© SuperDataScienceDeep Learning A-Z
© SuperDataScienceDeep Learning A-Z
© SuperDataScienceDeep Learning A-Z
Simple Linear
Regression
y = b0 + b1*x1
Dependent variable (DV) Independent variable (IV)
CoefficientConstant
© SuperDataScienceDeep Learning A-Z
Simple Linear Regression:
Salary ($)
Experience
y = b0 + b1*x
Salary = b0 + b1 *Experience
+1yr
+10k
30k
© SuperDataScienceDeep Learning A-Z
© SuperDataScienceDeep Learning A-Z
Simple Linear Regression:
Salary ($)
Experience
yî
yi
SUM (y - ŷ )2 -> min
© SuperDataScienceDeep Learning A-Z
© SuperDataScienceDeep Learning A-Z
Simple Linear
Regression
Multiple Linear
Regression
y = b0 + b1*x1
y = b0 + b1*x1 + b2*x2 + … + bn*xn
Dependent variable (DV) Independent variables (IVs)
Constant Coefficients
© SuperDataScienceDeep Learning A-Z
© SuperDataScienceDeep Learning A-Z
y = b0 + b1*x1 + … + bn*xn
Linear Regression:
y = b0 + b1*x
- Simple:
- Multiple:
© SuperDataScienceDeep Learning A-Z
We know this:This is new:
Salary ($)
Experience
y = b0 + b1*x??
?
Action (Y/N)
Age
0
1 -
© SuperDataScienceDeep Learning A-Z
Action (Y/N)
Age
0
1 -
© SuperDataScienceDeep Learning A-Z
1 -
Action (Y/N)
Age
0
© SuperDataScienceDeep Learning A-Z
1 -
Action (Y/N)
Age
0
© SuperDataScienceDeep Learning A-Z
y = b0 + b1*x
1 + e-y
1
p =
ln ( ) = b0 + b1*x1 – p
p
© SuperDataScienceDeep Learning A-Z
© SuperDataScienceDeep Learning A-Z
ln ( ) = b0 + b1*x1 – p
p
y (Actual DV)
X
p̂ (Probability)
p_hat
© SuperDataScienceDeep Learning A-Z
X
p̂ (Probability)
20 30 40 50
p̂ =0.7%
p̂ =23%
p̂ =85%
p̂ =99.4%
p_hat
© SuperDataScienceDeep Learning A-Z
X
p̂ (Probability)y (Actual DV)
ŷ (Predicted DV)
0.5
ŷ = 0 ŷ = 0
ŷ = 1 ŷ = 1
1
Fin.

Deep Learning A-Z™: Regression & Classification - Module 7