4-29] ƒƒINFINITESIMAL DIPOLE (CONT) l ≤ λ/50
  • 21.
    3 ƒƒINFINITESIMAL DIPOLE 8 ⎤ ⎡ A I D (CONT) (in θ = 90° direction) [4-31] 21 D = 4π Umax o P rad 2 ⎤ ⎡ η oA U k I ⎢⎣ = max 2 4 π ⎥⎦ 2 ⎤ P I η π oA = ⎡ 3 ⎥⎦ ⎢⎣ λ rad 1.5 2 3 2 2 = = ⎤ ⎥⎦ ⎡ ⎢⎣ ⎥⎦ ⎢⎣ = λ ηπ λ η A o o o I ƒƒDirectivity l ≤ λ/50
  • 22.
    22 ƒƒSMALL DIPOLE Uniform current assumption - only valid for ideal case ( approximated by capacitor plate antenna) value of fields compared to constant current case 1_2 λ/50 < l < λ/10 λ/50 < l < λ/10 θ E j k I e π η θ sin 8 r jkr o − = A θ H j k I e π φ sin 8 r jkr o − = A [4-36]
  • 23.
    23 ƒƒSMALL DIPOLE (CONT) For physical small dipole triangular current distribution value of case of constant current 1_4 ⎤ P I ηπ oA = ⎡ ⎤ π A = ⎡ same as constant current case λ/50 l λ/10 [4-37] 2 12 ⎥⎦ ⎢⎣ λ rad 2 20 2 ⎥⎦ ⎢⎣ λ r R = 1.5 o D
  • 24.
    24 ƒƒFINITE LENGTHDIPOLE (length comparable to λ) ⎛ ′ 2 ⎞ R r z z ' cos 1 sin2 = − + ⎜ ⎟ + θ θ 2 r ⎝ ⎠ approx. error (max error where θ = 90° ; 4th term = 0 there) [4.41] Fig. 4.5 Finite dipole geometry and far-field approximations
  • 25.
    25 ƒƒFINITE LENGTHDIPOLE ƒƒPhase and Magnitude considerations ƒIn calculating phase assume can tolerate phase error of π/8 (22°) ƒMust choose r far enough away so that …. (CONT)
  • 26.
    26 ƒƒPhase andMagnitude considerations max z' = A 2 2 ′ π k z r ≤ 2 8 2 2 π λ 2A2 ≤ ⇒ r λ ORIGIN OF DEFINITION OF FAR FIELD 8 8 π r A 1 R = r ƒFor magnitude term ⇒ use r e− jkr ƒFor phase term ⇒ use R = r − z' cosθ [4-45] ƒƒFINITE LENGTH DIPOLE (CONT)
  • 27.
    27 ƒƒFINITE LENGTHDIPOLE (CONT) ƒƒFinite dipole Current distribution (“thin” wire, center fed, zero current at end points) λ / 2 l λ [4-56] ⎤ ⎥⎦ ⎡ a A ˆ I sin k z z o ⎢⎣ ⎞ ⎟⎠ ⎛ − ' 2 ⎜⎝ 0 ≤ z' ≤ A 2 ⎤ a A 0 ⎥⎦ ⎡ ˆ I sin k z z o ⎢⎣ ⎞ ⎟⎠ ⎛ + ' 2 ⎜⎝ − A ≤ z' ≤ 2 G (x' = 0, y' = 0, z' ) = e I (see Fig. 4.8)
  • 28.
    28 ƒƒCurrent distributionfor linear wire antenna Fig. 4.8 Current distribution along the length of a linear wire antenna DIPOLE
  • 29.
    29 ƒƒFINITE LENGTHDIPOLE ƒƒRadiated fields at (x, y, z) of finite dipole ƒFor infinitesimal dipole at z’ of length Δ z’ ' ' G d E j k z e ( ) sin d z 4 R jkR e θ π η θ − ≅ I ƒSince source is only along the z axis ( x' = 0, y' = 0 ) ⇒ R = x 2 + y 2 + (z − z' )2 (CONT)
  • 30.
    30 ƒƒFINITE LENGTHDIPOLE (CONT) ƒƒRadiated fields of finite dipole at (x, y, z) ƒIn far field region in phase term ⇒ ( let R = r − z ' cos θ ) G d E j k z e jkz ( ) e d z cos ' ' ' sin 4 r jkr e θ θ θ π η − ≅ I [4-58]
  • 31.
    31 ƒƒFar FieldE H Radiating fields ƒTotal Field = / 2 ∫− / 2 A θ A θ E d E − E j k e jkz / 2 cos ' / 2 η ∫− ≅ A ' ' sin ( ) 4 I z e d z r e jkr θ θ θ π A [4-58a] ƒƒFINITE LENGTH DIPOLE (CONT)
  • 32.
    32 ƒƒFar FieldE H Radiating fields ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ ⎞ ⎟⎠ − ⎛ ⎟⎠ ⎜⎝ ⎞ ⎛ ⎜⎝ ≅ − θ θ π η θ sin 2 cos cos 2 cos 2 kA kA r E j I e jkr o ƒFor sinusoidal current distribution [4-62] H ≅ E θ η φ ƒƒFINITE LENGTH DIPOLE (CONT)
  • 33.
    33 ƒƒ PowerDensity 2 ⎡ ⎛ ⎞ ⎛ ⎞ ⎤ ⎢ ⎜ ⎟ − ⎜ ⎟ ⎥ = ⎢ ⎝ ⎠ ⎝ ⎠ ⎥ 2 2 2 A A cos cos cos 2 2 o 8 sin r avg k k W I r θ η π θ ⎢ ⎥ ⎢⎣ ⎥⎦ [4-63] ƒƒFINITE LENGTH DIPOLE (CONT)
  • 34.
    34 ƒƒFINITE LENGTHDIPOLE (CONT) ƒƒ Radiation Intensity 2 2 2 2 − ⎛ ⎟⎠ θ sin 2 cos cos 2 ⎛ cos η 8 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ ⎞ ⎟⎠ ⎜⎝ ⎞ ⎜⎝ = = θ π kA kA U r W Io avg [4-64] l ≥ λ/2
  • 35.
    35 ƒƒFINITE LENGTHDIPOLE (CONT) ƒƒ 3-dB BEAMWIDTH 3-dB BEAMWIDTH 90° 87° 78° 64° 48° A .25 .5 .75 1 λ
  • 36.
    36 ƒƒFINITE LENGTHDIPOLE ƒƒ 3-dB BEAMWIDTH If allow A λ new lobes begin to appear Fig. 4.7(b) 2-D amplitude pattern for a thin dipole l = 1.25 λ and sinusoidal current distribution (CONT)
  • 37.
    37 Elevation planeamplitude patterns for a thin dipole with sinusoidal current distribution Fig. 4.6
  • 38.
    38 ƒƒFINITE LENGTHDIPOLE (CONT) ƒƒRadiated power rad avg P dsG GW = ∫∫ • s [4.66] ƒResults of integration give terms involving Ci Si [4-68]
  • 39.
    39 ƒƒFINITE LENGTHDIPOLE ƒƒRadiated power ƒsin and cos integrals (tabulated functions like trig. functions, but not as common) ƒCan find Rr and Do in terms of Ci and Si ƒDo, Rr, Rin plotted in fig. 4.9 [4-70] [4-75] (CONT)
  • 40.
    40 Radiation resistance,input resistance and directivity of a thin dipole with sinusoidal current distribution Fig. 4.9 FINITE LENGTH DIPOLE
  • 41.
    41 ƒƒInput Resistance (note that Rr uses Imax in its derivation) Z V in = at input I terminals λ 2 for A ≥ in o I ≠ I z’ Ie (z’) max I I o = ƒƒFINITE LENGTH DIPOLE (CONT)
  • 42.
    42 ƒƒInput Resistance So, even for lossless antenna ( RL = 0 ) ⎡ R I ⎤ o in R [4-77a] r in I 2 ⎥⎦ ⎢⎣ r in = R ≠ R ⇒ ⎞ ⎟⎠ sin2 ⎛ kA ⎜⎝ = 2 Rr z’ Ie (z’) max I I o = ƒƒFINITE LENGTH DIPOLE (CONT)
  • 43.
    43 ƒƒFINITE LENGTHDIPOLE (CONT) ƒƒInput Resistance (cont) Note: when A = n λ ; and →∞ in →0 R in I Not true in practical case, current not exactly sinusoidal at the feed point (due to non-zero radius of wire and finite feed gap at terminals) Numerous ways to account for more exact current distribution, result in currents that are both in and out of phase, and in Rin + j Xin (subject of extensive research, numerical and analytical)
  • 44.
    Ω in R ƒƒFINITE LENGTH DIPOLE π A ⇒ G = ) 76 max ( ⎥⎦ ⎤ ⎢⎣ ⎡ (CONT) G = kA for dipole of length A ≤ G ≤ π ) 200 max ( ⎥⎦ ⎤ 44 ƒƒEmpirical formula for Rin Ω in R ) 12 max ( ⎥⎦ ⎤ ⎢⎣ ⎡ 4 0 λ ≤ A ≤ 4 0 π R 20G2 ≤ G ≤ in ≅ R 24.7G2.5 in ≅ R 11.14G4.17 in ≅ λ λ ≤ A ≤ 4 2 λ λ 0.64 2 ≤ A ≤ π π ≤ G ≤ 4 2 2 2 Ω in R ⎢⎣ ⎡ let 2 λ [4-107] → [4-110]
  • 45.
    45 ƒƒFor MONOPOLE for wavelength monopole 1 4 Z 1 j in ≅ + [73 42.5] 2 G = k A R 1 in (monopole) = Rin (dipole) 2 Z ≅ 36.5 + j 21.2 [Ω] in 1 1 same current; voltage ⇒ impedance 2 2 [4-106]
  • 46.
    46 ƒƒHALF WAVEDIPOLE ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ π θ ⎞ ⎟⎠ ⎛ cos ⎜⎝ E ≅ j I e − cos 2 θ π η θ 2 r sin jkr o 2 2 H j I e jkr 2 2 ⎛ cos 2 cos 2 cos sin ⎛ ⎡ cos o η 8 ⎞ ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ ⎞ ⎟⎠ ⎜⎝ = θ θ π π r W Io avg ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ ⎢ ⎢ ⎢ ⎢ ⎣ ⎟⎠ ⎜⎝ ≅ − θ θ π φ 2 π r sin l = λλ/2 0 20 40 60 80 100 120 140 160 180 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 θ (deg) Normalized Power sin 2θ sin 3θ [4-84] θ ⎞ ⎛ cos 2 η π P Io d rad ∫ θ θ π π ⎟⎠ ⎜⎝ = 0 2 2 sin cos 4 [4-85] [4-86] [4-88]
  • 47.
    l = λλ/2 47 ƒƒHALF WAVE DIPOLE (CONT) rad P = I C [4-89] Slightly more directive than inf. dipole with Do = 1.5 η = 4 max ≅ 1.64 o P rad D π U where in (2π ) ≅ 2.435 (2 ) C 2 8 π π in o [4-91]
  • 48.
    l = λλ/2 48 ƒƒHALF WAVE DIPOLE (CONT) η R P = = ≅ 73 [Ω] r C 2 2 (2 ) π 4 π in rad o I since (if lossless) in r R ≅ R in I = I max X ≅ 42.5 [Ω] ⇒ Z ≅ 73 + j 42.5 [Ω] in in [4-93]
  • 49.
    49 ƒƒPRACTICAL DIPOLE Usually choose l slightly less than 2 so that is totally real. ƒFolded dipole ≅ 300 [Ω] in R Useful for matching to two-wire lines where ≅ 300 [Ω] o Z l slightly λλ/2 λ 2 A ≅ λ in in X →0 Z
  • 50.
    50 ƒƒPRACTICAL DIPOLE (CONT) ƒResistance and Reactance Variations (pure real for length slightly less than λ ) 2 l slightly λλ/2 0.5 1.0 A λ G , B G B
  • 51.
    51 ƒƒIMAGE THEORY ƒLinear antennas near an infinite ground plane could approximate case of earth. h1 Direct Reflected ƒCan calculate the fields in the UHP by removing the conductor and finding the field due to the actual and image sources. h2
  • 52.
    52 ƒƒIMAGE THEORY (CONT) h Observation Point μο, εο ⇒ → → h h ƒIn the Lower Half Plane, E = H = 0 Observation Point μο, εο μο, εο Image σ = ∞ Actual Problem Equivalent Problem
  • 53.
    53 ƒƒIMAGE THEORY (CONT) ƒFields due to image source are actually produced by the induced currents in the ground plane + − + − ⇓ ⇓ ⇓ actual image I I actual image I I actual image I I
  • 54.
    Electric dipoles abovean infinite perfect electric conductor 54 VERTICAL DIPOLE HORIZONTAL DIPOLE Fig. 4.12(a) Vertical electric dipole above an Infinite, flat, perfect electric conductor Fig. 4.24 Horizontal electric dipole, and its associated image, above an infinite, flat, perfect electric conductor
  • 55.
    55 Electric dipolesabove ground plane VERTICAL DIPOLE HORIZONTAL DIPOLE Fig. 4.14(a) Fig. 4.25(a)
  • 56.
    Electric dipoles abovean infinite perfect electric conductor 56 Far Field Fig. 4.14(b) Fig. 4.25(b)
  • 57.
    57 ƒƒFAR FIELDRADIATING FIELDS VERTICAL DIPOLE HORIZONTAL DIPOLE r1 h h r r2 θ h cos θ x y z h h r1 r r 2 x y z ψ approx. in phase terms cosθ 1 r ≅ r − h cosθ 2 r ≅ r + h [4-97] 1 2 3 in magnitude terms r ≅ r ≅ r [4-98]
  • 58.
    58 VERTICAL DIPOLEHORIZONTAL DIPOLE E ≅ Ed + ErSumming two contributions θ θ1 θ 2 E Ed Er ψ ψ1 ψ 2 ≅ + total = incident + reflected total = actual + imaginary 1 E j k I e 1 sin 4 1 θ π η θ r jkr d o − ≅ A 2 E j k I e 2 sin 4 2 θ π η θ r jkr r o − ≅ A ψ E j k I e π η ψ sin 4 1 1 r jkr d o − ≅ A ψ E j k I e π η ψ sin 4 2 2 r jkr r o − ≅ − A [4-94] [4-95] [4-111] [4-112] ƒƒFAR FIELD RADIATING FIELDS (CONT)
  • 59.
    ƒƒFAR FIELD RADIATINGFIELDS cosψ = sinθ sinφ sinψ = 1− sin2θ sin2φ − A E ≅ j k I e − − η cos cos sin 4 59 VERTICAL DIPOLE HORIZONTAL DIPOLE [ θ θ ] − A E ≅ j k I e − + η cos cos sin θ θ 4 π jkh jkh jkr o e e r [ θ θ ] ψ ψ π jkh jkh jkr o e e r (CONT)
  • 60.
    θ φ [( θ )] 60 − ƒƒFAR FIELD RADIATING FIELDS η E j k I o A e kh ≅ ⎡⎣ ⎤⎦ r θ [4-99] [4-116] VERTICAL DIPOLE HORIZONTAL DIPOLE sin 2 cos ( cos ) 4 jkr θ θ π Single source at origin array factor − A E j k I e π Single source at origin array factor η ψ 1 sin sin 2 sin cos 4 2 2 j kh r jkr ≅ o − = 0 for θ E z 0 (CONT)
  • 61.
    ≅ 2 h[4-100] [4-117] 61 Amplitude patterns at different heights Fig. 4.15 Fig. 4.26 VERTICAL DIPOLE HORIZONTAL DIPOLE Note minor lobes that are formed for Number of lobes Note minor lobes that are formed for Number of lobes h λ ≅ 2 + 1 λ 4 h ≥ λ 2 h ≥ λ
  • 62.
    62 Amplitude patternsat different heights (CONT) VERTICAL DIPOLE HORIZONTAL DIPOLE Fig. 4.16 Note max radiation is in θ = 90° direction Fig. 4.28
  • 63.
    63 ƒƒ RADIATIONPOWER VERTICAL DIPOLE HORIZONTAL DIPOLE sin 2 P Io 1 cos 2 kh rad λ kh = ⎡ 2 3 + − ⎥⎦ [4-102] [4-118] sin 2 cos 2 P Io 1 sin 2 kh rad λ kh kh = ⎡ 2 3 + − − ⎥⎦ R(kh) ( ) ( ) ( ) ⎤ ( ) ⎥⎦ ⎡ ⎢⎣ ⎤ ⎢⎣ 2 2 2 3 kh kh ηπ A ( ) ( ) ( ) ( ) ( ) ⎤ ( ) ⎥⎦ ⎡ ⎢⎣ ⎤ ⎢⎣ 2 2 2 2 3 kh kh kh ηπ A
  • 64.
    4sin2 π λkh kh h ⎞ 64 4 2 P kh [4-104] ≤ ⎛ ≤ 4 π λ kh h [4-123] ƒƒDIRECTIVITY VERTICAL DIPOLE HORIZONTAL DIPOLE Fig. 4.29 Radiation resistance and max. directivity of a horizontal infinitesimal electric dipole as a function of its height above an infinite perfect electric conductor. ( ) ( ) ⎤ ( ) ( ) ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎤ ⎥⎦ ⎢⎣ ⎡ cos 2 − + = = sin 2 kh 2 3 max 2 2 1 3 kh kh D U rad o π ⎞ ⎟⎠ ≥ ⎛ ≥ ⎜⎝ R(kh) 2 4 D 4π Umax = = o P rad ( ) ⎟⎠ ⎜⎝ R(kh) 2 4 Fig. 4.18 Directivity and radiation resistance Of a vertical infinitesimal electric dipole as a function of its height above an infinite perfect electric conductor.
  • 65.
    65 ƒƒDIRECTIVITY (CONT) VERTICAL DIPOLE HORIZONTAL DIPOLE Limiting case of kh→ 0 Note: x2 x4 x = − + 3! 5! sin x3 x5 x = x − + 2 4! cos 1 cos 1 1 2 = − + x x 2 2 ⋅ ⋅ sin 1 1 2 = − + x x 3 2 ⋅ ⋅ ⋅ 6 5 4 3 2 x x 2 4 3 2 x x ⇒ − x + cos sin 2 3 1 3 x x x 1 2 2 3 ⎡ 1 1 ≅ 1 + − = 4 = 6 1 6 1 2 3 ⎤ ⎥⎦ ⎡ ⎢⎣ ⋅ ⋅ ⋅ ⎤ 1 1 + − + ⎥⎦ ⎢⎣ ⋅ ⋅ ≅ − − + 6 5 4 3 2 2 4 3 2 3 2 2 2 x x x x Note: direction of maximum radiation changes as “h” is varied. Dg (θ=0) Dg (θ=0) h/λ
  • 66.
    66 VERTICAL DIPOLEHORIZONTAL DIPOLE 2 Do kh 2 Do kh kh h/λ Do 0 0 3 2.88 .458 6.57 ∞ ∞ 6.0 ⎡ kh lim ( ) h/λ Do 0 7.5 slightly 6.0 .615+n/2 (n=1,2,3…) ∞ 6.0 6 3 1 lim → = →∞ 3 3 2 0 lim → = → ( ) 2 0 ⎤ 7.5 sin ⎥⎦ ⎢⎣ = → kh Do kh [4-124] ƒƒDIRECTIVITY (CONT)
  • 67.
    67 Input Impedanceof a λλ/2 dipole above a flat lossy electric conductive surface VERTICAL DIPOLE Fig. 4.20 in in in Z ≅ R + X Z ≅ 73 + j 42.5 [Ω] in
  • 68.
    68 Input Impedanceof a λλ/2 dipole above a flat lossy electric conductive surface HORIZONTAL DIPOLE Fig. 4.30 in in in Z ≅ R + X Z ≅ 73 + j 42.5 [Ω] in
  • 69.
    69 ƒƒGROUND EFFECTS (“real” earth as ground plane) ƒFinite conductivity σearth h1 10 → 1 [S/m] h2 Direct Reflected σearth ƒAssume earth flat (ok. for Rearth λ)
  • 70.
    70 ƒƒGROUND EFFECTS (CONT) (real earth as ground plane) VERTICAL DIPOLE Fig. 4.31 Elevation plane amplitude patterns of an infinitesimal vertical dipole above a perfect electric conductor σ=∞ and a flat earth σ= 0.01 [S/m] HORIZONTAL DIPOLE Fig. 4.32 Elevation plane ( φ = 90°)amplitude patterns of an infinitesimal horizontal dipole above a perfect electric conductor σ=∞ and a flat earth σ= 0.01 [S/m]
  • 71.
    71 ƒƒGROUND EFFECTS (CONT) (real earth as ground plane) σσ = ∞∞ σσearth For low and medium frequency applications when height is comparable to skin depth [ δ = 2/ωμσ ] of the ground ⇒ increasing changes in input impedance; less efficient; use of ground wires)
  • 72.
    72 ƒƒGROUND EFFECTS (CONT) EARTH CURVATURE Usually negligible effect for observation angle ψ greater than 3°. Fig. 4.34 Geometry for reflections from a spherical surface
  • 73.
    Divergence factor E r s E = rf = ___________________ 73 EARTH CURVATURE Curved surfaces spreads out radiation (divergent) that is reflected more than from flat surface. (can introduce a divergence factor) Fig. 4.35 Divergence factor for a 4/3 radius earth (ae = 5,280 mi = 8,497.3 km) as a function of grazing angle ψ. reflected field from spherical surface reflected field from flat surface ƒƒGROUND EFFECTS (CONT)
  • 74.
    74 DIPOLE SUMMARY (Resonant ⇒ XA=0; f = 100 MHz; σ = 5.7 x 107 S/m; Zc = 50; b = 3x10-4l) l=λ/50 l=λ/10 l=λ/2 l=λ Rhf 0.0279 0.2792 0.698 1.3962 RL 0.0279 0.1396 0.349 0.6981 Rr 0.3158 1.9739 73 199 Rin 0.3158 1.9739 73 ∞ 0.9965 (-0.015 dB) 2.411 (3.822 dB) 2.4026 (3.807 dB) 0.9952 (-0.021 dB) 1.6409 (2.151 dB) 1.6331 (2.13 dB) 0.9339 (-0.296 dB) 1.5 (1.761 dB) 1.4009 (1.464 dB) 0.9188 (-0.368 dB) 1.5 (1.761 dB) 1.3782 (1.393 dB) ecd D0 G0 Γ -0.9863 -0.9189 0.18929 1 0 (-∞ Db) 0.9642 (-0.158 dB) 0.1556 (-8.08 dB) 0.0271 (-15.67 dB) er G0abs 0.0374 (-14.27 dB) 0.2181 (-6.613 dB) 1.5746 (1.972 dB) 0 (-∞ dB)