SlideShare a Scribd company logo
GAMM Workshop Applied and
                                                       Numerical Linear Algebra 2011
                                                        September 22, 2011, Bremen




          Computing Inner Eigenvalues of Matrices in
                Tensor Train Matrix Format
                                        Thomas Mach
                                 joint work with Peter Benner

                   Max Planck Institute for Dynamics of Complex Technical Systems
                       Computational Methods in Systems and Control Theory
                                             Magdeburg
                                                                                                    MAX PLANCK INSTITUTE
                                                                                                  FOR DYNAMICS OF COMPLEX
                                                                                                     TECHNICAL SYSTEMS
                                                                                                         MAGDEBURG




Max Planck Institute Magdeburg            Thomas Mach, Computing Eigenvalues of Matrices in TTM Format         1/21
Tensor Trains                   PINVIT and Folded Spectrum Method                           Numerical Results



   Outline



        1    Tensor Trains

        2    PINVIT and Folded Spectrum Method

        3    Numerical Results




Max Planck Institute Magdeburg            Thomas Mach, Computing Eigenvalues of Matrices in TTM Format    2/21
Tensor Trains                   PINVIT and Folded Spectrum Method                           Numerical Results



   Tensor Trains
   [Oseledets, Tyrtyshnikov ’09]


                                                        d
                                            T ∈ Rm




Max Planck Institute Magdeburg            Thomas Mach, Computing Eigenvalues of Matrices in TTM Format    3/21
Tensor Trains                          PINVIT and Folded Spectrum Method                           Numerical Results



   Tensor Trains
   [Oseledets, Tyrtyshnikov ’09]


                                                               d
                                                    T ∈ Rm

                         r
                 T =     α=1     U1 (i1 , α)U2 (i2 , α) · · · Ud (id , α), with Uj (·, α) ∈ Rm




                                                    U1 (i1 , α)

                                      U4 (i4 , α)        α         U2 (i2 , α)

                                                    U3 (i3 , α)


Max Planck Institute Magdeburg                   Thomas Mach, Computing Eigenvalues of Matrices in TTM Format    3/21
Tensor Trains                          PINVIT and Folded Spectrum Method                            Numerical Results



   Tensor Trains
   [Oseledets, Tyrtyshnikov ’09]


                                                               d
                                                   T ∈ Rm

                          r
                 T =      α=1    U1 (i1 , α)U2 (i2 , α) · · · Ud (id , α), with Uj (·, α) ∈ Rm
                                            r             r                      d
                 T (i1 , i2 , . . . , id ) = α1 =1 · · · αd =1 Gα1 ,...,αd
                                             1           d
                                                                                 j=1   Uj (ij , αj ), with
                 G ∈ Rr1 ×···×rd and Uj (·, αj ) ∈ Rm

                                                   U1 (i1 , α1 )                   U3 (i3 , α3 )
                                                        α1                  α3

                  U4 (i4 , α4 )       α4        G (α1 , . . . , α4 )        α2       U2 (i2 , α2 )


Max Planck Institute Magdeburg                   Thomas Mach, Computing Eigenvalues of Matrices in TTM Format     3/21
Tensor Trains                          PINVIT and Folded Spectrum Method                           Numerical Results



   Tensor Trains
   [Oseledets, Tyrtyshnikov ’09]


                                                                  d
                                                   T ∈ Rm

                          r
                 T =      α=1    U1 (i1 , α)U2 (i2 , α) · · · Ud (id , α), with Uj (·, α) ∈ Rm
                                             r               r                    d
                 T (i1 , i2 , . . . , id ) = α1 =1 · · · αd =1 Gα1 ,...,αd
                                             1           d
                                                                                  j=1   Uj (ij , αj ), with
                 G ∈ Rr1 ×···×rd and Uj (·, αj ) ∈ Rm




          T (i1 , i2 , . . . , id ) =                  G1 (i1 , α1 )G2 (α1 , i2 , α2 ) · · ·
                                        α1 ,...,αd−1

                                                       Gd−1 (αd−2 , id−1 , αd−1 )Gd (αd−1 , id )


Max Planck Institute Magdeburg                   Thomas Mach, Computing Eigenvalues of Matrices in TTM Format    3/21
Tensor Trains                          PINVIT and Folded Spectrum Method                           Numerical Results



   Tensor Trains
   [Oseledets, Tyrtyshnikov ’09]




          T (i1 , i2 , . . . , id ) =                  G1 (i1 , α1 )G2 (α1 , i2 , α2 ) · · ·
                                        α1 ,...,αd−1

                                                       Gd−1 (αd−2 , id−1 , αd−1 )Gd (αd−1 , id )



            G1 (i1 , α1 )        α1          G2 (α1 , i2 , α2 )          α2        G3 (α2 , i3 , α3 )           α3

                 ···        αd−1         Gd (αd−1 , id )




Max Planck Institute Magdeburg                   Thomas Mach, Computing Eigenvalues of Matrices in TTM Format    4/21
Tensor Trains                         PINVIT and Folded Spectrum Method                           Numerical Results



   Tensor Train Matrix Format (TTM)
   [Oseledets ’10]



                       G1 (i1 , j1 , α1 )      α1         G2 (α1 , i2 , j2 , α2 )         α2


                                 ···    αd−1        Gd (αd−1 , id , jd )


                                                            d ×md
                                               M ∈ Rm




Max Planck Institute Magdeburg                  Thomas Mach, Computing Eigenvalues of Matrices in TTM Format    5/21
Tensor Trains                          PINVIT and Folded Spectrum Method                           Numerical Results



   Tensor Train Matrix Format (TTM)
   [Oseledets ’10]



                        G1 (i1 , j1 , α1 )       α1        G2 (α1 , i2 , j2 , α2 )         α2


                                 ···      αd−1        Gd (αd−1 , id , jd )


                                                             d ×md
                                                 M ∈ Rm

                                   M (i1 , i2 , . . . , id ; j1 , j2 , . . . , jd ) =
                 α1 ,...,αd−1 G1 (i1 , j1 , α1 )G2 (α1 , i2 , j2 , α2 ) · · · · · · Gd (αd−1 , id , jd )




Max Planck Institute Magdeburg                   Thomas Mach, Computing Eigenvalues of Matrices in TTM Format    5/21
Tensor Trains                          PINVIT and Folded Spectrum Method                           Numerical Results



   Tensor Train Matrix Format (TTM)
   [Oseledets ’10]



                        G1 (i1 , j1 , α1 )       α1        G2 (α1 , i2 , j2 , α2 )         α2


                                 ···      αd−1        Gd (αd−1 , id , jd )


                                                             d ×md
                                                 M ∈ Rm

                                   M (i1 , i2 , . . . , id ; j1 , j2 , . . . , jd ) =
                 α1 ,...,αd−1 G1 (i1 , j1 , α1 )G2 (α1 , i2 , j2 , α2 ) · · · · · · Gd (αd−1 , id , jd )


                                 TTM is a data-sparse matrix format.

Max Planck Institute Magdeburg                   Thomas Mach, Computing Eigenvalues of Matrices in TTM Format    5/21
Tensor Trains                          PINVIT and Folded Spectrum Method                           Numerical Results



   Tensor Train Matrix Format (TTM)
   [Oseledets ’10]



                        G1 (i1 , j1 , α1 )       α1        G2 (α1 , i2 , j2 , α2 )         α2


                                 ···      αd−1        Gd (αd−1 , id , jd )


                                                             d ×md
                                                 M ∈ Rm

                                   M (i1 , i2 , . . . , id ; j1 , j2 , . . . , jd ) =
                 α1 ,...,αd−1 G1 (i1 , j1 , α1 )G2 (α1 , i2 , j2 , α2 ) · · · · · · Gd (αd−1 , id , jd )


                                 TTM is a data-sparse matrix format.
                                   m = 2 ⇒ QTT matrix format
Max Planck Institute Magdeburg                   Thomas Mach, Computing Eigenvalues of Matrices in TTM Format    5/21
Tensor Trains                   PINVIT and Folded Spectrum Method                           Numerical Results



   Matrix Vector Product in TT and TTM Format
   [Oseledets ’10]


                   T ∈ (Q)TT , M ∈ (Q)TTM ⇒ MT = W ∈ (Q)TT




Max Planck Institute Magdeburg            Thomas Mach, Computing Eigenvalues of Matrices in TTM Format    6/21
Tensor Trains                           PINVIT and Folded Spectrum Method                                    Numerical Results



   Matrix Vector Product in TT and TTM Format
   [Oseledets ’10]


                   T ∈ (Q)TT , M ∈ (Q)TTM ⇒ MT = W ∈ (Q)TT
        W (i1 , i2 , . . . , id ) =                    M(i1 , j1 , i2 , j2 , . . . , id , jd )T (j1 , j2 , . . . , jd )
                                      j1 ,j2 ,...,jd




Max Planck Institute Magdeburg                          Thomas Mach, Computing Eigenvalues of Matrices in TTM Format       6/21
Tensor Trains                           PINVIT and Folded Spectrum Method                                    Numerical Results



   Matrix Vector Product in TT and TTM Format
   [Oseledets ’10]


                   T ∈ (Q)TT , M ∈ (Q)TTM ⇒ MT = W ∈ (Q)TT
        W (i1 , i2 , . . . , id ) =                    M(i1 , j1 , i2 , j2 , . . . , id , jd )T (j1 , j2 , . . . , jd )
                                      j1 ,j2 ,...,jd


                                 G1 (i1 , j1 , α1 )               j1           H1 (j1 , β1 )

                                         α1                                          β1

                            G2 (α1 , i2 , j2 , α2 )               j2        H2 (β1 , j2 , β2 )

                                         α2                                          β2
                                          .
                                          .                                            .
                                                                                       .
                                          .                                            .
Max Planck Institute Magdeburg                          Thomas Mach, Computing Eigenvalues of Matrices in TTM Format       6/21
Tensor Trains                           PINVIT and Folded Spectrum Method                                    Numerical Results



   Matrix Vector Product in TT and TTM Format
   [Oseledets ’10]


                   T ∈ (Q)TT , M ∈ (Q)TTM ⇒ MT = W ∈ (Q)TT
        W (i1 , i2 , . . . , id ) =                    M(i1 , j1 , i2 , j2 , . . . , id , jd )T (j1 , j2 , . . . , jd )
                                      j1 ,j2 ,...,jd


                                 G1 (i1 , j1 , α1 )               j1           H1 (j1 , β1 )

                                         α1                                          β1

                            G2 (α1 , i2 , j2 , α2 )               j2        H2 (β1 , j2 , β2 )

                                         α2                                          β2
                                          .
                                          .                                            .
                                                                                       .
                                          .                                            .
Max Planck Institute Magdeburg                          Thomas Mach, Computing Eigenvalues of Matrices in TTM Format       6/21
Tensor Trains                           PINVIT and Folded Spectrum Method                                    Numerical Results



   Matrix Vector Product in TT and TTM Format
   [Oseledets ’10]


                   T ∈ (Q)TT , M ∈ (Q)TTM ⇒ MT = W ∈ (Q)TT
        W (i1 , i2 , . . . , id ) =                    M(i1 , j1 , i2 , j2 , . . . , id , jd )T (j1 , j2 , . . . , jd )
                                      j1 ,j2 ,...,jd


                                                          j1
                                 G1 (i1 , j1 , αK1 (i1 , (α1 , β1 )) H1 (j1 , β1 )
                                                1)


                                         α1                                          β1

                            G2 (α1 , i2 , j2 , α2 )               j2        H2 (β1 , j2 , β2 )

                                         α2                                          β2
                                          .
                                          .                                            .
                                                                                       .
                                          .                                            .
Max Planck Institute Magdeburg                          Thomas Mach, Computing Eigenvalues of Matrices in TTM Format       6/21
Tensor Trains                           PINVIT and Folded Spectrum Method                                    Numerical Results



   Matrix Vector Product in TT and TTM Format
   [Oseledets ’10]


                   T ∈ (Q)TT , M ∈ (Q)TTM ⇒ MT = W ∈ (Q)TT
        W (i1 , i2 , . . . , id ) =                    M(i1 , j1 , i2 , j2 , . . . , id , jd )T (j1 , j2 , . . . , jd )
                                      j1 ,j2 ,...,jd


                                                          j1
                                 G1 (i1 , j1 , αK1 (i1 , (α1 , β1 )) H1 (j1 , β1 )
                                                1)


                                         α1                                          β1

                            G2 (α1 , i2 , j2 , α2 )               j2        H2 (β1 , j2 , β2 )

                                         α2                                          β2
                                          .
                                          .                                            .
                                                                                       .
                                          .                                            .
Max Planck Institute Magdeburg                          Thomas Mach, Computing Eigenvalues of Matrices in TTM Format       6/21
Tensor Trains                           PINVIT and Folded Spectrum Method                                    Numerical Results



   Matrix Vector Product in TT and TTM Format
   [Oseledets ’10]


                   T ∈ (Q)TT , M ∈ (Q)TTM ⇒ MT = W ∈ (Q)TT
        W (i1 , i2 , . . . , id ) =                    M(i1 , j1 , i2 , j2 , . . . , id , jd )T (j1 , j2 , . . . , jd )
                                      j1 ,j2 ,...,jd


                                                          j1
                                 G1 (i1 , j1 , αK1 (i1 , (α1 , β1 )) H1 (j1 , β1 )
                                                1)


                                         α1                                          β1

                            G2 (α1 , iK2j((α1 ,)β1 ),j22 , (α2H22 ))1 , j2 , β2 )
                                      2 , 2 , α2      i       , β (β

                                         α2                                          β2
                                          .
                                          .                                            .
                                                                                       .
                                          .                                            .
Max Planck Institute Magdeburg                          Thomas Mach, Computing Eigenvalues of Matrices in TTM Format       6/21
Tensor Trains                           PINVIT and Folded Spectrum Method                                    Numerical Results



   Matrix Vector Product in TT and TTM Format
   [Oseledets ’10]


                   T ∈ (Q)TT , M ∈ (Q)TTM ⇒ MT = W ∈ (Q)TT
        W (i1 , i2 , . . . , id ) =                    M(i1 , j1 , i2 , j2 , . . . , id , jd )T (j1 , j2 , . . . , jd )
                                      j1 ,j2 ,...,jd


                                                          j1
                                 G1 (i1 , j1 , αK1 (i1 , (α1 , β1 )) H1 (j1 , β1 )
                                                1)


                                         α1                                          β1

                            G2 (α1 , iK2j((α1 ,)β1 ),j22 , (α2H22 ))1 , j2 , β2 )
                                      2 , 2 , α2      i       , β (β

                                         α2                                          β2
                                          .
                                          .                                            .
                                                                                       .
                                          .                                            .
Max Planck Institute Magdeburg                          Thomas Mach, Computing Eigenvalues of Matrices in TTM Format       6/21
Tensor Trains                           PINVIT and Folded Spectrum Method                                    Numerical Results



   Matrix Vector Product in TT and TTM Format
   [Oseledets ’10]


                   T ∈ (Q)TT , M ∈ (Q)TTM ⇒ MT = W ∈ (Q)TT
        W (i1 , i2 , . . . , id ) =                    M(i1 , j1 , i2 , j2 , . . . , id , jd )T (j1 , j2 , . . . , jd )
                                      j1 ,j2 ,...,jd


                                                          j1
                                 G1 (i1 , j1 , αK1 (i1 , (α1 , β1 )) H1 (j1 , β1 )
                                                1)


                                                           (α1 , β1 )

                            G2 (α1 , iK2j((α1 ,)β1 ),j22 , (α2H22 ))1 , j2 , β2 )
                                      2 , 2 , α2      i       , β (β

                                         α2                                          β2
                                          .
                                          .                                            .
                                                                                       .
                                          .                                            .
Max Planck Institute Magdeburg                          Thomas Mach, Computing Eigenvalues of Matrices in TTM Format       6/21
Tensor Trains                           PINVIT and Folded Spectrum Method                                    Numerical Results



   Matrix Vector Product in TT and TTM Format
   [Oseledets ’10]


                   T ∈ (Q)TT , M ∈ (Q)TTM ⇒ MT = W ∈ (Q)TT
        W (i1 , i2 , . . . , id ) =                    M(i1 , j1 , i2 , j2 , . . . , id , jd )T (j1 , j2 , . . . , jd )
                                      j1 ,j2 ,...,jd


                                                          j1
                                 G1 (i1 , j1 , αK1 (i1 , (α1 , β1 )) H1 (j1 , β1 )
                                                1)


                                                                        o       n
                                                                    ati
                                                           (α1 , β1 )
                                                                  c
                                                   t run
                            G2 (α1 , iK2j((α1 ,)β1 ),j22 , (α2H22 ))1 , j2 , β2 )
                                      2 , 2 , α2      i       , β (β

                                         +
                                         α2                                          β2
                                          .
                                          .                                            .
                                                                                       .
                                          .                                            .
Max Planck Institute Magdeburg                          Thomas Mach, Computing Eigenvalues of Matrices in TTM Format       6/21
Tensor Trains                   PINVIT and Folded Spectrum Method                           Numerical Results



   Inversion of a Matrix in TTM Format
   [Schulz 1933, Oseledets ’10]


        Newton-Schulz Iteration
                                  Xk+1 = 2Xk − Xk MXk

        X0 initial approximation to M −1 with,

                                       ρ(MX0 − I ) < 1.
                                                                           2
        If M is symmetric, positive definite, then X0 =                    M        I is an
                                                                               2
        admissible initial approximation.

                                      Hk+1 =           I − Yk
                                      Yk+1 =           Yk Hk+1
                                      Xk+1 =           Hk+1 Xk


Max Planck Institute Magdeburg            Thomas Mach, Computing Eigenvalues of Matrices in TTM Format    7/21
Tensor Trains                   PINVIT and Folded Spectrum Method                           Numerical Results



   Inversion of a Matrix in TTM Format
   [Schulz 1933, Oseledets ’10]


        Newton-Schulz Iteration
                                  Xk+1 = 2Xk − Xk MXk

        X0 initial approximation to M −1 with,

                                       ρ(MX0 − I ) < 1.
                                                                           2
        If M is symmetric, positive definite, then X0 =                    M        I is an
                                                                               2
        admissible initial approximation.

                                      Hk+1 = T (I − Yk , )
                                      Yk+1 = T (Yk Hk+1 , )
                                      Xk+1 = T (Hk+1 Xk , )


Max Planck Institute Magdeburg            Thomas Mach, Computing Eigenvalues of Matrices in TTM Format    7/21
Tensor Trains                           PINVIT and Folded Spectrum Method                           Numerical Results



   Eigenvalue Problem

        Problem Setting
                                 d   d
        Assume M ∈ R2 ×2 is given in TTM. M is sym. pos. definite.
                                                   d
        Compute eigenvalue λ and eigenvector v ∈ R2 of M.
                                                   d
                                               R2        Mv = λv

                 quantum molecular dynamics
                 [Lebedeva ’11]




Max Planck Institute Magdeburg                    Thomas Mach, Computing Eigenvalues of Matrices in TTM Format    8/21
Tensor Trains                   PINVIT and Folded Spectrum Method                           Numerical Results



   Preconditioned Inverse Iteration
   [Knyazev, Neymeyr, et al.]


        Definition
        The function
                                                            x T Mx
                                 µ(x) = µ(x, M) =
                                                             xT x
        is called the Rayleigh quotient.




Max Planck Institute Magdeburg            Thomas Mach, Computing Eigenvalues of Matrices in TTM Format    9/21
Tensor Trains                   PINVIT and Folded Spectrum Method                           Numerical Results



   Preconditioned Inverse Iteration
   [Knyazev, Neymeyr, et al.]


        Definition
        The function
                                                            x T Mx
                                 µ(x) = µ(x, M) =
                                                             xT x
        is called the Rayleigh quotient.


        Minimize the Rayleigh quotient by a gradient method:
                                                 2
             xi+1 := xi − α µ(xi ),     µ(x) = T (Mx − xµ(x)) ,
                                                x x




Max Planck Institute Magdeburg            Thomas Mach, Computing Eigenvalues of Matrices in TTM Format    9/21
Tensor Trains                   PINVIT and Folded Spectrum Method                           Numerical Results



   Preconditioned Inverse Iteration
   [Knyazev, Neymeyr, et al.]




                                 Residual r (x) = Mx − xµ(x).




        Minimize the Rayleigh quotient by a gradient method:
                                                 2
             xi+1 := xi − α µ(xi ),     µ(x) = T (Mx − xµ(x)) ,
                                                x x




Max Planck Institute Magdeburg            Thomas Mach, Computing Eigenvalues of Matrices in TTM Format    9/21
Tensor Trains                       PINVIT and Folded Spectrum Method                           Numerical Results



   Preconditioned Inverse Iteration
   [Knyazev, Neymeyr, et al.]


        Definition
        The function
                                                                x T Mx
                                     µ(x) = µ(x, M) =
                                                                 xT x
        is called the Rayleigh quotient.


        Minimize the Rayleigh quotient by a gradient method:
                                                 2
             xi+1 := xi − α µ(xi ),     µ(x) = T (Mx − xµ(x)) ,
                                                x x
        + preconditioning ⇒ update equation:
                                 xi+1 := xi − B −1 (Mxi − xi µ(xi )) .

Max Planck Institute Magdeburg                Thomas Mach, Computing Eigenvalues of Matrices in TTM Format    9/21
Tensor Trains                       PINVIT and Folded Spectrum Method                           Numerical Results



   Preconditioned Inverse Iteration
   [Knyazev, Neymeyr, et al.]




          Preconditioned residual B −1 r (x) = B −1 (Mx − xµ(x)).
          ⇒ inexact Newton-method




        + preconditioning ⇒ update equation:
                                 xi+1 := xi − B −1 (Mxi − xi µ(xi )) .

Max Planck Institute Magdeburg                Thomas Mach, Computing Eigenvalues of Matrices in TTM Format    9/21
Tensor Trains                       PINVIT and Folded Spectrum Method                           Numerical Results



   Preconditioned Inverse Iteration
   [Knyazev, Neymeyr 2009]


                                 xi+1 := xi − B −1 (Mxi − xi µ(xi ))


        If
                 M ∈ Rn×n symmetric positive definite and
                 B −1 approximates the inverse of M, so that

                                          I − B −1 M        M
                                                                ≤ c < 1,

        then Preconditioned INVerse ITeration (PINVIT) converges and
        the number of iterations is independent of n.




Max Planck Institute Magdeburg                Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   10/21
Tensor Trains                   PINVIT and Folded Spectrum Method                           Numerical Results



   Preconditioned Inverse Iteration
   [Knyazev, Neymeyr, et al.]

        The residual

                                     ri = Mxi − xi µ(xi )

        converges to 0, so that

                                              ri   2   <

        is a useful termination criterion.




Max Planck Institute Magdeburg            Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   11/21
Tensor Trains                   PINVIT and Folded Spectrum Method                           Numerical Results



   Algorithm

        The number of iterations is independent of matrix size n = 2d .

        PINVIT(1,s)
        Input: M ∈ Rn×n , X0 ∈ Rn×s (X0 X0 = I , e.g. randomly chosen)
                                         T

        Output: Xp ∈ R n×s , µ ∈ Rs×s , with MX − X µ ≤
                                                p     p

        Approximative inversion B −1 ≈ (M)−1
        R := MX0 − X0 µ, µ = X0 MX0T

        for (i := 1; R F > ; i + +) do
            Xi := Orthogonalize Xi−1 − B −1 R
            R := MXi − Xi µ, µ = XiT MXi
        end




Max Planck Institute Magdeburg            Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   12/21
Tensor Trains                   PINVIT and Folded Spectrum Method                           Numerical Results



   Algorithm

        The number of iterations is independent of matrix size n = 2d .

        PINVIT(1,s)
        Input: M ∈ Rn×n , X0 ∈ Rn×s (X0 X0 = I , e.g. randomly chosen)
                                         T

        Output: Xp ∈ R n×s , µ ∈ Rs×s , with MX − X µ ≤
                                                p     p

        Approximative inversion B −1 ≈ (M)−1
        R := MX0 − X0 µ, µ = X0 MX0T

        for (i := 1; R F > ; i + +) do
            Xi := Orthogonalize Xi−1 − B −1 R
            R := MXi − Xi µ, µ = XiT MXi
        end                    Newton-Schulz iteration:
                               Bk+1 = 2Bk − Bk MBk
                               [Oseledets ’10] for TTM


Max Planck Institute Magdeburg            Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   12/21
Tensor Trains                   PINVIT and Folded Spectrum Method                           Numerical Results



   Algorithm

        The number of iterations is independent of matrix size n = 2d .

        PINVIT(1,s)
        Input: M ∈ Rn×n , X0 ∈ Rn×s (X0 X0 = I , e.g. randomly chosen)
                                         T

        Output: Xp ∈ R n×s , µ ∈ Rs×s , with MX − X µ ≤
                                                p     p

        Approximative inversion B −1 ≈ (M)−1
        R := MX0 − X0 µ, µ = X0 MX0T

        for (i := 1; R F > ; i + +) do
            Xi := Orthogonalize Xi−1 − B −1 R
            R := MXi − Xi µ, µ = XiT MXi
        end

                                           TTM-TT products


Max Planck Institute Magdeburg            Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   12/21
Tensor Trains                   PINVIT and Folded Spectrum Method                           Numerical Results



   Folded Spectrum Method

                             How to find λi ?
                     If i = n − s with s < O(log n),
                    use subspace version PINVIT(·,s).


                                                        ...
                 0λn λn−1 λn−2                                                           λ1




Max Planck Institute Magdeburg            Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   13/21
Tensor Trains                         PINVIT and Folded Spectrum Method                           Numerical Results



   Folded Spectrum Method

                                How to find λi ?
                         If i = n − s with s    log n?



                                 ...                                           ...
                 0λn                        λi+1 λi          λi−1                              λ1




Max Planck Institute Magdeburg                  Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   13/21
Tensor Trains                         PINVIT and Folded Spectrum Method                           Numerical Results



   Folded Spectrum Method

                                How to find λi ?
                         If i = n − s with s    log n,
                              shift with σ near λi .


                                 ...                                           ...
                 0λn                        λi+1 λi          λi−1                              λ1
                                                  σ




Max Planck Institute Magdeburg                  Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   13/21
Tensor Trains                         PINVIT and Folded Spectrum Method                           Numerical Results



   Folded Spectrum Method

                                How to find λi ?
                         If i = n − s with s    log n,
                              shift with σ near λi .


                                 ...                                           ...
                 0λn                        λi+1 λi          λi−1                              λ1
                                                  σ



                 But (M − σI) is not positive definite.
Max Planck Institute Magdeburg                  Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   13/21
Tensor Trains                   PINVIT and Folded Spectrum Method                           Numerical Results



   Folded Spectrum Method

        Folded Spectrum Method                   [Wang, Zunger 1994, Morgan 1991]


                                     Mσ = (M − σI)2

        Mσ is s.p.d., if M is s.p.d. and σ = λi .
        Assume all eigenvalues of Mσ are simple.

                         Mv = λv ⇔ Mσ v = (M − σI)2 v
                                               = M 2 v − 2σMv + σ 2 v
                                               = λ2 v − 2σλv + σ 2 v
                                               = (λ − σ)2 v


Max Planck Institute Magdeburg            Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   14/21
Tensor Trains                   PINVIT and Folded Spectrum Method                           Numerical Results



   Folded Spectrum Method

        Folded Spectrum Method                   [Wang, Zunger 1994, Morgan 1991]


                                     Mσ = (M − σI)2

        Mσ is s.p.d., if M is s.p.d. and σ = λi .
        Assume all eigenvalues of Mσ are simple.

        (2, v2 ), (3, v3 ), σ = 2.5 ⇒ Mσ has eigenvalue 0.25 of
        multiplicity 2.




Max Planck Institute Magdeburg            Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   14/21
Tensor Trains                   PINVIT and Folded Spectrum Method                           Numerical Results



   Folded Spectrum Method

        Folded Spectrum Method                   [Wang, Zunger 1994, Morgan 1991]


                                     Mσ = (M − σI)2

        Mσ is s.p.d., if M is s.p.d. and σ = λi .
        Assume all eigenvalues of Mσ are simple.

        (2, v2 ), (3, v3 ), σ = 2.5 ⇒ Mσ has eigenvalue 0.25 of
        multiplicity 2.
        PINVIT computes v ∈ span(v2 , v3 ). ⇒ v T Mv /v T v ∈ [2, 3]




Max Planck Institute Magdeburg            Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   14/21
Tensor Trains                   PINVIT and Folded Spectrum Method                           Numerical Results



   Folded Spectrum Method

        Folded Spectrum Method                   [Wang, Zunger 1994, Morgan 1991]


                                     Mσ = (M − σI)2

        Mσ is s.p.d., if M is s.p.d. and σ = λi .
        Assume all eigenvalues of Mσ are simple.

        (2, v2 ), (3, v3 ), σ = 2.5 ⇒ Mσ has eigenvalue 0.25 of
        multiplicity 2.
        PINVIT computes v ∈ span(v2 , v3 ). ⇒ v T Mv /v T v ∈ [2, 3]
        Use PINVIT to compute V ∈ Rn×2
        ⇒ Λ(V T MV /V T V ) = {2, 3}


Max Planck Institute Magdeburg            Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   14/21
Tensor Trains                   PINVIT and Folded Spectrum Method                            Numerical Results



   Folded Spectrum Method
           1     Choose σ.
           2     Compute
                                       2
                  a) Mσ := (M − σI) and
                  b) B −1 :≈ Mσ .
                              −1

           3     Use PINVIT to find the smallest eigenpair (µσ , v ) of Mσ .
           4     Compute µ := v T Mv /v T v .
        (µ, v ) is the nearest eigenpair to σ.




Max Planck Institute Magdeburg             Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   15/21
Tensor Trains                   PINVIT and Folded Spectrum Method                            Numerical Results



   Folded Spectrum Method
           1     Choose σ.
           2     Compute
                                       2
                  a) Mσ := (M − σI) and
                  b) B −1 :≈ Mσ .
                              −1

           3     Use PINVIT to find the smallest eigenpair (µσ , v ) of Mσ .
           4     Compute µ := v T Mv /v T v .
        (µ, v ) is the nearest eigenpair to σ.

        In TTM M can be shifted, squared and inverted with
        reasonable costs.




Max Planck Institute Magdeburg             Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   15/21
Tensor Trains                   PINVIT and Folded Spectrum Method                            Numerical Results



   Folded Spectrum Method
           1     Choose σ.
           2     Compute
                                       2
                  a) Mσ := (M − σI) and
                  b) B −1 :≈ Mσ .
                              −1

           3     Use PINVIT to find the smallest eigenpair (µσ , v ) of Mσ .
           4     Compute µ := v T Mv /v T v .
        (µ, v ) is the nearest eigenpair to σ.

        In TTM M can be shifted, squared and inverted with
        reasonable costs.

        If M is sparse, then squaring and inverting is prohibitive.


Max Planck Institute Magdeburg             Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   15/21
Tensor Trains                   PINVIT and Folded Spectrum Method                            Numerical Results



   Folded Spectrum Method
           1     Choose σ.
           2     Compute
                                       2
                  a) Mσ := (M − σI) and
                  b) B −1 :≈ Mσ .
                              −1

           3     Use PINVIT to find the smallest eigenpair (µσ , v ) of Mσ .
           4     Compute µ := v T Mv /v T v .
        (µ, v ) is the nearest eigenpair to σ.

        In TTM M can be shifted, squared and inverted with
        reasonable costs.

        If M is sparse, then squaring and inverting is prohibitive.


Max Planck Institute Magdeburg             Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   15/21
Tensor Trains                   PINVIT and Folded Spectrum Method                            Numerical Results



   Folded Spectrum Method
           1     Choose σ.
           2     Compute
                                       2
                  a) Mσ := (M − σI) and
                  b) B −1 :≈ Mσ .
                              −1

           3     Use PINVIT to find the smallest eigenpair (µσ , v ) of Mσ .
           4     Compute µ := v T Mv /v T v .
        (µ, v ) is the nearest eigenpair to σ.

        In TTM M can be shifted, squared and inverted with
        reasonable costs.

        If M is sparse, then squaring and inverting is prohibitive.


Max Planck Institute Magdeburg             Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   15/21
Tensor Trains                   PINVIT and Folded Spectrum Method                           Numerical Results



   Drawbacks


                 The condition number of (M − σI )2 is larger.
                                          −1
                 ⇒ The computation of Mσ is more expensive.
                      −1
                 ⇒ Mσ has larger local ranks.
                      −1
                 ⇒ Mσ v is more expensive.




Max Planck Institute Magdeburg            Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   16/21
Tensor Trains                   PINVIT and Folded Spectrum Method                           Numerical Results



   Drawbacks


                 The condition number of (M − σI )2 is larger.
                                          −1
                 ⇒ The computation of Mσ is more expensive.
                      −1
                 ⇒ Mσ has larger local ranks.
                      −1
                 ⇒ Mσ v is more expensive.

                 Multiple eigenvalues of Mσ may lead to
                 incomplete subspace information.
                 ⇒ v T Mv /v T v does not approximate λ.


Max Planck Institute Magdeburg            Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   16/21
Tensor Trains                   PINVIT and Folded Spectrum Method                           Numerical Results



   Numerical Results




                                 Numerical Results




Max Planck Institute Magdeburg            Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   17/21
Tensor Trains                   PINVIT and Folded Spectrum Method                           Numerical Results



   TT-Toolbox 2.1
   [Oseledets et al. ’09–’11]




          We use TT-Toolbox 2.1 for MATLAB from I.V. Oseledets at al.




Max Planck Institute Magdeburg            Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   18/21
Tensor Trains                         PINVIT and Folded Spectrum Method                           Numerical Results



   2D Laplace
                                                                   d )2 ×(2d )2
        M = α∆2 = α (∆1 ⊗ I + I ⊗ ∆1 ) ∈ R(2                                      , with
        ∆1 = tridiag([−1, 2, −1]).
        without shift, 3 smallest eigenvalues
                   n              d    tinv in s      tPINVIT in s         # it.           error
                  64              3       0.449             1.577           17         1.2230 e−07
                 256              4       0.345             1.376           18         1.1450 e−07
               1 024              5       0.997             3.236           27         2.7432 e−07
               4 096              6       2.347             8.172           19         1.8911 e−07
              16 384              7       4.789            19.885           16         6.4020 e−08
              65 536              8     11.895             43.717           20         1.0688 e−07
             262 144              9     19.076             63.727           20         4.1304 e−09
           1 048 576             10     29.865             99.808           20         3.7722 e−09
           4 194 304             11   110.712*            331.059           27         5.8789 e−10
          16 777 216             12   165.560*            439.341           23         4.5062 e−09
          67 108 864             13   240.226*            587.796           26         8.9795 e−09
Max Planck Institute Magdeburg                  Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   19/21
Tensor Trains                        PINVIT and Folded Spectrum Method                            Numerical Results



   2D Laplace
                                                                   d )2 ×(2d )2
        M = α∆2 = α (∆1 ⊗ I + I ⊗ ∆1 ) ∈ R(2                                      , with
        ∆1 = tridiag([−1, 2, −1]).


        with shift σ = 203.3139, folded spectrum method, 4 eigenvalues

                  n       d         tinv in s      tPINVIT in s           # it.         error
                 64       3            0.796             0.843              8       5.5601 e−10
                256       4            3.360             3.053             45       2.9268 e−09
              1 024       5          22.659              4.581             20       1.1411 e−10
              4 096       6          60.755             32.264             31       2.5295 e−12
             16 384       7        411.165*             80.827             28       6.3665 e−12
             65 536       8      1 808.302*            344.696             27       2.5835 e−11



Max Planck Institute Magdeburg                  Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   19/21
Tensor Trains                        PINVIT and Folded Spectrum Method                           Numerical Results



   3D Laplace
        M = α∆3 = α (∆1 ⊗ I ⊗ I + I ⊗ ∆1 ⊗ I + I ⊗ I ⊗ ∆1 ) ,
               d 3   d 3
        M ∈ R(2 ) ×(2 ) .

        without shift, 4 smallest eigenvalues

                     n           d   tinv in s     tPINVIT in s           # it.         error
                    64           2      0.219            4.518             30       2.4762 e−07
                   512           3      0.561            6.742             27       2.9333 e−07
                 4 096           4      1.109           23.715             24       1.5441 e−07
                32 768           5      7.197           99.543             28       9.1209 e−09
               262 144           6    11.052           249.084             24       1.9956 e−08
             2 097 152           7    20.893           923.874             26       1.6577 e−07
            16 777 216           8    34.937         5 131.664             34       1.1977 e−08



Max Planck Institute Magdeburg                 Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   19/21
Tensor Trains                        PINVIT and Folded Spectrum Method                           Numerical Results



   3D Laplace
        M = α∆3 = α (∆1 ⊗ I ⊗ I + I ⊗ ∆1 ⊗ I + I ⊗ I ⊗ ∆1 ) ,
               d 3   d 3
        M ∈ R(2 ) ×(2 ) .


        with shift σ = 230.6195, folded spectrum method, 6 eigenvalues


                n        d           tinv in s      tPINVIT in s          # it.           error
              512        3            14.300             45.979            29         2.8479 e−07
            4 096        4           137.502            293.154            54         1.8060 e−08
           32 768        5        1 952.980*          1 223.395            19         1.0971 e−11
          262 144        6       37 149.998*       out of mem1



            1
                 canceled after 60 hours while using > 300 GB RAM
Max Planck Institute Magdeburg                 Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   19/21
Tensor Trains                       PINVIT and Folded Spectrum Method                           Numerical Results



   4D Laplace
        M = α∆4 = α (∆2 ⊗ I + I ⊗ ∆2 ) ,
               d 4   d 4
        M ∈ R(2 ) ×(2 )


        without shift, 5 smallest eigenvalues

                     n           d   tinv in s     tPINVIT in s          # it.          error
                   256           2      0.240            9.265            36        2.5997 e−07
                 4 096           3      0.873           23.993            28        1.7104 e−07
                65 536           4      1.436          119.348            28        5.9876 e−08
             1 048 576           5      5.975          497.812            32        2.2100 e−08
            16 777 216           6    12.655         1 710.326            31        7.9299 e−09
           268 435 456           7    23.628         7 898.374            41        5.1963 e−10



Max Planck Institute Magdeburg                Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   20/21
Tensor Trains                   PINVIT and Folded Spectrum Method                           Numerical Results



   Conclusions
                 Finding the eigenvalues by PINVIT is cheap and storage
                 efficient.




Max Planck Institute Magdeburg            Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   21/21
Tensor Trains                   PINVIT and Folded Spectrum Method                           Numerical Results



   Conclusions
                 Finding the eigenvalues by PINVIT is cheap and storage
                 efficient.
                 The folded spectrum method enables us to compute inner
                 eigenvalues, too.




Max Planck Institute Magdeburg            Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   21/21
Tensor Trains                   PINVIT and Folded Spectrum Method                           Numerical Results



   Conclusions
                 Finding the eigenvalues by PINVIT is cheap and storage
                 efficient.
                 The folded spectrum method enables us to compute inner
                 eigenvalues, too.
                 The use of the folded spectrum method leads to not well
                 conditioned problems.




Max Planck Institute Magdeburg            Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   21/21
Tensor Trains                   PINVIT and Folded Spectrum Method                           Numerical Results



   Conclusions
                 Finding the eigenvalues by PINVIT is cheap and storage
                 efficient.
                 The folded spectrum method enables us to compute inner
                 eigenvalues, too.
                 The use of the folded spectrum method leads to not well
                 conditioned problems.
                 Choose the shift and the subspace dimension carefully.




Max Planck Institute Magdeburg            Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   21/21
Tensor Trains                   PINVIT and Folded Spectrum Method                           Numerical Results



   Conclusions
                 Finding the eigenvalues by PINVIT is cheap and storage
                 efficient.
                 The folded spectrum method enables us to compute inner
                 eigenvalues, too.
                 The use of the folded spectrum method leads to not well
                 conditioned problems.
                 Choose the shift and the subspace dimension carefully.




                         Thank you for your attention.


Max Planck Institute Magdeburg            Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   21/21

More Related Content

What's hot

Multi-Objective Optimization Algorithms for Finite Element Model Updating. Nt...
Multi-Objective Optimization Algorithms for Finite Element Model Updating. Nt...Multi-Objective Optimization Algorithms for Finite Element Model Updating. Nt...
Multi-Objective Optimization Algorithms for Finite Element Model Updating. Nt...
Evangelos Ntotsios
 
Adaptive dynamic programming algorithm for uncertain nonlinear switched systems
Adaptive dynamic programming algorithm for uncertain nonlinear switched systemsAdaptive dynamic programming algorithm for uncertain nonlinear switched systems
Adaptive dynamic programming algorithm for uncertain nonlinear switched systems
International Journal of Power Electronics and Drive Systems
 
Random Matrix Theory and Machine Learning - Part 2
Random Matrix Theory and Machine Learning - Part 2Random Matrix Theory and Machine Learning - Part 2
Random Matrix Theory and Machine Learning - Part 2
Fabian Pedregosa
 
Bouguet's MatLab Camera Calibration Toolbox
Bouguet's MatLab Camera Calibration ToolboxBouguet's MatLab Camera Calibration Toolbox
Bouguet's MatLab Camera Calibration Toolbox
Yuji Oyamada
 
Random Matrix Theory and Machine Learning - Part 4
Random Matrix Theory and Machine Learning - Part 4Random Matrix Theory and Machine Learning - Part 4
Random Matrix Theory and Machine Learning - Part 4
Fabian Pedregosa
 
Random Matrix Theory and Machine Learning - Part 3
Random Matrix Theory and Machine Learning - Part 3Random Matrix Theory and Machine Learning - Part 3
Random Matrix Theory and Machine Learning - Part 3
Fabian Pedregosa
 
State Space Model
State Space ModelState Space Model
State Space ModelCdiscount
 
Random Matrix Theory and Machine Learning - Part 1
Random Matrix Theory and Machine Learning - Part 1Random Matrix Theory and Machine Learning - Part 1
Random Matrix Theory and Machine Learning - Part 1
Fabian Pedregosa
 
Dynamic shear stress evaluation on micro turning tool using photoelasticity
Dynamic shear stress evaluation on micro turning tool using photoelasticityDynamic shear stress evaluation on micro turning tool using photoelasticity
Dynamic shear stress evaluation on micro turning tool using photoelasticitySoumen Mandal
 
Balanced homodyne detection
Balanced homodyne detectionBalanced homodyne detection
Balanced homodyne detectionwtyru1989
 
Adaptive dynamic programming for control
Adaptive dynamic programming for controlAdaptive dynamic programming for control
Adaptive dynamic programming for controlSpringer
 
Bouguet's MatLab Camera Calibration Toolbox for Stereo Camera
Bouguet's MatLab Camera Calibration Toolbox for Stereo CameraBouguet's MatLab Camera Calibration Toolbox for Stereo Camera
Bouguet's MatLab Camera Calibration Toolbox for Stereo Camera
Yuji Oyamada
 
Accelerating Machine Learning Algorithms by integrating GPUs into MapReduce C...
Accelerating Machine Learning Algorithms by integrating GPUs into MapReduce C...Accelerating Machine Learning Algorithms by integrating GPUs into MapReduce C...
Accelerating Machine Learning Algorithms by integrating GPUs into MapReduce C...sergherrero
 
Tele4653 l4
Tele4653 l4Tele4653 l4
Tele4653 l4Vin Voro
 
Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...
Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...
Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...
Shizuoka Inst. Science and Tech.
 
Fdtd
FdtdFdtd

What's hot (18)

Multi-Objective Optimization Algorithms for Finite Element Model Updating. Nt...
Multi-Objective Optimization Algorithms for Finite Element Model Updating. Nt...Multi-Objective Optimization Algorithms for Finite Element Model Updating. Nt...
Multi-Objective Optimization Algorithms for Finite Element Model Updating. Nt...
 
Adaptive dynamic programming algorithm for uncertain nonlinear switched systems
Adaptive dynamic programming algorithm for uncertain nonlinear switched systemsAdaptive dynamic programming algorithm for uncertain nonlinear switched systems
Adaptive dynamic programming algorithm for uncertain nonlinear switched systems
 
Random Matrix Theory and Machine Learning - Part 2
Random Matrix Theory and Machine Learning - Part 2Random Matrix Theory and Machine Learning - Part 2
Random Matrix Theory and Machine Learning - Part 2
 
Bouguet's MatLab Camera Calibration Toolbox
Bouguet's MatLab Camera Calibration ToolboxBouguet's MatLab Camera Calibration Toolbox
Bouguet's MatLab Camera Calibration Toolbox
 
Random Matrix Theory and Machine Learning - Part 4
Random Matrix Theory and Machine Learning - Part 4Random Matrix Theory and Machine Learning - Part 4
Random Matrix Theory and Machine Learning - Part 4
 
Random Matrix Theory and Machine Learning - Part 3
Random Matrix Theory and Machine Learning - Part 3Random Matrix Theory and Machine Learning - Part 3
Random Matrix Theory and Machine Learning - Part 3
 
State Space Model
State Space ModelState Space Model
State Space Model
 
Random Matrix Theory and Machine Learning - Part 1
Random Matrix Theory and Machine Learning - Part 1Random Matrix Theory and Machine Learning - Part 1
Random Matrix Theory and Machine Learning - Part 1
 
Future CMB Experiments
Future CMB ExperimentsFuture CMB Experiments
Future CMB Experiments
 
Dynamic shear stress evaluation on micro turning tool using photoelasticity
Dynamic shear stress evaluation on micro turning tool using photoelasticityDynamic shear stress evaluation on micro turning tool using photoelasticity
Dynamic shear stress evaluation on micro turning tool using photoelasticity
 
Balanced homodyne detection
Balanced homodyne detectionBalanced homodyne detection
Balanced homodyne detection
 
Adaptive dynamic programming for control
Adaptive dynamic programming for controlAdaptive dynamic programming for control
Adaptive dynamic programming for control
 
Ps02 cmth03 unit 1
Ps02 cmth03 unit 1Ps02 cmth03 unit 1
Ps02 cmth03 unit 1
 
Bouguet's MatLab Camera Calibration Toolbox for Stereo Camera
Bouguet's MatLab Camera Calibration Toolbox for Stereo CameraBouguet's MatLab Camera Calibration Toolbox for Stereo Camera
Bouguet's MatLab Camera Calibration Toolbox for Stereo Camera
 
Accelerating Machine Learning Algorithms by integrating GPUs into MapReduce C...
Accelerating Machine Learning Algorithms by integrating GPUs into MapReduce C...Accelerating Machine Learning Algorithms by integrating GPUs into MapReduce C...
Accelerating Machine Learning Algorithms by integrating GPUs into MapReduce C...
 
Tele4653 l4
Tele4653 l4Tele4653 l4
Tele4653 l4
 
Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...
Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...
Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...
 
Fdtd
FdtdFdtd
Fdtd
 

Similar to Computing Inner Eigenvalues of Matrices in Tensor Train Matrix Format

On problem-of-parameters-identification-of-dynamic-object
On problem-of-parameters-identification-of-dynamic-objectOn problem-of-parameters-identification-of-dynamic-object
On problem-of-parameters-identification-of-dynamic-objectCemal Ardil
 
Accelerating Pseudo-Marginal MCMC using Gaussian Processes
Accelerating Pseudo-Marginal MCMC using Gaussian ProcessesAccelerating Pseudo-Marginal MCMC using Gaussian Processes
Accelerating Pseudo-Marginal MCMC using Gaussian Processes
Matt Moores
 
Ray : modeling dynamic systems
Ray : modeling dynamic systemsRay : modeling dynamic systems
Ray : modeling dynamic systems
Houw Liong The
 
002 ray modeling dynamic systems
002 ray modeling dynamic systems002 ray modeling dynamic systems
002 ray modeling dynamic systems
Institute of Technology Telkom
 
002 ray modeling dynamic systems
002 ray modeling dynamic systems002 ray modeling dynamic systems
002 ray modeling dynamic systems
Institute of Technology Telkom
 
Optimum tuning of pid controller for a permanent magnet brushless dc motor
Optimum tuning of pid controller for a permanent magnet brushless dc motorOptimum tuning of pid controller for a permanent magnet brushless dc motor
Optimum tuning of pid controller for a permanent magnet brushless dc motorIAEME Publication
 
Optimum tuning of pid controller for a permanent magnet brushless dc motor
Optimum tuning of pid controller for a permanent magnet brushless dc motorOptimum tuning of pid controller for a permanent magnet brushless dc motor
Optimum tuning of pid controller for a permanent magnet brushless dc motorIAEME Publication
 
Presentation.pdf
Presentation.pdfPresentation.pdf
Presentation.pdf
Chiheb Ben Hammouda
 
Bayesian Inference and Uncertainty Quantification for Inverse Problems
Bayesian Inference and Uncertainty Quantification for Inverse ProblemsBayesian Inference and Uncertainty Quantification for Inverse Problems
Bayesian Inference and Uncertainty Quantification for Inverse Problems
Matt Moores
 
New data structures and algorithms for \\post-processing large data sets and ...
New data structures and algorithms for \\post-processing large data sets and ...New data structures and algorithms for \\post-processing large data sets and ...
New data structures and algorithms for \\post-processing large data sets and ...
Alexander Litvinenko
 
Index Determination in DAEs using the Library indexdet and the ADOL-C Package...
Index Determination in DAEs using the Library indexdet and the ADOL-C Package...Index Determination in DAEs using the Library indexdet and the ADOL-C Package...
Index Determination in DAEs using the Library indexdet and the ADOL-C Package...
Dagmar Monett
 
Inessa Gracheva and Andrey Kopylov - Image Processing Algorithms with Struct...
Inessa Gracheva and  Andrey Kopylov - Image Processing Algorithms with Struct...Inessa Gracheva and  Andrey Kopylov - Image Processing Algorithms with Struct...
Inessa Gracheva and Andrey Kopylov - Image Processing Algorithms with Struct...
AIST
 
job scheduling
job schedulingjob scheduling
job scheduling
Arpit Tiwari
 
Fourier_Pricing_ICCF_2022.pdf
Fourier_Pricing_ICCF_2022.pdfFourier_Pricing_ICCF_2022.pdf
Fourier_Pricing_ICCF_2022.pdf
Chiheb Ben Hammouda
 
SMC^2: an algorithm for sequential analysis of state-space models
SMC^2: an algorithm for sequential analysis of state-space modelsSMC^2: an algorithm for sequential analysis of state-space models
SMC^2: an algorithm for sequential analysis of state-space models
Pierre Jacob
 
Joint blind calibration and time-delay estimation for multiband ranging
Joint blind calibration and time-delay estimation for multiband rangingJoint blind calibration and time-delay estimation for multiband ranging
Joint blind calibration and time-delay estimation for multiband ranging
Tarik Kazaz
 
KAUST_talk_short.pdf
KAUST_talk_short.pdfKAUST_talk_short.pdf
KAUST_talk_short.pdf
Chiheb Ben Hammouda
 
MCQMC 2020 talk: Importance Sampling for a Robust and Efficient Multilevel Mo...
MCQMC 2020 talk: Importance Sampling for a Robust and Efficient Multilevel Mo...MCQMC 2020 talk: Importance Sampling for a Robust and Efficient Multilevel Mo...
MCQMC 2020 talk: Importance Sampling for a Robust and Efficient Multilevel Mo...
Chiheb Ben Hammouda
 
Tucker tensor analysis of Matern functions in spatial statistics
Tucker tensor analysis of Matern functions in spatial statistics Tucker tensor analysis of Matern functions in spatial statistics
Tucker tensor analysis of Matern functions in spatial statistics
Alexander Litvinenko
 

Similar to Computing Inner Eigenvalues of Matrices in Tensor Train Matrix Format (20)

On problem-of-parameters-identification-of-dynamic-object
On problem-of-parameters-identification-of-dynamic-objectOn problem-of-parameters-identification-of-dynamic-object
On problem-of-parameters-identification-of-dynamic-object
 
Accelerating Pseudo-Marginal MCMC using Gaussian Processes
Accelerating Pseudo-Marginal MCMC using Gaussian ProcessesAccelerating Pseudo-Marginal MCMC using Gaussian Processes
Accelerating Pseudo-Marginal MCMC using Gaussian Processes
 
Ray : modeling dynamic systems
Ray : modeling dynamic systemsRay : modeling dynamic systems
Ray : modeling dynamic systems
 
002 ray modeling dynamic systems
002 ray modeling dynamic systems002 ray modeling dynamic systems
002 ray modeling dynamic systems
 
002 ray modeling dynamic systems
002 ray modeling dynamic systems002 ray modeling dynamic systems
002 ray modeling dynamic systems
 
Optimum tuning of pid controller for a permanent magnet brushless dc motor
Optimum tuning of pid controller for a permanent magnet brushless dc motorOptimum tuning of pid controller for a permanent magnet brushless dc motor
Optimum tuning of pid controller for a permanent magnet brushless dc motor
 
Optimum tuning of pid controller for a permanent magnet brushless dc motor
Optimum tuning of pid controller for a permanent magnet brushless dc motorOptimum tuning of pid controller for a permanent magnet brushless dc motor
Optimum tuning of pid controller for a permanent magnet brushless dc motor
 
Presentation.pdf
Presentation.pdfPresentation.pdf
Presentation.pdf
 
Bayesian Inference and Uncertainty Quantification for Inverse Problems
Bayesian Inference and Uncertainty Quantification for Inverse ProblemsBayesian Inference and Uncertainty Quantification for Inverse Problems
Bayesian Inference and Uncertainty Quantification for Inverse Problems
 
New data structures and algorithms for \\post-processing large data sets and ...
New data structures and algorithms for \\post-processing large data sets and ...New data structures and algorithms for \\post-processing large data sets and ...
New data structures and algorithms for \\post-processing large data sets and ...
 
Index Determination in DAEs using the Library indexdet and the ADOL-C Package...
Index Determination in DAEs using the Library indexdet and the ADOL-C Package...Index Determination in DAEs using the Library indexdet and the ADOL-C Package...
Index Determination in DAEs using the Library indexdet and the ADOL-C Package...
 
Inessa Gracheva and Andrey Kopylov - Image Processing Algorithms with Struct...
Inessa Gracheva and  Andrey Kopylov - Image Processing Algorithms with Struct...Inessa Gracheva and  Andrey Kopylov - Image Processing Algorithms with Struct...
Inessa Gracheva and Andrey Kopylov - Image Processing Algorithms with Struct...
 
job scheduling
job schedulingjob scheduling
job scheduling
 
Fourier_Pricing_ICCF_2022.pdf
Fourier_Pricing_ICCF_2022.pdfFourier_Pricing_ICCF_2022.pdf
Fourier_Pricing_ICCF_2022.pdf
 
SMC^2: an algorithm for sequential analysis of state-space models
SMC^2: an algorithm for sequential analysis of state-space modelsSMC^2: an algorithm for sequential analysis of state-space models
SMC^2: an algorithm for sequential analysis of state-space models
 
Joint blind calibration and time-delay estimation for multiband ranging
Joint blind calibration and time-delay estimation for multiband rangingJoint blind calibration and time-delay estimation for multiband ranging
Joint blind calibration and time-delay estimation for multiband ranging
 
KAUST_talk_short.pdf
KAUST_talk_short.pdfKAUST_talk_short.pdf
KAUST_talk_short.pdf
 
MCQMC 2020 talk: Importance Sampling for a Robust and Efficient Multilevel Mo...
MCQMC 2020 talk: Importance Sampling for a Robust and Efficient Multilevel Mo...MCQMC 2020 talk: Importance Sampling for a Robust and Efficient Multilevel Mo...
MCQMC 2020 talk: Importance Sampling for a Robust and Efficient Multilevel Mo...
 
Tucker tensor analysis of Matern functions in spatial statistics
Tucker tensor analysis of Matern functions in spatial statistics Tucker tensor analysis of Matern functions in spatial statistics
Tucker tensor analysis of Matern functions in spatial statistics
 
Chapter 2
Chapter 2Chapter 2
Chapter 2
 

More from Thomas Mach

Fast and backward stable computation of roots of polynomials
Fast and backward stable computation of roots of polynomialsFast and backward stable computation of roots of polynomials
Fast and backward stable computation of roots of polynomials
Thomas Mach
 
On Deflations in Extended QR Algorithms
On Deflations in Extended QR AlgorithmsOn Deflations in Extended QR Algorithms
On Deflations in Extended QR AlgorithmsThomas Mach
 
On Deflations in Extended QR Algorithms
On Deflations in Extended QR AlgorithmsOn Deflations in Extended QR Algorithms
On Deflations in Extended QR Algorithms
Thomas Mach
 
ADI for Tensor Structured Equations
ADI for Tensor Structured EquationsADI for Tensor Structured Equations
ADI for Tensor Structured Equations
Thomas Mach
 
Eigenvalues of Symmetrix Hierarchical Matrices
Eigenvalues of Symmetrix Hierarchical MatricesEigenvalues of Symmetrix Hierarchical Matrices
Eigenvalues of Symmetrix Hierarchical Matrices
Thomas Mach
 
ADI for Tensor Structured Equations
ADI for Tensor Structured Equations ADI for Tensor Structured Equations
ADI for Tensor Structured Equations
Thomas Mach
 
Preconditioned Inverse Iteration for Hierarchical Matrices
Preconditioned Inverse Iteration for Hierarchical MatricesPreconditioned Inverse Iteration for Hierarchical Matrices
Preconditioned Inverse Iteration for Hierarchical Matrices
Thomas Mach
 
Preconditioned Inverse Iteration for Hierarchical Matrices
Preconditioned Inverse Iteration for Hierarchical MatricesPreconditioned Inverse Iteration for Hierarchical Matrices
Preconditioned Inverse Iteration for Hierarchical MatricesThomas Mach
 
Hierarchical Matrices: Concept, Application and Eigenvalues
Hierarchical Matrices: Concept, Application and EigenvaluesHierarchical Matrices: Concept, Application and Eigenvalues
Hierarchical Matrices: Concept, Application and EigenvaluesThomas Mach
 

More from Thomas Mach (9)

Fast and backward stable computation of roots of polynomials
Fast and backward stable computation of roots of polynomialsFast and backward stable computation of roots of polynomials
Fast and backward stable computation of roots of polynomials
 
On Deflations in Extended QR Algorithms
On Deflations in Extended QR AlgorithmsOn Deflations in Extended QR Algorithms
On Deflations in Extended QR Algorithms
 
On Deflations in Extended QR Algorithms
On Deflations in Extended QR AlgorithmsOn Deflations in Extended QR Algorithms
On Deflations in Extended QR Algorithms
 
ADI for Tensor Structured Equations
ADI for Tensor Structured EquationsADI for Tensor Structured Equations
ADI for Tensor Structured Equations
 
Eigenvalues of Symmetrix Hierarchical Matrices
Eigenvalues of Symmetrix Hierarchical MatricesEigenvalues of Symmetrix Hierarchical Matrices
Eigenvalues of Symmetrix Hierarchical Matrices
 
ADI for Tensor Structured Equations
ADI for Tensor Structured Equations ADI for Tensor Structured Equations
ADI for Tensor Structured Equations
 
Preconditioned Inverse Iteration for Hierarchical Matrices
Preconditioned Inverse Iteration for Hierarchical MatricesPreconditioned Inverse Iteration for Hierarchical Matrices
Preconditioned Inverse Iteration for Hierarchical Matrices
 
Preconditioned Inverse Iteration for Hierarchical Matrices
Preconditioned Inverse Iteration for Hierarchical MatricesPreconditioned Inverse Iteration for Hierarchical Matrices
Preconditioned Inverse Iteration for Hierarchical Matrices
 
Hierarchical Matrices: Concept, Application and Eigenvalues
Hierarchical Matrices: Concept, Application and EigenvaluesHierarchical Matrices: Concept, Application and Eigenvalues
Hierarchical Matrices: Concept, Application and Eigenvalues
 

Recently uploaded

The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
heathfieldcps1
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
Sandy Millin
 
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXXPhrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
MIRIAMSALINAS13
 
Language Across the Curriculm LAC B.Ed.
Language Across the  Curriculm LAC B.Ed.Language Across the  Curriculm LAC B.Ed.
Language Across the Curriculm LAC B.Ed.
Atul Kumar Singh
 
Francesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptxFrancesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptx
EduSkills OECD
 
Palestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptxPalestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptx
RaedMohamed3
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
Special education needs
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
Mohd Adib Abd Muin, Senior Lecturer at Universiti Utara Malaysia
 
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
Levi Shapiro
 
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
Nguyen Thanh Tu Collection
 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Thiyagu K
 
Instructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxInstructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptx
Jheel Barad
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
Jisc
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
Delapenabediema
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
EugeneSaldivar
 
The approach at University of Liverpool.pptx
The approach at University of Liverpool.pptxThe approach at University of Liverpool.pptx
The approach at University of Liverpool.pptx
Jisc
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
siemaillard
 
Model Attribute Check Company Auto Property
Model Attribute  Check Company Auto PropertyModel Attribute  Check Company Auto Property
Model Attribute Check Company Auto Property
Celine George
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
Jisc
 
Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345
beazzy04
 

Recently uploaded (20)

The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
 
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXXPhrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
 
Language Across the Curriculm LAC B.Ed.
Language Across the  Curriculm LAC B.Ed.Language Across the  Curriculm LAC B.Ed.
Language Across the Curriculm LAC B.Ed.
 
Francesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptxFrancesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptx
 
Palestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptxPalestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptx
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
 
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
 
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
 
Instructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxInstructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptx
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
 
The approach at University of Liverpool.pptx
The approach at University of Liverpool.pptxThe approach at University of Liverpool.pptx
The approach at University of Liverpool.pptx
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
 
Model Attribute Check Company Auto Property
Model Attribute  Check Company Auto PropertyModel Attribute  Check Company Auto Property
Model Attribute Check Company Auto Property
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
 
Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345
 

Computing Inner Eigenvalues of Matrices in Tensor Train Matrix Format

  • 1. GAMM Workshop Applied and Numerical Linear Algebra 2011 September 22, 2011, Bremen Computing Inner Eigenvalues of Matrices in Tensor Train Matrix Format Thomas Mach joint work with Peter Benner Max Planck Institute for Dynamics of Complex Technical Systems Computational Methods in Systems and Control Theory Magdeburg MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 1/21
  • 2. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Outline 1 Tensor Trains 2 PINVIT and Folded Spectrum Method 3 Numerical Results Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 2/21
  • 3. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Tensor Trains [Oseledets, Tyrtyshnikov ’09] d T ∈ Rm Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 3/21
  • 4. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Tensor Trains [Oseledets, Tyrtyshnikov ’09] d T ∈ Rm r T = α=1 U1 (i1 , α)U2 (i2 , α) · · · Ud (id , α), with Uj (·, α) ∈ Rm U1 (i1 , α) U4 (i4 , α) α U2 (i2 , α) U3 (i3 , α) Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 3/21
  • 5. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Tensor Trains [Oseledets, Tyrtyshnikov ’09] d T ∈ Rm r T = α=1 U1 (i1 , α)U2 (i2 , α) · · · Ud (id , α), with Uj (·, α) ∈ Rm r r d T (i1 , i2 , . . . , id ) = α1 =1 · · · αd =1 Gα1 ,...,αd 1 d j=1 Uj (ij , αj ), with G ∈ Rr1 ×···×rd and Uj (·, αj ) ∈ Rm U1 (i1 , α1 ) U3 (i3 , α3 ) α1 α3 U4 (i4 , α4 ) α4 G (α1 , . . . , α4 ) α2 U2 (i2 , α2 ) Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 3/21
  • 6. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Tensor Trains [Oseledets, Tyrtyshnikov ’09] d T ∈ Rm r T = α=1 U1 (i1 , α)U2 (i2 , α) · · · Ud (id , α), with Uj (·, α) ∈ Rm r r d T (i1 , i2 , . . . , id ) = α1 =1 · · · αd =1 Gα1 ,...,αd 1 d j=1 Uj (ij , αj ), with G ∈ Rr1 ×···×rd and Uj (·, αj ) ∈ Rm T (i1 , i2 , . . . , id ) = G1 (i1 , α1 )G2 (α1 , i2 , α2 ) · · · α1 ,...,αd−1 Gd−1 (αd−2 , id−1 , αd−1 )Gd (αd−1 , id ) Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 3/21
  • 7. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Tensor Trains [Oseledets, Tyrtyshnikov ’09] T (i1 , i2 , . . . , id ) = G1 (i1 , α1 )G2 (α1 , i2 , α2 ) · · · α1 ,...,αd−1 Gd−1 (αd−2 , id−1 , αd−1 )Gd (αd−1 , id ) G1 (i1 , α1 ) α1 G2 (α1 , i2 , α2 ) α2 G3 (α2 , i3 , α3 ) α3 ··· αd−1 Gd (αd−1 , id ) Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 4/21
  • 8. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Tensor Train Matrix Format (TTM) [Oseledets ’10] G1 (i1 , j1 , α1 ) α1 G2 (α1 , i2 , j2 , α2 ) α2 ··· αd−1 Gd (αd−1 , id , jd ) d ×md M ∈ Rm Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 5/21
  • 9. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Tensor Train Matrix Format (TTM) [Oseledets ’10] G1 (i1 , j1 , α1 ) α1 G2 (α1 , i2 , j2 , α2 ) α2 ··· αd−1 Gd (αd−1 , id , jd ) d ×md M ∈ Rm M (i1 , i2 , . . . , id ; j1 , j2 , . . . , jd ) = α1 ,...,αd−1 G1 (i1 , j1 , α1 )G2 (α1 , i2 , j2 , α2 ) · · · · · · Gd (αd−1 , id , jd ) Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 5/21
  • 10. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Tensor Train Matrix Format (TTM) [Oseledets ’10] G1 (i1 , j1 , α1 ) α1 G2 (α1 , i2 , j2 , α2 ) α2 ··· αd−1 Gd (αd−1 , id , jd ) d ×md M ∈ Rm M (i1 , i2 , . . . , id ; j1 , j2 , . . . , jd ) = α1 ,...,αd−1 G1 (i1 , j1 , α1 )G2 (α1 , i2 , j2 , α2 ) · · · · · · Gd (αd−1 , id , jd ) TTM is a data-sparse matrix format. Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 5/21
  • 11. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Tensor Train Matrix Format (TTM) [Oseledets ’10] G1 (i1 , j1 , α1 ) α1 G2 (α1 , i2 , j2 , α2 ) α2 ··· αd−1 Gd (αd−1 , id , jd ) d ×md M ∈ Rm M (i1 , i2 , . . . , id ; j1 , j2 , . . . , jd ) = α1 ,...,αd−1 G1 (i1 , j1 , α1 )G2 (α1 , i2 , j2 , α2 ) · · · · · · Gd (αd−1 , id , jd ) TTM is a data-sparse matrix format. m = 2 ⇒ QTT matrix format Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 5/21
  • 12. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Matrix Vector Product in TT and TTM Format [Oseledets ’10] T ∈ (Q)TT , M ∈ (Q)TTM ⇒ MT = W ∈ (Q)TT Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 6/21
  • 13. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Matrix Vector Product in TT and TTM Format [Oseledets ’10] T ∈ (Q)TT , M ∈ (Q)TTM ⇒ MT = W ∈ (Q)TT W (i1 , i2 , . . . , id ) = M(i1 , j1 , i2 , j2 , . . . , id , jd )T (j1 , j2 , . . . , jd ) j1 ,j2 ,...,jd Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 6/21
  • 14. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Matrix Vector Product in TT and TTM Format [Oseledets ’10] T ∈ (Q)TT , M ∈ (Q)TTM ⇒ MT = W ∈ (Q)TT W (i1 , i2 , . . . , id ) = M(i1 , j1 , i2 , j2 , . . . , id , jd )T (j1 , j2 , . . . , jd ) j1 ,j2 ,...,jd G1 (i1 , j1 , α1 ) j1 H1 (j1 , β1 ) α1 β1 G2 (α1 , i2 , j2 , α2 ) j2 H2 (β1 , j2 , β2 ) α2 β2 . . . . . . Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 6/21
  • 15. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Matrix Vector Product in TT and TTM Format [Oseledets ’10] T ∈ (Q)TT , M ∈ (Q)TTM ⇒ MT = W ∈ (Q)TT W (i1 , i2 , . . . , id ) = M(i1 , j1 , i2 , j2 , . . . , id , jd )T (j1 , j2 , . . . , jd ) j1 ,j2 ,...,jd G1 (i1 , j1 , α1 ) j1 H1 (j1 , β1 ) α1 β1 G2 (α1 , i2 , j2 , α2 ) j2 H2 (β1 , j2 , β2 ) α2 β2 . . . . . . Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 6/21
  • 16. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Matrix Vector Product in TT and TTM Format [Oseledets ’10] T ∈ (Q)TT , M ∈ (Q)TTM ⇒ MT = W ∈ (Q)TT W (i1 , i2 , . . . , id ) = M(i1 , j1 , i2 , j2 , . . . , id , jd )T (j1 , j2 , . . . , jd ) j1 ,j2 ,...,jd j1 G1 (i1 , j1 , αK1 (i1 , (α1 , β1 )) H1 (j1 , β1 ) 1) α1 β1 G2 (α1 , i2 , j2 , α2 ) j2 H2 (β1 , j2 , β2 ) α2 β2 . . . . . . Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 6/21
  • 17. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Matrix Vector Product in TT and TTM Format [Oseledets ’10] T ∈ (Q)TT , M ∈ (Q)TTM ⇒ MT = W ∈ (Q)TT W (i1 , i2 , . . . , id ) = M(i1 , j1 , i2 , j2 , . . . , id , jd )T (j1 , j2 , . . . , jd ) j1 ,j2 ,...,jd j1 G1 (i1 , j1 , αK1 (i1 , (α1 , β1 )) H1 (j1 , β1 ) 1) α1 β1 G2 (α1 , i2 , j2 , α2 ) j2 H2 (β1 , j2 , β2 ) α2 β2 . . . . . . Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 6/21
  • 18. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Matrix Vector Product in TT and TTM Format [Oseledets ’10] T ∈ (Q)TT , M ∈ (Q)TTM ⇒ MT = W ∈ (Q)TT W (i1 , i2 , . . . , id ) = M(i1 , j1 , i2 , j2 , . . . , id , jd )T (j1 , j2 , . . . , jd ) j1 ,j2 ,...,jd j1 G1 (i1 , j1 , αK1 (i1 , (α1 , β1 )) H1 (j1 , β1 ) 1) α1 β1 G2 (α1 , iK2j((α1 ,)β1 ),j22 , (α2H22 ))1 , j2 , β2 ) 2 , 2 , α2 i , β (β α2 β2 . . . . . . Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 6/21
  • 19. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Matrix Vector Product in TT and TTM Format [Oseledets ’10] T ∈ (Q)TT , M ∈ (Q)TTM ⇒ MT = W ∈ (Q)TT W (i1 , i2 , . . . , id ) = M(i1 , j1 , i2 , j2 , . . . , id , jd )T (j1 , j2 , . . . , jd ) j1 ,j2 ,...,jd j1 G1 (i1 , j1 , αK1 (i1 , (α1 , β1 )) H1 (j1 , β1 ) 1) α1 β1 G2 (α1 , iK2j((α1 ,)β1 ),j22 , (α2H22 ))1 , j2 , β2 ) 2 , 2 , α2 i , β (β α2 β2 . . . . . . Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 6/21
  • 20. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Matrix Vector Product in TT and TTM Format [Oseledets ’10] T ∈ (Q)TT , M ∈ (Q)TTM ⇒ MT = W ∈ (Q)TT W (i1 , i2 , . . . , id ) = M(i1 , j1 , i2 , j2 , . . . , id , jd )T (j1 , j2 , . . . , jd ) j1 ,j2 ,...,jd j1 G1 (i1 , j1 , αK1 (i1 , (α1 , β1 )) H1 (j1 , β1 ) 1) (α1 , β1 ) G2 (α1 , iK2j((α1 ,)β1 ),j22 , (α2H22 ))1 , j2 , β2 ) 2 , 2 , α2 i , β (β α2 β2 . . . . . . Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 6/21
  • 21. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Matrix Vector Product in TT and TTM Format [Oseledets ’10] T ∈ (Q)TT , M ∈ (Q)TTM ⇒ MT = W ∈ (Q)TT W (i1 , i2 , . . . , id ) = M(i1 , j1 , i2 , j2 , . . . , id , jd )T (j1 , j2 , . . . , jd ) j1 ,j2 ,...,jd j1 G1 (i1 , j1 , αK1 (i1 , (α1 , β1 )) H1 (j1 , β1 ) 1) o n ati (α1 , β1 ) c t run G2 (α1 , iK2j((α1 ,)β1 ),j22 , (α2H22 ))1 , j2 , β2 ) 2 , 2 , α2 i , β (β + α2 β2 . . . . . . Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 6/21
  • 22. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Inversion of a Matrix in TTM Format [Schulz 1933, Oseledets ’10] Newton-Schulz Iteration Xk+1 = 2Xk − Xk MXk X0 initial approximation to M −1 with, ρ(MX0 − I ) < 1. 2 If M is symmetric, positive definite, then X0 = M I is an 2 admissible initial approximation. Hk+1 = I − Yk Yk+1 = Yk Hk+1 Xk+1 = Hk+1 Xk Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 7/21
  • 23. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Inversion of a Matrix in TTM Format [Schulz 1933, Oseledets ’10] Newton-Schulz Iteration Xk+1 = 2Xk − Xk MXk X0 initial approximation to M −1 with, ρ(MX0 − I ) < 1. 2 If M is symmetric, positive definite, then X0 = M I is an 2 admissible initial approximation. Hk+1 = T (I − Yk , ) Yk+1 = T (Yk Hk+1 , ) Xk+1 = T (Hk+1 Xk , ) Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 7/21
  • 24. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Eigenvalue Problem Problem Setting d d Assume M ∈ R2 ×2 is given in TTM. M is sym. pos. definite. d Compute eigenvalue λ and eigenvector v ∈ R2 of M. d R2 Mv = λv quantum molecular dynamics [Lebedeva ’11] Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 8/21
  • 25. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Preconditioned Inverse Iteration [Knyazev, Neymeyr, et al.] Definition The function x T Mx µ(x) = µ(x, M) = xT x is called the Rayleigh quotient. Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 9/21
  • 26. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Preconditioned Inverse Iteration [Knyazev, Neymeyr, et al.] Definition The function x T Mx µ(x) = µ(x, M) = xT x is called the Rayleigh quotient. Minimize the Rayleigh quotient by a gradient method: 2 xi+1 := xi − α µ(xi ), µ(x) = T (Mx − xµ(x)) , x x Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 9/21
  • 27. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Preconditioned Inverse Iteration [Knyazev, Neymeyr, et al.] Residual r (x) = Mx − xµ(x). Minimize the Rayleigh quotient by a gradient method: 2 xi+1 := xi − α µ(xi ), µ(x) = T (Mx − xµ(x)) , x x Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 9/21
  • 28. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Preconditioned Inverse Iteration [Knyazev, Neymeyr, et al.] Definition The function x T Mx µ(x) = µ(x, M) = xT x is called the Rayleigh quotient. Minimize the Rayleigh quotient by a gradient method: 2 xi+1 := xi − α µ(xi ), µ(x) = T (Mx − xµ(x)) , x x + preconditioning ⇒ update equation: xi+1 := xi − B −1 (Mxi − xi µ(xi )) . Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 9/21
  • 29. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Preconditioned Inverse Iteration [Knyazev, Neymeyr, et al.] Preconditioned residual B −1 r (x) = B −1 (Mx − xµ(x)). ⇒ inexact Newton-method + preconditioning ⇒ update equation: xi+1 := xi − B −1 (Mxi − xi µ(xi )) . Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 9/21
  • 30. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Preconditioned Inverse Iteration [Knyazev, Neymeyr 2009] xi+1 := xi − B −1 (Mxi − xi µ(xi )) If M ∈ Rn×n symmetric positive definite and B −1 approximates the inverse of M, so that I − B −1 M M ≤ c < 1, then Preconditioned INVerse ITeration (PINVIT) converges and the number of iterations is independent of n. Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 10/21
  • 31. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Preconditioned Inverse Iteration [Knyazev, Neymeyr, et al.] The residual ri = Mxi − xi µ(xi ) converges to 0, so that ri 2 < is a useful termination criterion. Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 11/21
  • 32. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Algorithm The number of iterations is independent of matrix size n = 2d . PINVIT(1,s) Input: M ∈ Rn×n , X0 ∈ Rn×s (X0 X0 = I , e.g. randomly chosen) T Output: Xp ∈ R n×s , µ ∈ Rs×s , with MX − X µ ≤ p p Approximative inversion B −1 ≈ (M)−1 R := MX0 − X0 µ, µ = X0 MX0T for (i := 1; R F > ; i + +) do Xi := Orthogonalize Xi−1 − B −1 R R := MXi − Xi µ, µ = XiT MXi end Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 12/21
  • 33. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Algorithm The number of iterations is independent of matrix size n = 2d . PINVIT(1,s) Input: M ∈ Rn×n , X0 ∈ Rn×s (X0 X0 = I , e.g. randomly chosen) T Output: Xp ∈ R n×s , µ ∈ Rs×s , with MX − X µ ≤ p p Approximative inversion B −1 ≈ (M)−1 R := MX0 − X0 µ, µ = X0 MX0T for (i := 1; R F > ; i + +) do Xi := Orthogonalize Xi−1 − B −1 R R := MXi − Xi µ, µ = XiT MXi end Newton-Schulz iteration: Bk+1 = 2Bk − Bk MBk [Oseledets ’10] for TTM Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 12/21
  • 34. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Algorithm The number of iterations is independent of matrix size n = 2d . PINVIT(1,s) Input: M ∈ Rn×n , X0 ∈ Rn×s (X0 X0 = I , e.g. randomly chosen) T Output: Xp ∈ R n×s , µ ∈ Rs×s , with MX − X µ ≤ p p Approximative inversion B −1 ≈ (M)−1 R := MX0 − X0 µ, µ = X0 MX0T for (i := 1; R F > ; i + +) do Xi := Orthogonalize Xi−1 − B −1 R R := MXi − Xi µ, µ = XiT MXi end TTM-TT products Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 12/21
  • 35. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Folded Spectrum Method How to find λi ? If i = n − s with s < O(log n), use subspace version PINVIT(·,s). ... 0λn λn−1 λn−2 λ1 Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 13/21
  • 36. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Folded Spectrum Method How to find λi ? If i = n − s with s log n? ... ... 0λn λi+1 λi λi−1 λ1 Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 13/21
  • 37. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Folded Spectrum Method How to find λi ? If i = n − s with s log n, shift with σ near λi . ... ... 0λn λi+1 λi λi−1 λ1 σ Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 13/21
  • 38. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Folded Spectrum Method How to find λi ? If i = n − s with s log n, shift with σ near λi . ... ... 0λn λi+1 λi λi−1 λ1 σ But (M − σI) is not positive definite. Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 13/21
  • 39. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Folded Spectrum Method Folded Spectrum Method [Wang, Zunger 1994, Morgan 1991] Mσ = (M − σI)2 Mσ is s.p.d., if M is s.p.d. and σ = λi . Assume all eigenvalues of Mσ are simple. Mv = λv ⇔ Mσ v = (M − σI)2 v = M 2 v − 2σMv + σ 2 v = λ2 v − 2σλv + σ 2 v = (λ − σ)2 v Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 14/21
  • 40. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Folded Spectrum Method Folded Spectrum Method [Wang, Zunger 1994, Morgan 1991] Mσ = (M − σI)2 Mσ is s.p.d., if M is s.p.d. and σ = λi . Assume all eigenvalues of Mσ are simple. (2, v2 ), (3, v3 ), σ = 2.5 ⇒ Mσ has eigenvalue 0.25 of multiplicity 2. Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 14/21
  • 41. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Folded Spectrum Method Folded Spectrum Method [Wang, Zunger 1994, Morgan 1991] Mσ = (M − σI)2 Mσ is s.p.d., if M is s.p.d. and σ = λi . Assume all eigenvalues of Mσ are simple. (2, v2 ), (3, v3 ), σ = 2.5 ⇒ Mσ has eigenvalue 0.25 of multiplicity 2. PINVIT computes v ∈ span(v2 , v3 ). ⇒ v T Mv /v T v ∈ [2, 3] Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 14/21
  • 42. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Folded Spectrum Method Folded Spectrum Method [Wang, Zunger 1994, Morgan 1991] Mσ = (M − σI)2 Mσ is s.p.d., if M is s.p.d. and σ = λi . Assume all eigenvalues of Mσ are simple. (2, v2 ), (3, v3 ), σ = 2.5 ⇒ Mσ has eigenvalue 0.25 of multiplicity 2. PINVIT computes v ∈ span(v2 , v3 ). ⇒ v T Mv /v T v ∈ [2, 3] Use PINVIT to compute V ∈ Rn×2 ⇒ Λ(V T MV /V T V ) = {2, 3} Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 14/21
  • 43. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Folded Spectrum Method 1 Choose σ. 2 Compute 2 a) Mσ := (M − σI) and b) B −1 :≈ Mσ . −1 3 Use PINVIT to find the smallest eigenpair (µσ , v ) of Mσ . 4 Compute µ := v T Mv /v T v . (µ, v ) is the nearest eigenpair to σ. Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 15/21
  • 44. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Folded Spectrum Method 1 Choose σ. 2 Compute 2 a) Mσ := (M − σI) and b) B −1 :≈ Mσ . −1 3 Use PINVIT to find the smallest eigenpair (µσ , v ) of Mσ . 4 Compute µ := v T Mv /v T v . (µ, v ) is the nearest eigenpair to σ. In TTM M can be shifted, squared and inverted with reasonable costs. Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 15/21
  • 45. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Folded Spectrum Method 1 Choose σ. 2 Compute 2 a) Mσ := (M − σI) and b) B −1 :≈ Mσ . −1 3 Use PINVIT to find the smallest eigenpair (µσ , v ) of Mσ . 4 Compute µ := v T Mv /v T v . (µ, v ) is the nearest eigenpair to σ. In TTM M can be shifted, squared and inverted with reasonable costs. If M is sparse, then squaring and inverting is prohibitive. Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 15/21
  • 46. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Folded Spectrum Method 1 Choose σ. 2 Compute 2 a) Mσ := (M − σI) and b) B −1 :≈ Mσ . −1 3 Use PINVIT to find the smallest eigenpair (µσ , v ) of Mσ . 4 Compute µ := v T Mv /v T v . (µ, v ) is the nearest eigenpair to σ. In TTM M can be shifted, squared and inverted with reasonable costs. If M is sparse, then squaring and inverting is prohibitive. Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 15/21
  • 47. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Folded Spectrum Method 1 Choose σ. 2 Compute 2 a) Mσ := (M − σI) and b) B −1 :≈ Mσ . −1 3 Use PINVIT to find the smallest eigenpair (µσ , v ) of Mσ . 4 Compute µ := v T Mv /v T v . (µ, v ) is the nearest eigenpair to σ. In TTM M can be shifted, squared and inverted with reasonable costs. If M is sparse, then squaring and inverting is prohibitive. Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 15/21
  • 48. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Drawbacks The condition number of (M − σI )2 is larger. −1 ⇒ The computation of Mσ is more expensive. −1 ⇒ Mσ has larger local ranks. −1 ⇒ Mσ v is more expensive. Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 16/21
  • 49. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Drawbacks The condition number of (M − σI )2 is larger. −1 ⇒ The computation of Mσ is more expensive. −1 ⇒ Mσ has larger local ranks. −1 ⇒ Mσ v is more expensive. Multiple eigenvalues of Mσ may lead to incomplete subspace information. ⇒ v T Mv /v T v does not approximate λ. Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 16/21
  • 50. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Numerical Results Numerical Results Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 17/21
  • 51. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results TT-Toolbox 2.1 [Oseledets et al. ’09–’11] We use TT-Toolbox 2.1 for MATLAB from I.V. Oseledets at al. Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 18/21
  • 52. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results 2D Laplace d )2 ×(2d )2 M = α∆2 = α (∆1 ⊗ I + I ⊗ ∆1 ) ∈ R(2 , with ∆1 = tridiag([−1, 2, −1]). without shift, 3 smallest eigenvalues n d tinv in s tPINVIT in s # it. error 64 3 0.449 1.577 17 1.2230 e−07 256 4 0.345 1.376 18 1.1450 e−07 1 024 5 0.997 3.236 27 2.7432 e−07 4 096 6 2.347 8.172 19 1.8911 e−07 16 384 7 4.789 19.885 16 6.4020 e−08 65 536 8 11.895 43.717 20 1.0688 e−07 262 144 9 19.076 63.727 20 4.1304 e−09 1 048 576 10 29.865 99.808 20 3.7722 e−09 4 194 304 11 110.712* 331.059 27 5.8789 e−10 16 777 216 12 165.560* 439.341 23 4.5062 e−09 67 108 864 13 240.226* 587.796 26 8.9795 e−09 Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 19/21
  • 53. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results 2D Laplace d )2 ×(2d )2 M = α∆2 = α (∆1 ⊗ I + I ⊗ ∆1 ) ∈ R(2 , with ∆1 = tridiag([−1, 2, −1]). with shift σ = 203.3139, folded spectrum method, 4 eigenvalues n d tinv in s tPINVIT in s # it. error 64 3 0.796 0.843 8 5.5601 e−10 256 4 3.360 3.053 45 2.9268 e−09 1 024 5 22.659 4.581 20 1.1411 e−10 4 096 6 60.755 32.264 31 2.5295 e−12 16 384 7 411.165* 80.827 28 6.3665 e−12 65 536 8 1 808.302* 344.696 27 2.5835 e−11 Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 19/21
  • 54. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results 3D Laplace M = α∆3 = α (∆1 ⊗ I ⊗ I + I ⊗ ∆1 ⊗ I + I ⊗ I ⊗ ∆1 ) , d 3 d 3 M ∈ R(2 ) ×(2 ) . without shift, 4 smallest eigenvalues n d tinv in s tPINVIT in s # it. error 64 2 0.219 4.518 30 2.4762 e−07 512 3 0.561 6.742 27 2.9333 e−07 4 096 4 1.109 23.715 24 1.5441 e−07 32 768 5 7.197 99.543 28 9.1209 e−09 262 144 6 11.052 249.084 24 1.9956 e−08 2 097 152 7 20.893 923.874 26 1.6577 e−07 16 777 216 8 34.937 5 131.664 34 1.1977 e−08 Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 19/21
  • 55. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results 3D Laplace M = α∆3 = α (∆1 ⊗ I ⊗ I + I ⊗ ∆1 ⊗ I + I ⊗ I ⊗ ∆1 ) , d 3 d 3 M ∈ R(2 ) ×(2 ) . with shift σ = 230.6195, folded spectrum method, 6 eigenvalues n d tinv in s tPINVIT in s # it. error 512 3 14.300 45.979 29 2.8479 e−07 4 096 4 137.502 293.154 54 1.8060 e−08 32 768 5 1 952.980* 1 223.395 19 1.0971 e−11 262 144 6 37 149.998* out of mem1 1 canceled after 60 hours while using > 300 GB RAM Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 19/21
  • 56. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results 4D Laplace M = α∆4 = α (∆2 ⊗ I + I ⊗ ∆2 ) , d 4 d 4 M ∈ R(2 ) ×(2 ) without shift, 5 smallest eigenvalues n d tinv in s tPINVIT in s # it. error 256 2 0.240 9.265 36 2.5997 e−07 4 096 3 0.873 23.993 28 1.7104 e−07 65 536 4 1.436 119.348 28 5.9876 e−08 1 048 576 5 5.975 497.812 32 2.2100 e−08 16 777 216 6 12.655 1 710.326 31 7.9299 e−09 268 435 456 7 23.628 7 898.374 41 5.1963 e−10 Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 20/21
  • 57. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Conclusions Finding the eigenvalues by PINVIT is cheap and storage efficient. Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 21/21
  • 58. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Conclusions Finding the eigenvalues by PINVIT is cheap and storage efficient. The folded spectrum method enables us to compute inner eigenvalues, too. Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 21/21
  • 59. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Conclusions Finding the eigenvalues by PINVIT is cheap and storage efficient. The folded spectrum method enables us to compute inner eigenvalues, too. The use of the folded spectrum method leads to not well conditioned problems. Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 21/21
  • 60. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Conclusions Finding the eigenvalues by PINVIT is cheap and storage efficient. The folded spectrum method enables us to compute inner eigenvalues, too. The use of the folded spectrum method leads to not well conditioned problems. Choose the shift and the subspace dimension carefully. Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 21/21
  • 61. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Conclusions Finding the eigenvalues by PINVIT is cheap and storage efficient. The folded spectrum method enables us to compute inner eigenvalues, too. The use of the folded spectrum method leads to not well conditioned problems. Choose the shift and the subspace dimension carefully. Thank you for your attention. Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 21/21