SlideShare a Scribd company logo
Database Management
System
Chapter 1: INTRODUCTION
Prepared By-
Sonia Akther Mim
soniamim08@gmail.com
Outline
 Data and Information
 DB and DBMS
 Applications of DBMS
 File System
 Level of abstraction
 Database Language
 Database Design
 Data Models
 Relational Databases
 Database Design
 Storage Manager
 Query Processing
 Transaction Manager
Data & Information
Data: It is raw, unorganized facts that need to be processed.
Data can be something simple and seemingly random and
useless until it is organized.
Example: Each student's test score is one piece of data.
Information: When data is processed, organized, structured
or presented in a given context so as to make it useful, it is
called information.
Example: The average score of a class or of the entire school
is information that can be derived from the given data.
Database Management System
(DBMS)
 Database (DB): The collection of data, usually referred to as the
database, contains information relevant to an enterprise
 Database Management System (DBMS): A database-management
system (DBMS) is a collection of interrelated data and a set of
programs to access those data.
 DBMS contains information about a particular enterprise.
– Collection of interrelated data
– Set of programs to access the data
– An environment that is both convenient and efficient to use
Database Management System
(DBMS)
 Database Applications:
 Banking: transactions
 Airlines: reservations, schedules
 Universities: registration, grades
 Sales: customers, products, purchases
 Online retailers: order tracking, customized recommendations
 Manufacturing: production, inventory, orders, supply chain
 Human resources: employee records, salaries, tax deductions
 Databases can be very large.
 Databases touch all aspects of our lives
University Database Example
 Application program examples
 Add new students, instructors, and courses
 Register students for courses, and generate class rosters
 Assign grades to students, compute grade point averages (GPA)
and generate transcripts
Drawbacks of using file systems
to store data
 Data redundancy and inconsistency
 Multiple file formats, duplication of information in different files
 Difficulty in accessing data
 Need to write a new program to carry out each new task
 Data isolation
 Multiple files and formats
 Integrity problems
 Integrity constraints (e.g., account balance > 0) become “buried” in
program code rather than being stated explicitly
 Hard to add new constraints or change existing ones
Drawbacks of using file systems to
store data (Cont.)
 Atomicity of updates
 Failures may leave database in an inconsistent state with partial
updates carried out
 Example: Transfer of funds from one account to another should either
complete or not happen at all
 Concurrent access by multiple users
 Concurrent access needed for performance
 Uncontrolled concurrent accesses can lead to inconsistencies
 Example: Two people reading a balance (say 100) and updating it by
withdrawing money (say 50 each) at the same time
 Security problems
 Hard to provide user access to some, but not all, data
Database systems offer solutions to all the above problems
Levels of Abstraction
 Physical level: describes how a record (e.g., instructor) is stored.
 Logical level: describes data stored in database, and the
relationships among the data.
type instructor = record
ID : string;
name : string;
dept_name : string;
salary : integer;
end;
 View level: application programs hide details of data types.
Views can also hide information (such as an employee’s salary)
for security purposes.
View of Data
An architecture for a database system
Instances and Schemas
 Similar to types and variables in programming languages
 Logical Schema – the overall logical structure of the database
 Example: The database consists of information about a set of customers
and accounts in a bank and the relationship between them
 Analogous to type information of a variable in a program
 Physical schema– the overall physical structure of the database
 Instance – the actual content of the database at a particular point in
time
 Analogous to the value of a variable
 Physical Data Independence – the ability to modify the physical
schema without changing the logical schema
 Applications depend on the logical schema
 In general, the interfaces between the various levels and components
should be well defined so that changes in some parts do not seriously
influence others.
Data Models
 A collection of tools for describing
 Data
 Data relationships
 Data semantics
 Data constraints
 Relational model
 Entity-Relationship data model (mainly for database design)
 Object-based data models (Object-oriented and Object-
relational)
 Semistructured data model (XML)
 Other older models:
 Network model
 Hierarchical model
Relational Model
 All the data is stored in various tables.
 Example of tabular data in the relational model
Columns
Rows
A Sample Relational Database
Data Definition Language (DDL)
 Specification notation for defining the database schema
Example: create table instructor (
ID char(5),
name varchar(20),
dept_name varchar(20),
salary numeric(8,2))
 DDL compiler generates a set of table templates stored in a data
dictionary
 Data dictionary contains metadata (i.e., data about data)
 Database schema
 Integrity constraints
 Primary key (ID uniquely identifies instructors)
 Authorization
 Who can access what
Data Manipulation Language
(DML)
 Language for accessing and manipulating the data
organized by the appropriate data model
 DML also known as query language
 Two classes of languages
 Pure – used for proving properties about computational
power and for optimization
 Relational Algebra
 Tuple relational calculus
 Domain relational calculus
 Commercial – used in commercial systems
 SQL is the most widely used commercial language
SQL
 The most widely used commercial language
 SQL is NOT a Turing machine equivalent language
 SQL is NOT a Turing machine equivalent language
 To be able to compute complex functions SQL is usually
embedded in some higher-level language
 Application programs generally access databases through
one of
 Language extensions to allow embedded SQL
 Application program interface (e.g., ODBC/JDBC) which allow
SQL queries to be sent to a database
Database Design
 Logical Design – Deciding on the database schema.
Database design requires that we find a “good” collection
of relation schemas.
 Business decision – What attributes should we record in the
database?
 Computer Science decision – What relation schemas should
we have and how should the attributes be distributed
among the various relation schemas?
 Physical Design – Deciding on the physical layout of the
database
The process of designing the general structure of the database:
Database Design (Cont.)
 Is there any problem with this relation?
Design Approaches
 Need to come up with a methodology to ensure that each
of the relations in the database is “good”
 Two ways of doing so:
 Entity Relationship Model (Chapter 7)
 Models an enterprise as a collection of entities and relationships
 Represented diagrammatically by an entity-relationship diagram:
 Normalization Theory (Chapter 8)
 Formalize what designs are bad, and test for them
Object-Relational Data Models
 Relational model: flat, “atomic” values
 Object Relational Data Models
 Extend the relational data model by including object orientation
and constructs to deal with added data types.
 Allow attributes of tuples to have complex types, including non-
atomic values such as nested relations.
 Preserve relational foundations, in particular the declarative access
to data, while extending modeling power.
 Provide upward compatibility with existing relational languages.
XML: Extensible Markup
Language
 Defined by the WWW Consortium (W3C)
 Originally intended as a document markup language not a
database language
 The ability to specify new tags, and to create nested tag
structures made XML a great way to exchange data, not just
documents
 XML has become the basis for all new generation data
interchange formats.
 A wide variety of tools is available for parsing, browsing and
querying XML documents/data
Database Engine
 Storage manager
 Query processing
 Transaction manager
Storage Management
 Storage manager is a program module that provides the
interface between the low-level data stored in the database
and the application programs and queries submitted to the
system.
 The storage manager is responsible to the following tasks:
 Interaction with the OS file manager
 Efficient storing, retrieving and updating of data
 Issues:
 Storage access
 File organization
 Indexing and hashing
Query Processing
1. Parsing and translation
2. Optimization
3. Evaluation
Query Processing (Cont.)
 Alternative ways of evaluating a given query
 Equivalent expressions
 Different algorithms for each operation
 Cost difference between a good and a bad way of
evaluating a query can be enormous
 Need to estimate the cost of operations
 Depends critically on statistical information about relations
which the database must maintain
 Need to estimate statistics for intermediate results to compute
cost of complex expressions
Transaction Management
 What if the system fails?
 What if more than one user is concurrently updating the
same data?
 A transaction is a collection of operations that performs a
single logical function in a database application
 Transaction-management component ensures that the
database remains in a consistent (correct) state despite
system failures (e.g., power failures and operating system
crashes) and transaction failures.
 Concurrency-control manager controls the interaction
among the concurrent transactions, to ensure the
consistency of the database.
Database Users and
Administrators
Database
Database System Internals
Database Architecture
The architecture of a database systems is greatly influenced by
the underlying computer system on which the database is
running:
 Centralized
 Client-server
 Parallel (multi-processor)
 Distributed
History of Database Systems
 1950s and early 1960s:
 Data processing using magnetic tapes for storage
 Tapes provided only sequential access
 Punched cards for input
 Late 1960s and 1970s:
 Hard disks allowed direct access to data
 Network and hierarchical data models in widespread use
 Ted Codd defines the relational data model
 Would win the ACM Turing Award for this work
 IBM Research begins System R prototype
 UC Berkeley begins Ingres prototype
 High-performance (for the era) transaction processing
History (cont.)
 1980s:
 Research relational prototypes evolve into commercial systems
 SQL becomes industrial standard
 Parallel and distributed database systems
 Object-oriented database systems
 1990s:
 Large decision support and data-mining applications
 Large multi-terabyte data warehouses
 Emergence of Web commerce
 Early 2000s:
 XML and XQuery standards
 Automated database administration
 Later 2000s:
 Giant data storage systems
 Google BigTable, Yahoo PNuts, Amazon, ..
End of Chapter 1

More Related Content

What's hot

Dbms and rdbms ppt
Dbms and rdbms pptDbms and rdbms ppt
Dbms and rdbms ppt
rahul kapoliya
 
Database Chapter 1
Database Chapter 1Database Chapter 1
Database Chapter 1
shahadat hossain
 
Introduction: Databases and Database Users
Introduction: Databases and Database UsersIntroduction: Databases and Database Users
Introduction: Databases and Database Users
sontumax
 
Database Management System
Database Management SystemDatabase Management System
Database Management System
Nishant Munjal
 
database
databasedatabase
The Relational Database Model
The Relational Database ModelThe Relational Database Model
The Relational Database Model
Shishir Aryal
 
Database Chapter 2
Database Chapter 2Database Chapter 2
Database Chapter 2
shahadat hossain
 
Database Chapter 3
Database Chapter 3Database Chapter 3
Database Chapter 3
shahadat hossain
 
Database : Relational Data Model
Database : Relational Data ModelDatabase : Relational Data Model
Database : Relational Data Model
Smriti Jain
 
Database
DatabaseDatabase
Data base management system
Data base management systemData base management system
Data base management systemNavneet Jingar
 
DBMS OF DATA MODEL Deepika 2
DBMS OF DATA MODEL  Deepika 2DBMS OF DATA MODEL  Deepika 2
DBMS OF DATA MODEL Deepika 2
Rai Saheb Bhanwar Singh College Nasrullaganj
 
Introduction to DBMS(For College Seminars)
Introduction to DBMS(For College Seminars)Introduction to DBMS(For College Seminars)
Introduction to DBMS(For College Seminars)
Naman Joshi
 
Introduction of DBMS
Introduction of DBMSIntroduction of DBMS
Introduction of DBMS
YouQue ™
 
Basic DBMS ppt
Basic DBMS pptBasic DBMS ppt
Basic DBMS ppt
dangwalrajendra888
 
Data Dictionary
Data DictionaryData Dictionary
Data Dictionary
Forrester High School
 

What's hot (20)

Dbms
DbmsDbms
Dbms
 
Dbms and rdbms ppt
Dbms and rdbms pptDbms and rdbms ppt
Dbms and rdbms ppt
 
Database Chapter 1
Database Chapter 1Database Chapter 1
Database Chapter 1
 
Introduction: Databases and Database Users
Introduction: Databases and Database UsersIntroduction: Databases and Database Users
Introduction: Databases and Database Users
 
Database Management System
Database Management SystemDatabase Management System
Database Management System
 
database
databasedatabase
database
 
The Relational Database Model
The Relational Database ModelThe Relational Database Model
The Relational Database Model
 
Database Chapter 2
Database Chapter 2Database Chapter 2
Database Chapter 2
 
Ch09
Ch09Ch09
Ch09
 
Database Chapter 3
Database Chapter 3Database Chapter 3
Database Chapter 3
 
Database : Relational Data Model
Database : Relational Data ModelDatabase : Relational Data Model
Database : Relational Data Model
 
Database
DatabaseDatabase
Database
 
Data base management system
Data base management systemData base management system
Data base management system
 
RDBMS
RDBMSRDBMS
RDBMS
 
DBMS OF DATA MODEL Deepika 2
DBMS OF DATA MODEL  Deepika 2DBMS OF DATA MODEL  Deepika 2
DBMS OF DATA MODEL Deepika 2
 
Introduction to DBMS(For College Seminars)
Introduction to DBMS(For College Seminars)Introduction to DBMS(For College Seminars)
Introduction to DBMS(For College Seminars)
 
Introduction of DBMS
Introduction of DBMSIntroduction of DBMS
Introduction of DBMS
 
Dbms slides
Dbms slidesDbms slides
Dbms slides
 
Basic DBMS ppt
Basic DBMS pptBasic DBMS ppt
Basic DBMS ppt
 
Data Dictionary
Data DictionaryData Dictionary
Data Dictionary
 

Similar to Database Management System, Lecture-1

DBMS - Introduction
DBMS - IntroductionDBMS - Introduction
DBMS - Introduction
JOSEPHINE297640
 
Ch1- Introduction to dbms
Ch1- Introduction to dbmsCh1- Introduction to dbms
Ch1- Introduction to dbms
Shakila Mahjabin
 
M.sc. engg (ict) admission guide database management system 4
M.sc. engg (ict) admission guide   database management system 4M.sc. engg (ict) admission guide   database management system 4
M.sc. engg (ict) admission guide database management system 4
Syed Ariful Islam Emon
 
Lecture 1 to 3intro to normalization in database
Lecture 1 to 3intro to  normalization in databaseLecture 1 to 3intro to  normalization in database
Lecture 1 to 3intro to normalization in database
maqsoodahmedbscsfkhp
 
database introductoin optimization1-app6891.pdf
database introductoin optimization1-app6891.pdfdatabase introductoin optimization1-app6891.pdf
database introductoin optimization1-app6891.pdf
parveen204931475
 
Introduction to Database
Introduction to DatabaseIntroduction to Database
Introduction to Database
Siti Ismail
 
Database Systems Concepts, 5th Ed
Database Systems Concepts, 5th EdDatabase Systems Concepts, 5th Ed
Database Systems Concepts, 5th Ed
Daniel Francisco Tamayo
 
Database management systems
Database management systemsDatabase management systems
Database management systems
Ravindra Singh Gohil
 
Ch-1-Introduction-to-Database.pdf
Ch-1-Introduction-to-Database.pdfCh-1-Introduction-to-Database.pdf
Ch-1-Introduction-to-Database.pdf
MrjJoker1
 
Dbms
DbmsDbms
Database Concepts
Database ConceptsDatabase Concepts
Database Concepts
Upendra Reddy Vuyyuru
 
Database Systems - introduction
Database Systems - introductionDatabase Systems - introduction
Database Systems - introduction
Jananath Banuka
 
DBMS-Unit-1.pptx
DBMS-Unit-1.pptxDBMS-Unit-1.pptx
DBMS-Unit-1.pptx
Bhavya304221
 
dbms notes.ppt
dbms notes.pptdbms notes.ppt
dbms notes.ppt
Ranjit273515
 
LectDBS_1.pdf
LectDBS_1.pdfLectDBS_1.pdf
LectDBS_1.pdf
MadhusmitaSahu40
 
Advanced Database Management System_Introduction Slide.ppt
Advanced Database Management System_Introduction Slide.pptAdvanced Database Management System_Introduction Slide.ppt
Advanced Database Management System_Introduction Slide.ppt
BikalAdhikari4
 
Database Concepts & SQL(1).pdf
Database Concepts & SQL(1).pdfDatabase Concepts & SQL(1).pdf
Database Concepts & SQL(1).pdf
rsujeet169
 

Similar to Database Management System, Lecture-1 (20)

DBMS - Introduction
DBMS - IntroductionDBMS - Introduction
DBMS - Introduction
 
Ch1- Introduction to dbms
Ch1- Introduction to dbmsCh1- Introduction to dbms
Ch1- Introduction to dbms
 
M.sc. engg (ict) admission guide database management system 4
M.sc. engg (ict) admission guide   database management system 4M.sc. engg (ict) admission guide   database management system 4
M.sc. engg (ict) admission guide database management system 4
 
Lecture 1 to 3intro to normalization in database
Lecture 1 to 3intro to  normalization in databaseLecture 1 to 3intro to  normalization in database
Lecture 1 to 3intro to normalization in database
 
database introductoin optimization1-app6891.pdf
database introductoin optimization1-app6891.pdfdatabase introductoin optimization1-app6891.pdf
database introductoin optimization1-app6891.pdf
 
Introduction to Database
Introduction to DatabaseIntroduction to Database
Introduction to Database
 
Dbms unit01
Dbms unit01Dbms unit01
Dbms unit01
 
Unit01 dbms
Unit01 dbmsUnit01 dbms
Unit01 dbms
 
Database Systems Concepts, 5th Ed
Database Systems Concepts, 5th EdDatabase Systems Concepts, 5th Ed
Database Systems Concepts, 5th Ed
 
Database management systems
Database management systemsDatabase management systems
Database management systems
 
Ch-1-Introduction-to-Database.pdf
Ch-1-Introduction-to-Database.pdfCh-1-Introduction-to-Database.pdf
Ch-1-Introduction-to-Database.pdf
 
Dbms
DbmsDbms
Dbms
 
Database Concepts
Database ConceptsDatabase Concepts
Database Concepts
 
Database Systems - introduction
Database Systems - introductionDatabase Systems - introduction
Database Systems - introduction
 
DBMS-Unit-1.pptx
DBMS-Unit-1.pptxDBMS-Unit-1.pptx
DBMS-Unit-1.pptx
 
dbms notes.ppt
dbms notes.pptdbms notes.ppt
dbms notes.ppt
 
LectDBS_1.pdf
LectDBS_1.pdfLectDBS_1.pdf
LectDBS_1.pdf
 
Advanced Database Management System_Introduction Slide.ppt
Advanced Database Management System_Introduction Slide.pptAdvanced Database Management System_Introduction Slide.ppt
Advanced Database Management System_Introduction Slide.ppt
 
27 fcs157al2
27 fcs157al227 fcs157al2
27 fcs157al2
 
Database Concepts & SQL(1).pdf
Database Concepts & SQL(1).pdfDatabase Concepts & SQL(1).pdf
Database Concepts & SQL(1).pdf
 

Recently uploaded

Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
Massimo Talia
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Dr.Costas Sachpazis
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
Pratik Pawar
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
TeeVichai
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
gerogepatton
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
SamSarthak3
 
ASME IX(9) 2007 Full Version .pdf
ASME IX(9)  2007 Full Version       .pdfASME IX(9)  2007 Full Version       .pdf
ASME IX(9) 2007 Full Version .pdf
AhmedHussein950959
 
HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
Robbie Edward Sayers
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
fxintegritypublishin
 
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
WENKENLI1
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
JoytuBarua2
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
karthi keyan
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
R&R Consult
 
Hierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power SystemHierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power System
Kerry Sado
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
ViniHema
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Teleport Manpower Consultant
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
gdsczhcet
 
AP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specificAP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specific
BrazilAccount1
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
Kamal Acharya
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
VENKATESHvenky89705
 

Recently uploaded (20)

Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
 
ASME IX(9) 2007 Full Version .pdf
ASME IX(9)  2007 Full Version       .pdfASME IX(9)  2007 Full Version       .pdf
ASME IX(9) 2007 Full Version .pdf
 
HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
 
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
 
Hierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power SystemHierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power System
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
 
AP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specificAP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specific
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
 

Database Management System, Lecture-1

  • 1. Database Management System Chapter 1: INTRODUCTION Prepared By- Sonia Akther Mim soniamim08@gmail.com
  • 2. Outline  Data and Information  DB and DBMS  Applications of DBMS  File System  Level of abstraction  Database Language  Database Design  Data Models  Relational Databases  Database Design  Storage Manager  Query Processing  Transaction Manager
  • 3. Data & Information Data: It is raw, unorganized facts that need to be processed. Data can be something simple and seemingly random and useless until it is organized. Example: Each student's test score is one piece of data. Information: When data is processed, organized, structured or presented in a given context so as to make it useful, it is called information. Example: The average score of a class or of the entire school is information that can be derived from the given data.
  • 4. Database Management System (DBMS)  Database (DB): The collection of data, usually referred to as the database, contains information relevant to an enterprise  Database Management System (DBMS): A database-management system (DBMS) is a collection of interrelated data and a set of programs to access those data.  DBMS contains information about a particular enterprise. – Collection of interrelated data – Set of programs to access the data – An environment that is both convenient and efficient to use
  • 5. Database Management System (DBMS)  Database Applications:  Banking: transactions  Airlines: reservations, schedules  Universities: registration, grades  Sales: customers, products, purchases  Online retailers: order tracking, customized recommendations  Manufacturing: production, inventory, orders, supply chain  Human resources: employee records, salaries, tax deductions  Databases can be very large.  Databases touch all aspects of our lives
  • 6. University Database Example  Application program examples  Add new students, instructors, and courses  Register students for courses, and generate class rosters  Assign grades to students, compute grade point averages (GPA) and generate transcripts
  • 7. Drawbacks of using file systems to store data  Data redundancy and inconsistency  Multiple file formats, duplication of information in different files  Difficulty in accessing data  Need to write a new program to carry out each new task  Data isolation  Multiple files and formats  Integrity problems  Integrity constraints (e.g., account balance > 0) become “buried” in program code rather than being stated explicitly  Hard to add new constraints or change existing ones
  • 8. Drawbacks of using file systems to store data (Cont.)  Atomicity of updates  Failures may leave database in an inconsistent state with partial updates carried out  Example: Transfer of funds from one account to another should either complete or not happen at all  Concurrent access by multiple users  Concurrent access needed for performance  Uncontrolled concurrent accesses can lead to inconsistencies  Example: Two people reading a balance (say 100) and updating it by withdrawing money (say 50 each) at the same time  Security problems  Hard to provide user access to some, but not all, data Database systems offer solutions to all the above problems
  • 9. Levels of Abstraction  Physical level: describes how a record (e.g., instructor) is stored.  Logical level: describes data stored in database, and the relationships among the data. type instructor = record ID : string; name : string; dept_name : string; salary : integer; end;  View level: application programs hide details of data types. Views can also hide information (such as an employee’s salary) for security purposes.
  • 10. View of Data An architecture for a database system
  • 11. Instances and Schemas  Similar to types and variables in programming languages  Logical Schema – the overall logical structure of the database  Example: The database consists of information about a set of customers and accounts in a bank and the relationship between them  Analogous to type information of a variable in a program  Physical schema– the overall physical structure of the database  Instance – the actual content of the database at a particular point in time  Analogous to the value of a variable  Physical Data Independence – the ability to modify the physical schema without changing the logical schema  Applications depend on the logical schema  In general, the interfaces between the various levels and components should be well defined so that changes in some parts do not seriously influence others.
  • 12. Data Models  A collection of tools for describing  Data  Data relationships  Data semantics  Data constraints  Relational model  Entity-Relationship data model (mainly for database design)  Object-based data models (Object-oriented and Object- relational)  Semistructured data model (XML)  Other older models:  Network model  Hierarchical model
  • 13. Relational Model  All the data is stored in various tables.  Example of tabular data in the relational model Columns Rows
  • 15. Data Definition Language (DDL)  Specification notation for defining the database schema Example: create table instructor ( ID char(5), name varchar(20), dept_name varchar(20), salary numeric(8,2))  DDL compiler generates a set of table templates stored in a data dictionary  Data dictionary contains metadata (i.e., data about data)  Database schema  Integrity constraints  Primary key (ID uniquely identifies instructors)  Authorization  Who can access what
  • 16. Data Manipulation Language (DML)  Language for accessing and manipulating the data organized by the appropriate data model  DML also known as query language  Two classes of languages  Pure – used for proving properties about computational power and for optimization  Relational Algebra  Tuple relational calculus  Domain relational calculus  Commercial – used in commercial systems  SQL is the most widely used commercial language
  • 17. SQL  The most widely used commercial language  SQL is NOT a Turing machine equivalent language  SQL is NOT a Turing machine equivalent language  To be able to compute complex functions SQL is usually embedded in some higher-level language  Application programs generally access databases through one of  Language extensions to allow embedded SQL  Application program interface (e.g., ODBC/JDBC) which allow SQL queries to be sent to a database
  • 18. Database Design  Logical Design – Deciding on the database schema. Database design requires that we find a “good” collection of relation schemas.  Business decision – What attributes should we record in the database?  Computer Science decision – What relation schemas should we have and how should the attributes be distributed among the various relation schemas?  Physical Design – Deciding on the physical layout of the database The process of designing the general structure of the database:
  • 19. Database Design (Cont.)  Is there any problem with this relation?
  • 20. Design Approaches  Need to come up with a methodology to ensure that each of the relations in the database is “good”  Two ways of doing so:  Entity Relationship Model (Chapter 7)  Models an enterprise as a collection of entities and relationships  Represented diagrammatically by an entity-relationship diagram:  Normalization Theory (Chapter 8)  Formalize what designs are bad, and test for them
  • 21. Object-Relational Data Models  Relational model: flat, “atomic” values  Object Relational Data Models  Extend the relational data model by including object orientation and constructs to deal with added data types.  Allow attributes of tuples to have complex types, including non- atomic values such as nested relations.  Preserve relational foundations, in particular the declarative access to data, while extending modeling power.  Provide upward compatibility with existing relational languages.
  • 22. XML: Extensible Markup Language  Defined by the WWW Consortium (W3C)  Originally intended as a document markup language not a database language  The ability to specify new tags, and to create nested tag structures made XML a great way to exchange data, not just documents  XML has become the basis for all new generation data interchange formats.  A wide variety of tools is available for parsing, browsing and querying XML documents/data
  • 23. Database Engine  Storage manager  Query processing  Transaction manager
  • 24. Storage Management  Storage manager is a program module that provides the interface between the low-level data stored in the database and the application programs and queries submitted to the system.  The storage manager is responsible to the following tasks:  Interaction with the OS file manager  Efficient storing, retrieving and updating of data  Issues:  Storage access  File organization  Indexing and hashing
  • 25. Query Processing 1. Parsing and translation 2. Optimization 3. Evaluation
  • 26. Query Processing (Cont.)  Alternative ways of evaluating a given query  Equivalent expressions  Different algorithms for each operation  Cost difference between a good and a bad way of evaluating a query can be enormous  Need to estimate the cost of operations  Depends critically on statistical information about relations which the database must maintain  Need to estimate statistics for intermediate results to compute cost of complex expressions
  • 27. Transaction Management  What if the system fails?  What if more than one user is concurrently updating the same data?  A transaction is a collection of operations that performs a single logical function in a database application  Transaction-management component ensures that the database remains in a consistent (correct) state despite system failures (e.g., power failures and operating system crashes) and transaction failures.  Concurrency-control manager controls the interaction among the concurrent transactions, to ensure the consistency of the database.
  • 30. Database Architecture The architecture of a database systems is greatly influenced by the underlying computer system on which the database is running:  Centralized  Client-server  Parallel (multi-processor)  Distributed
  • 31. History of Database Systems  1950s and early 1960s:  Data processing using magnetic tapes for storage  Tapes provided only sequential access  Punched cards for input  Late 1960s and 1970s:  Hard disks allowed direct access to data  Network and hierarchical data models in widespread use  Ted Codd defines the relational data model  Would win the ACM Turing Award for this work  IBM Research begins System R prototype  UC Berkeley begins Ingres prototype  High-performance (for the era) transaction processing
  • 32. History (cont.)  1980s:  Research relational prototypes evolve into commercial systems  SQL becomes industrial standard  Parallel and distributed database systems  Object-oriented database systems  1990s:  Large decision support and data-mining applications  Large multi-terabyte data warehouses  Emergence of Web commerce  Early 2000s:  XML and XQuery standards  Automated database administration  Later 2000s:  Giant data storage systems  Google BigTable, Yahoo PNuts, Amazon, ..