SlideShare a Scribd company logo
1 of 45
Download to read offline
1
Reinforced Concrete
Structures 1 - Eurocodes
RCS 1
Professor Marwan SADEK
https://www.researchgate.net/profile/Marwan_Sadek
https://fr.slideshare.net/marwansadek00
Email : marwansadek00@gmail.com
If you detect any mistakes, please let me know at : marwansadek00@gmail.com
2
RCS1
M. SADEK
Ch 1 : Generalities – Reinforced concrete in practice
Ch 2 : Evolution of the standards – Limit states
Ch 3 : Mechanical Characteristics of materials – Constitutive
relations
Ch 4 : Durability and Cover
Ch 5 : Beam under simple bending – Ultimate limit state ULS
Ch 6 : Beam under simple bending – serviceability limit state SLS
Ch 7 : Section subjected to pure tension
3
Selected References
French BAEL Code (91, 99)
 Règles BAEL 91 modifiées 99, Règles techniques de conception et de calcul des
ouvrages et constructions en béton armé, Eyrolles, 2000.
 J. Perchat (2000), Maîtrise du BAEL 91 et des DTU associés, Eyrolles, 2000.
 J.P. Mougin (2000), BAEL 91 modifié 99 et DTU associés, Eyrolles, 2000.
 ….
EUROCODES
 H. Thonier (2013), Le projet de béton armé, 7ème édition, SEBTP, 2013.
 Jean-Armand Calgaro, Paolo Formichi ( 2013) Calcul des actions sur les
bâtiments selon l'Eurocode 1 , Le moniteur, 2013.
 J. M. Paillé (2009), Calcul des structures en béton, Eyrolles- AFNOR, 2009.
 Jean Perchat (2013), Traité de béton armé Selon l'Eurocode 2, Le moniteur,
2013 (2ème édition)
 Manual for the design of concrete building structures to Eurocode 2, The
Institution of Structural Engineers, BCA, 2006.
 A. J. Bond (2006), How to Design Concrete Structures using Eurocode 2, The
concrete centre, BCA, 2006.
https://usingeurocodes.com/
M. SADEK
4
In addition to Eurocodes, the references that are mainly
used to prepare this course material are :
 Thonier 2013
 Perchat 2013
 Paillé 2009
Some figures and formulas are taken from
 Cours de S. Multon - BETON ARME Eurocode 2 (available on internet)
 Cours béton armé de Christian Albouy
M. SADEK
5
CHAPTER III
Mechanical Characteristics of Materials
Behaviour Constitutive Law
M. SADEK
1. Concrete
2. Steel
Annexes
6
Concrete compressive strength - Test
M. SADEK
 France : Cylindrical Concrete specimen, H/D = 2
(diameter16 cm, height 32 cm)
1. Concrete 2. Steel  Annexes
7
M. SADEK
Concrete compressive strength - Test
1. Concrete 2. Steel  Annexes
8
M. SADEK
 fcm : Mean value of concrete cylinder compressive strength
 fck : Characteristic compressive cylinder strength of concrete at 28 days
(fck  90 MPa)
Characteristic value & 5% Fractile
% specimen
fck(t)=fcm(t) – 8 (in MPa)
Concrete compressive strength - Standard
1. Concrete 2. Steel  Annexes
9
Concrete compressive strength
1. Concrete 2. Steel  Annexes
10
> 200 MPa
 Ultra high performance concrete
Fiber Reinforced Concrete
1. Concrete 2. Steel  Annexes
11
fcm(t) = cc x fcm
 Normal Concrete
(t < 28 jours)
 fcm(t) is the mean concrete compressive strength at an age of t days
1. Concrete 2. Steel  Annexes
12
M. SADEK
 fcd : Design value of concrete compressive strength
cc= 1 (ANF)
C = 1.5 (persistent situation) ; 1.2 (accidental)
 fck : Characteristic compressive cylinder strength of concrete at 28 days
1. Concrete 2. Steel  Annexes
13
Another test for tensile strength of Concrete
 The tensile strength by splitting test
(Essai brésilien)
 Design of rigid pavements
Difficult
 Flexure Test - 4 pts
1. Concrete 2. Steel  Annexes
14
fctk : Characteristic axial tensile strength of concrete
fctk 0,05  fctm  fctk 0,95
1. Concrete 2. Steel  Annexes
15
 Behaviour of Concrete – Stress-Strain Diagram
1. Structural Analysis
2. Sections Design
1. Concrete 2. Steel  Annexes
16
1. Structural Analysis/ Second order effect
1. Concrete 2. Steel  Annexes
17
Modulus of Elasticity
Secant modulus Ecm (@ 0.4 fcm), for short term loading
Effective modulus of elasticity of concrete Ec,eff (Creep Effect)
(fcm en MPa, Ecm en GPa)
1. Structural Analysis/ Second order effect
The EC2 defines a design Elastic modulus :
1. Concrete 2. Steel  Annexes
18
2. Section Design
a) Parabola-rectangle
diagram
b) Bi-linear stress-strain relation
1. Concrete 2. Steel  Annexes
19
c) Rectangular stress distribution
Note : In the present lecture, the design of section at ULS is conducted using the
diagram c (simpler diagram)
The use of diagrams a and b are authorized by the EC2.
1. Concrete 2. Steel  Annexes
20
 Other aspects – Creep (EC2, 3.1.4)
1. Concrete 2. Steel  Annexes
21
At t =  , under a constant compression stress
 Ec : Tangent modulus of elasticity (may be taken as 1,05 Ecm)
 t0 : the age of concrete at the time of loading (in days)
(Linear creep)
(Non-Linear creep)
 Other aspects – Creep (EC2, 3.1.4)
1. Concrete 2. Steel  Annexes
22
Creep Coefficient
where Ac is the concrete cross-sectional area and u is
the perimeter of that part which is exposed to drying
1. Concrete 2. Steel  Annexes
23
Creep Coefficient
1. Concrete 2. Steel  Annexes
24
M. SADEK
Poisson ratio
 = 0 - Calculation of internal forces
 = 0.2 - strain Calculation
1. Concrete 2. Steel  Annexes
25
M. SADEK
Steel
1. Concrete 2. Steel  Annexes
26
M. SADEK
 High bond (twisted):
 bars
 welded wire mesh
 Round or plain bars : rarely used in Europe (only if folding out needed)
used in Lebanon especially in villages
because of the ease bending of stirrups
Types of Steel
1. Concrete 2. Steel  Annexes
27
M. SADEK
Steel used in R.C
1. Concrete 2. Steel  Annexes
28
M. SADEK


Tension Test
1. Concrete 2. Steel  Annexes
29
M. SADEK
The ductility of Steel of the reinforced concrete is characterized by :
εuk Characteristic strain of reinforcement steel at maximum load
 the Characteristic value of
3 Classes of ductility
Stress/strain
1. Concrete 2. Steel  Annexes
30
M. SADEK
 A : Normal ductility B500A (welded wire mesh in general, and bars with
low diameter)
 B : high ductility B500B (in general the HB bars with a diameter > 12)
 C : very high ductility C450 (generally used in seismic areas,
especially in USA)
 L’EN 10080 defines 3 classes of ductility :
1. Concrete 2. Steel  Annexes
31
M. SADEK
The application rules for design and detailing in this Eurocode are valid for
a specified yield strength range (400 fyk600 Mpa)
 Note : for bridges and for construction in seismic zones, steel B and C are
authorized (The French N.A allows the use of steel A outside the critical zones)
 L’EN 10080 defines 3 classes of ductility :
1. Concrete 2. Steel  Annexes
32
M. SADEK
Idealised / Design stress-strain diagrams
for reinforcing steel (ULS)
s = 1.15 (persistent)
1.0 (accidentel)
1. Concrete 2. Steel  Annexes
33
M. SADEK
 Design stress-strain diagrams:
 a horizontal top branch without the need to check the strain limit
 an inclined top branch with a strain limit (s0  s  ud = 0.9uk )
1. Concrete 2. Steel  Annexes
34
M. SADEK
 Note : the calculation of the slope using the diagram A gives different value from that of
diagram B, due to an error of the presentation of the diagram in EC2. It explains the difference
in the expression of the stress obtained by different authors (Perchat, Paillé, Thonier, Ricotier)
 In this document, we will calculate the slope on the basis of the diagram B.
1. Concrete 2. Steel  Annexes
35
M. SADEK
Elastic modulus Es = 200 000 MPa
Density = 7.85 T/m3
 Thermal expansion coefficient= 1.10-5
 Diameters:
6, 8, 10, 12, 14, 16, 20, 25, 32, 40, (50 , 56)
 Welded wire mesh: with lower diameter (see Annex)
Other characteristics
1. Concrete 2. Steel  Annexes
36
M. SADEK
Annexes
1. Concrete 2. Steel  Annexes
37
M. SADEK
1. Concrete 2. Steel  Annexes
38
 6 8 10 12 14 16 20 25 32 40
1 0.28 0.50 0.79 1.13 1.54 2.01 3.14 4.91 8.04 12.57
2 0.57 1.01 1.57 2.26 3.08 4.02 6.28 9.82 16.08 25.13
3 0.85 1.51 2.36 3.39 4.62 6.03 9.42 14.73 24.13 37.70
4 1.13 2.01 3.14 4.52 6.16 8.04 12.57 19.63 32.17 50.27
5 1.41 2.51 3.93 5.65 7.70 10.05 15.71 24.54 40.21 62.83
6 1.70 3.02 4.71 6.79 9.24 12.06 18.85 29.45 48.25 75.40
7 1.98 3.52 5.50 7.92 10.78 14.07 21.99 34.36 56.30 87.96
8 2.26 4.02 6.28 9.05 12.32 16.08 25.13 39.27 64.34 100.53
9 2.54 4.52 7.07 10.18 13.85 18.10 28.27 44.18 72.38 113.10
10 2.83 5.03 7.85 11.31 15.39 20.11 31.42 49.09 80.42 125.66
11 3.11 5.53 8.64 12.44 16.93 22.12 34.56 54.00 88.47 138.23
12 3.39 6.03 9.42 13.57 18.47 24.13 37.70 58.90 96.51 150.80
13 3.68 6.53 10.21 14.70 20.01 26.14 40.84 63.81 104.55 163.36
14 3.96 7.04 11.00 15.83 21.55 28.15 43.98 68.72 112.59 175.93
15 4.24 7.54 11.78 16.96 23.09 30.16 47.12 73.63 120.64 188.50
16 4.52 8.04 12.57 18.10 24.63 32.17 50.27 78.54 128.68 201.06
17 4.81 8.55 13.35 19.23 26.17 34.18 53.41 83.45 136.72 213.63
18 5.09 9.05 14.14 20.36 27.71 36.19 56.55 88.36 144.76 226.19
19 5.37 9.55 14.92 21.49 29.25 38.20 59.69 93.27 152.81 238.76
20 5.65 10.05 15.71 22.62 30.79 40.21 62.83 98.17 160.85 251.33
Wt kg / ml 0.222 0.395 0.617 0.888 1.208 1.578 2.466 3.853 6.313 9.865
1. Concrete 2. Steel  Annexes
39
Welded wire mesh (anti cracking)
1. Concrete 2. Steel  Annexes
40
Welded wire mesh (France)
1. Concrete 2. Steel  Annexes
41
M. SADEK
42
M. SADEK
43
 Determination of the slope of the diagram (/) for steel A & B
 Deduce the equation of s for both Steel classes.
 Practice : determination of the value of (s) for different (s)
 Difference between diagrams with horizontal top branch and inclined
top branch
 (persistent situation / accidental)
 Determine the creep coefficient for a column
Exercices
44
fck(t)=fcm(t) – 8
fcm(t) = cc x fcm
cc= 1 (FNA)
C = 1.5 (persistent) ; 1.2 (accidental)
Reminder of main formulas
45
s = 1.2 (persistent)
1.0 (accidental)
or
Reminder of main formulas

More Related Content

What's hot

Crack control of slabs design booklet
Crack control of slabs design bookletCrack control of slabs design booklet
Crack control of slabs design booklet
Abdullah Anjum
 
Struktur beton prategang dan pracetak
Struktur beton prategang dan pracetakStruktur beton prategang dan pracetak
Struktur beton prategang dan pracetak
فهرودين سفي
 

What's hot (20)

Uniform building code 1997 (ubc-97)
Uniform building code  1997 (ubc-97)Uniform building code  1997 (ubc-97)
Uniform building code 1997 (ubc-97)
 
How To Design Concrete Structures Using Eurocode 2
How To Design Concrete Structures Using Eurocode 2How To Design Concrete Structures Using Eurocode 2
How To Design Concrete Structures Using Eurocode 2
 
Etabs steel-design
Etabs steel-designEtabs steel-design
Etabs steel-design
 
Tugas besar konstruksi baja 1
Tugas besar konstruksi baja 1Tugas besar konstruksi baja 1
Tugas besar konstruksi baja 1
 
ETABS manual - Seismic design of steel buildings according to Eurocode 3 & 8
ETABS manual - Seismic design of steel buildings according to Eurocode 3 & 8 ETABS manual - Seismic design of steel buildings according to Eurocode 3 & 8
ETABS manual - Seismic design of steel buildings according to Eurocode 3 & 8
 
Design notes for seismic design of building accordance to Eurocode 8
Design notes for seismic design of building accordance to Eurocode 8 Design notes for seismic design of building accordance to Eurocode 8
Design notes for seismic design of building accordance to Eurocode 8
 
Ec8 seismic design_of_buildings-worked_examples
Ec8 seismic design_of_buildings-worked_examplesEc8 seismic design_of_buildings-worked_examples
Ec8 seismic design_of_buildings-worked_examples
 
IRC-6-2016.pdf
IRC-6-2016.pdfIRC-6-2016.pdf
IRC-6-2016.pdf
 
Tower design using etabs- Nada Zarrak
Tower design using etabs- Nada Zarrak Tower design using etabs- Nada Zarrak
Tower design using etabs- Nada Zarrak
 
Dynamics of Structures 4th Edition Chopra Solutions Manual
Dynamics of Structures 4th Edition Chopra Solutions ManualDynamics of Structures 4th Edition Chopra Solutions Manual
Dynamics of Structures 4th Edition Chopra Solutions Manual
 
Water retaining structures quick guide
Water retaining structures quick guideWater retaining structures quick guide
Water retaining structures quick guide
 
Chapter 7
Chapter 7Chapter 7
Chapter 7
 
Simplified design of reinforced concrete buildings
Simplified design of reinforced concrete buildings Simplified design of reinforced concrete buildings
Simplified design of reinforced concrete buildings
 
CSI ETABS & SAFE MANUAL: Slab Analysis and Design to EC2
CSI ETABS & SAFE MANUAL: Slab Analysis and Design to EC2CSI ETABS & SAFE MANUAL: Slab Analysis and Design to EC2
CSI ETABS & SAFE MANUAL: Slab Analysis and Design to EC2
 
Crack control of slabs design booklet
Crack control of slabs design bookletCrack control of slabs design booklet
Crack control of slabs design booklet
 
Struktur beton prategang dan pracetak
Struktur beton prategang dan pracetakStruktur beton prategang dan pracetak
Struktur beton prategang dan pracetak
 
Soil pressure in etabs
Soil pressure in etabsSoil pressure in etabs
Soil pressure in etabs
 
ETABS Modelling
ETABS ModellingETABS Modelling
ETABS Modelling
 
REPORT ON G+4 RCC HOSTEL BUILDING ANALYSIS AND DESIGN USING STAAD PRO SOFTWARE
REPORT ON G+4 RCC HOSTEL BUILDING ANALYSIS AND DESIGN USING STAAD PRO SOFTWAREREPORT ON G+4 RCC HOSTEL BUILDING ANALYSIS AND DESIGN USING STAAD PRO SOFTWARE
REPORT ON G+4 RCC HOSTEL BUILDING ANALYSIS AND DESIGN USING STAAD PRO SOFTWARE
 
Design and analysis of reinforced concrete multistory commercial building usi...
Design and analysis of reinforced concrete multistory commercial building usi...Design and analysis of reinforced concrete multistory commercial building usi...
Design and analysis of reinforced concrete multistory commercial building usi...
 

Similar to Rcs1-chapter3-constitutive-law

Buckling of slender composite concrete filled steel columns
Buckling of slender composite concrete filled steel columnsBuckling of slender composite concrete filled steel columns
Buckling of slender composite concrete filled steel columns
Radhwan Faraj
 
CONCRETE FILLED STEEL TUBULAR COLUMNS USING GS SHEET
CONCRETE FILLED STEEL TUBULAR COLUMNS USING GS SHEETCONCRETE FILLED STEEL TUBULAR COLUMNS USING GS SHEET
CONCRETE FILLED STEEL TUBULAR COLUMNS USING GS SHEET
AL AMIN AZIZ
 

Similar to Rcs1-chapter3-constitutive-law (20)

Rcs1-chapter1
Rcs1-chapter1Rcs1-chapter1
Rcs1-chapter1
 
Buckling of slender composite concrete filled steel columns
Buckling of slender composite concrete filled steel columnsBuckling of slender composite concrete filled steel columns
Buckling of slender composite concrete filled steel columns
 
Rcs1 -chapter6-SLS
Rcs1 -chapter6-SLSRcs1 -chapter6-SLS
Rcs1 -chapter6-SLS
 
Shear connector jakarta 081281000409
Shear connector jakarta 081281000409Shear connector jakarta 081281000409
Shear connector jakarta 081281000409
 
Fire Resistance of Materials and Structures - Heat Transfer and Thermal Analysis
Fire Resistance of Materials and Structures - Heat Transfer and Thermal AnalysisFire Resistance of Materials and Structures - Heat Transfer and Thermal Analysis
Fire Resistance of Materials and Structures - Heat Transfer and Thermal Analysis
 
Flexure Behaviour of Ferrocement Strengthened RC beams
Flexure Behaviour of Ferrocement Strengthened RC beamsFlexure Behaviour of Ferrocement Strengthened RC beams
Flexure Behaviour of Ferrocement Strengthened RC beams
 
Flexure Behaviour of Ferrocement Strengthened RC beams
Flexure Behaviour of Ferrocement Strengthened RC beamsFlexure Behaviour of Ferrocement Strengthened RC beams
Flexure Behaviour of Ferrocement Strengthened RC beams
 
Economical Study of Variables in RC-Structures and Accumulation of their Design
Economical Study of Variables in RC-Structures and Accumulation of their DesignEconomical Study of Variables in RC-Structures and Accumulation of their Design
Economical Study of Variables in RC-Structures and Accumulation of their Design
 
Rcs1-chapter4-durability
Rcs1-chapter4-durabilityRcs1-chapter4-durability
Rcs1-chapter4-durability
 
SUGGESTING DEFLECTION EXPRESSIONS FOR RC BEAMS
SUGGESTING DEFLECTION EXPRESSIONS FOR RC BEAMSSUGGESTING DEFLECTION EXPRESSIONS FOR RC BEAMS
SUGGESTING DEFLECTION EXPRESSIONS FOR RC BEAMS
 
SUGGESTING DEFLECTION EXPRESSIONS FOR RC BEAMS
SUGGESTING DEFLECTION EXPRESSIONS FOR RC BEAMSSUGGESTING DEFLECTION EXPRESSIONS FOR RC BEAMS
SUGGESTING DEFLECTION EXPRESSIONS FOR RC BEAMS
 
SUGGESTING DEFLECTION EXPRESSIONS FOR RC BEAMS
SUGGESTING DEFLECTION EXPRESSIONS FOR RC BEAMSSUGGESTING DEFLECTION EXPRESSIONS FOR RC BEAMS
SUGGESTING DEFLECTION EXPRESSIONS FOR RC BEAMS
 
SA-II Notes.pdf
SA-II  Notes.pdfSA-II  Notes.pdf
SA-II Notes.pdf
 
cfst columns
cfst columnscfst columns
cfst columns
 
Pre stress concrete
Pre stress concretePre stress concrete
Pre stress concrete
 
Experimental study on shear strength behavior of super plasticized fiber rein...
Experimental study on shear strength behavior of super plasticized fiber rein...Experimental study on shear strength behavior of super plasticized fiber rein...
Experimental study on shear strength behavior of super plasticized fiber rein...
 
Qp
QpQp
Qp
 
CONCRETE FILLED STEEL TUBULAR COLUMNS USING GS SHEET
CONCRETE FILLED STEEL TUBULAR COLUMNS USING GS SHEETCONCRETE FILLED STEEL TUBULAR COLUMNS USING GS SHEET
CONCRETE FILLED STEEL TUBULAR COLUMNS USING GS SHEET
 
Eurocodes design of members
Eurocodes design of membersEurocodes design of members
Eurocodes design of members
 
IRJET- Study on Effect of Column Shape on Fire Resistance of CFST Column wi...
IRJET- 	 Study on Effect of Column Shape on Fire Resistance of CFST Column wi...IRJET- 	 Study on Effect of Column Shape on Fire Resistance of CFST Column wi...
IRJET- Study on Effect of Column Shape on Fire Resistance of CFST Column wi...
 

More from Marwan Sadek

More from Marwan Sadek (8)

SBA1 - EC2 - Chap 2 - Evolution - réglementation
SBA1 - EC2 - Chap 2 - Evolution - réglementationSBA1 - EC2 - Chap 2 - Evolution - réglementation
SBA1 - EC2 - Chap 2 - Evolution - réglementation
 
SBA1 - EC2 - Chap 6 - Flexion simple ELS
SBA1 - EC2 - Chap 6 - Flexion simple ELSSBA1 - EC2 - Chap 6 - Flexion simple ELS
SBA1 - EC2 - Chap 6 - Flexion simple ELS
 
SBA1 - EC2 - Chap 5 - Flexion simple - ELU
SBA1 - EC2 - Chap 5 - Flexion simple - ELUSBA1 - EC2 - Chap 5 - Flexion simple - ELU
SBA1 - EC2 - Chap 5 - Flexion simple - ELU
 
SBA1 - EC2 - Chap 4 - Durabilité et enrobage
SBA1 - EC2 - Chap 4 - Durabilité et enrobageSBA1 - EC2 - Chap 4 - Durabilité et enrobage
SBA1 - EC2 - Chap 4 - Durabilité et enrobage
 
SBA1 - EC2 - Chap 3 - Matériaux- Loi de comportement
 SBA1 - EC2 - Chap 3 - Matériaux- Loi de comportement SBA1 - EC2 - Chap 3 - Matériaux- Loi de comportement
SBA1 - EC2 - Chap 3 - Matériaux- Loi de comportement
 
SBA1 - EC2 - Chap 1 - Généralités
SBA1 - EC2 - Chap 1 - GénéralitésSBA1 - EC2 - Chap 1 - Généralités
SBA1 - EC2 - Chap 1 - Généralités
 
Cfp senset power point
Cfp senset power pointCfp senset power point
Cfp senset power point
 
Rcs1-Chapter2-Standards
Rcs1-Chapter2-StandardsRcs1-Chapter2-Standards
Rcs1-Chapter2-Standards
 

Recently uploaded

Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
negromaestrong
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
Chris Hunter
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 

Recently uploaded (20)

Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 
Asian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptxAsian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptx
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 

Rcs1-chapter3-constitutive-law

  • 1. 1 Reinforced Concrete Structures 1 - Eurocodes RCS 1 Professor Marwan SADEK https://www.researchgate.net/profile/Marwan_Sadek https://fr.slideshare.net/marwansadek00 Email : marwansadek00@gmail.com If you detect any mistakes, please let me know at : marwansadek00@gmail.com
  • 2. 2 RCS1 M. SADEK Ch 1 : Generalities – Reinforced concrete in practice Ch 2 : Evolution of the standards – Limit states Ch 3 : Mechanical Characteristics of materials – Constitutive relations Ch 4 : Durability and Cover Ch 5 : Beam under simple bending – Ultimate limit state ULS Ch 6 : Beam under simple bending – serviceability limit state SLS Ch 7 : Section subjected to pure tension
  • 3. 3 Selected References French BAEL Code (91, 99)  Règles BAEL 91 modifiées 99, Règles techniques de conception et de calcul des ouvrages et constructions en béton armé, Eyrolles, 2000.  J. Perchat (2000), Maîtrise du BAEL 91 et des DTU associés, Eyrolles, 2000.  J.P. Mougin (2000), BAEL 91 modifié 99 et DTU associés, Eyrolles, 2000.  …. EUROCODES  H. Thonier (2013), Le projet de béton armé, 7ème édition, SEBTP, 2013.  Jean-Armand Calgaro, Paolo Formichi ( 2013) Calcul des actions sur les bâtiments selon l'Eurocode 1 , Le moniteur, 2013.  J. M. Paillé (2009), Calcul des structures en béton, Eyrolles- AFNOR, 2009.  Jean Perchat (2013), Traité de béton armé Selon l'Eurocode 2, Le moniteur, 2013 (2ème édition)  Manual for the design of concrete building structures to Eurocode 2, The Institution of Structural Engineers, BCA, 2006.  A. J. Bond (2006), How to Design Concrete Structures using Eurocode 2, The concrete centre, BCA, 2006. https://usingeurocodes.com/ M. SADEK
  • 4. 4 In addition to Eurocodes, the references that are mainly used to prepare this course material are :  Thonier 2013  Perchat 2013  Paillé 2009 Some figures and formulas are taken from  Cours de S. Multon - BETON ARME Eurocode 2 (available on internet)  Cours béton armé de Christian Albouy M. SADEK
  • 5. 5 CHAPTER III Mechanical Characteristics of Materials Behaviour Constitutive Law M. SADEK 1. Concrete 2. Steel Annexes
  • 6. 6 Concrete compressive strength - Test M. SADEK  France : Cylindrical Concrete specimen, H/D = 2 (diameter16 cm, height 32 cm) 1. Concrete 2. Steel  Annexes
  • 7. 7 M. SADEK Concrete compressive strength - Test 1. Concrete 2. Steel  Annexes
  • 8. 8 M. SADEK  fcm : Mean value of concrete cylinder compressive strength  fck : Characteristic compressive cylinder strength of concrete at 28 days (fck  90 MPa) Characteristic value & 5% Fractile % specimen fck(t)=fcm(t) – 8 (in MPa) Concrete compressive strength - Standard 1. Concrete 2. Steel  Annexes
  • 9. 9 Concrete compressive strength 1. Concrete 2. Steel  Annexes
  • 10. 10 > 200 MPa  Ultra high performance concrete Fiber Reinforced Concrete 1. Concrete 2. Steel  Annexes
  • 11. 11 fcm(t) = cc x fcm  Normal Concrete (t < 28 jours)  fcm(t) is the mean concrete compressive strength at an age of t days 1. Concrete 2. Steel  Annexes
  • 12. 12 M. SADEK  fcd : Design value of concrete compressive strength cc= 1 (ANF) C = 1.5 (persistent situation) ; 1.2 (accidental)  fck : Characteristic compressive cylinder strength of concrete at 28 days 1. Concrete 2. Steel  Annexes
  • 13. 13 Another test for tensile strength of Concrete  The tensile strength by splitting test (Essai brésilien)  Design of rigid pavements Difficult  Flexure Test - 4 pts 1. Concrete 2. Steel  Annexes
  • 14. 14 fctk : Characteristic axial tensile strength of concrete fctk 0,05  fctm  fctk 0,95 1. Concrete 2. Steel  Annexes
  • 15. 15  Behaviour of Concrete – Stress-Strain Diagram 1. Structural Analysis 2. Sections Design 1. Concrete 2. Steel  Annexes
  • 16. 16 1. Structural Analysis/ Second order effect 1. Concrete 2. Steel  Annexes
  • 17. 17 Modulus of Elasticity Secant modulus Ecm (@ 0.4 fcm), for short term loading Effective modulus of elasticity of concrete Ec,eff (Creep Effect) (fcm en MPa, Ecm en GPa) 1. Structural Analysis/ Second order effect The EC2 defines a design Elastic modulus : 1. Concrete 2. Steel  Annexes
  • 18. 18 2. Section Design a) Parabola-rectangle diagram b) Bi-linear stress-strain relation 1. Concrete 2. Steel  Annexes
  • 19. 19 c) Rectangular stress distribution Note : In the present lecture, the design of section at ULS is conducted using the diagram c (simpler diagram) The use of diagrams a and b are authorized by the EC2. 1. Concrete 2. Steel  Annexes
  • 20. 20  Other aspects – Creep (EC2, 3.1.4) 1. Concrete 2. Steel  Annexes
  • 21. 21 At t =  , under a constant compression stress  Ec : Tangent modulus of elasticity (may be taken as 1,05 Ecm)  t0 : the age of concrete at the time of loading (in days) (Linear creep) (Non-Linear creep)  Other aspects – Creep (EC2, 3.1.4) 1. Concrete 2. Steel  Annexes
  • 22. 22 Creep Coefficient where Ac is the concrete cross-sectional area and u is the perimeter of that part which is exposed to drying 1. Concrete 2. Steel  Annexes
  • 23. 23 Creep Coefficient 1. Concrete 2. Steel  Annexes
  • 24. 24 M. SADEK Poisson ratio  = 0 - Calculation of internal forces  = 0.2 - strain Calculation 1. Concrete 2. Steel  Annexes
  • 25. 25 M. SADEK Steel 1. Concrete 2. Steel  Annexes
  • 26. 26 M. SADEK  High bond (twisted):  bars  welded wire mesh  Round or plain bars : rarely used in Europe (only if folding out needed) used in Lebanon especially in villages because of the ease bending of stirrups Types of Steel 1. Concrete 2. Steel  Annexes
  • 27. 27 M. SADEK Steel used in R.C 1. Concrete 2. Steel  Annexes
  • 28. 28 M. SADEK   Tension Test 1. Concrete 2. Steel  Annexes
  • 29. 29 M. SADEK The ductility of Steel of the reinforced concrete is characterized by : εuk Characteristic strain of reinforcement steel at maximum load  the Characteristic value of 3 Classes of ductility Stress/strain 1. Concrete 2. Steel  Annexes
  • 30. 30 M. SADEK  A : Normal ductility B500A (welded wire mesh in general, and bars with low diameter)  B : high ductility B500B (in general the HB bars with a diameter > 12)  C : very high ductility C450 (generally used in seismic areas, especially in USA)  L’EN 10080 defines 3 classes of ductility : 1. Concrete 2. Steel  Annexes
  • 31. 31 M. SADEK The application rules for design and detailing in this Eurocode are valid for a specified yield strength range (400 fyk600 Mpa)  Note : for bridges and for construction in seismic zones, steel B and C are authorized (The French N.A allows the use of steel A outside the critical zones)  L’EN 10080 defines 3 classes of ductility : 1. Concrete 2. Steel  Annexes
  • 32. 32 M. SADEK Idealised / Design stress-strain diagrams for reinforcing steel (ULS) s = 1.15 (persistent) 1.0 (accidentel) 1. Concrete 2. Steel  Annexes
  • 33. 33 M. SADEK  Design stress-strain diagrams:  a horizontal top branch without the need to check the strain limit  an inclined top branch with a strain limit (s0  s  ud = 0.9uk ) 1. Concrete 2. Steel  Annexes
  • 34. 34 M. SADEK  Note : the calculation of the slope using the diagram A gives different value from that of diagram B, due to an error of the presentation of the diagram in EC2. It explains the difference in the expression of the stress obtained by different authors (Perchat, Paillé, Thonier, Ricotier)  In this document, we will calculate the slope on the basis of the diagram B. 1. Concrete 2. Steel  Annexes
  • 35. 35 M. SADEK Elastic modulus Es = 200 000 MPa Density = 7.85 T/m3  Thermal expansion coefficient= 1.10-5  Diameters: 6, 8, 10, 12, 14, 16, 20, 25, 32, 40, (50 , 56)  Welded wire mesh: with lower diameter (see Annex) Other characteristics 1. Concrete 2. Steel  Annexes
  • 36. 36 M. SADEK Annexes 1. Concrete 2. Steel  Annexes
  • 37. 37 M. SADEK 1. Concrete 2. Steel  Annexes
  • 38. 38  6 8 10 12 14 16 20 25 32 40 1 0.28 0.50 0.79 1.13 1.54 2.01 3.14 4.91 8.04 12.57 2 0.57 1.01 1.57 2.26 3.08 4.02 6.28 9.82 16.08 25.13 3 0.85 1.51 2.36 3.39 4.62 6.03 9.42 14.73 24.13 37.70 4 1.13 2.01 3.14 4.52 6.16 8.04 12.57 19.63 32.17 50.27 5 1.41 2.51 3.93 5.65 7.70 10.05 15.71 24.54 40.21 62.83 6 1.70 3.02 4.71 6.79 9.24 12.06 18.85 29.45 48.25 75.40 7 1.98 3.52 5.50 7.92 10.78 14.07 21.99 34.36 56.30 87.96 8 2.26 4.02 6.28 9.05 12.32 16.08 25.13 39.27 64.34 100.53 9 2.54 4.52 7.07 10.18 13.85 18.10 28.27 44.18 72.38 113.10 10 2.83 5.03 7.85 11.31 15.39 20.11 31.42 49.09 80.42 125.66 11 3.11 5.53 8.64 12.44 16.93 22.12 34.56 54.00 88.47 138.23 12 3.39 6.03 9.42 13.57 18.47 24.13 37.70 58.90 96.51 150.80 13 3.68 6.53 10.21 14.70 20.01 26.14 40.84 63.81 104.55 163.36 14 3.96 7.04 11.00 15.83 21.55 28.15 43.98 68.72 112.59 175.93 15 4.24 7.54 11.78 16.96 23.09 30.16 47.12 73.63 120.64 188.50 16 4.52 8.04 12.57 18.10 24.63 32.17 50.27 78.54 128.68 201.06 17 4.81 8.55 13.35 19.23 26.17 34.18 53.41 83.45 136.72 213.63 18 5.09 9.05 14.14 20.36 27.71 36.19 56.55 88.36 144.76 226.19 19 5.37 9.55 14.92 21.49 29.25 38.20 59.69 93.27 152.81 238.76 20 5.65 10.05 15.71 22.62 30.79 40.21 62.83 98.17 160.85 251.33 Wt kg / ml 0.222 0.395 0.617 0.888 1.208 1.578 2.466 3.853 6.313 9.865 1. Concrete 2. Steel  Annexes
  • 39. 39 Welded wire mesh (anti cracking) 1. Concrete 2. Steel  Annexes
  • 40. 40 Welded wire mesh (France) 1. Concrete 2. Steel  Annexes
  • 43. 43  Determination of the slope of the diagram (/) for steel A & B  Deduce the equation of s for both Steel classes.  Practice : determination of the value of (s) for different (s)  Difference between diagrams with horizontal top branch and inclined top branch  (persistent situation / accidental)  Determine the creep coefficient for a column Exercices
  • 44. 44 fck(t)=fcm(t) – 8 fcm(t) = cc x fcm cc= 1 (FNA) C = 1.5 (persistent) ; 1.2 (accidental) Reminder of main formulas
  • 45. 45 s = 1.2 (persistent) 1.0 (accidental) or Reminder of main formulas