SlideShare a Scribd company logo
International Journal of Civil, Mechanical and Energy Science (IJCMES) [Vol-3, Issue-1, Jan-Feb, 2017]
https://dx.doi.org/10.24001/ijcmes.3.1.7 ISSN: 2455-5304
www.ijcmes.com Page | 42
Computational Investigation for Life Cycle of
Alumina based Induction Furnace Wall
Nirajkumar C Mehta1
, Dr. Dipesh D Shukla2
1
Ph. D. Student, Rai University, Ahmedabad, India
2
Director, Amity University, Jaipur, India
Abstract— Furnaces are most commonly used for melting
of materials. Induction furnaces are more beneficial as no
fuel is required. It is a problem to find life cycle of
Induction Melting Furnace Wall under load variation. The
induction melting furnace wall is made of alumina ramming
mass which is one kind of refractory material. The failure
occurs due to cyclic thermal stresses due to heating and
cooling cycles. Temperature distribution and thermal stress
distribution fields of the induction melting furnace
refractory wall were calculated by using explicit finite
difference analysis based on the physical description of its
failure under low cycle thermal fatigue conditions. The life
span of the refractory wall is required to be found out by
means of critical thermal stresses created inside the
refractory wall of induction melting furnace wall from
modified S – log N Curve.
Keywords— Advanced stress life analysis, Temperature
distribution, Stress distribution, explicit finite difference
method, Alumina ramming mass.
I. INTRODUCTION
Furnace is a term used to identify a closed space here heat is
applied to a body in order to raise its temperature. The
source of heat may be fuel or electricity. Commonly, metals
and alloys and sometimes non-metals are heated in
furnaces. The purpose of heating defines the temperature of
heating and heating rate. Increase in temperature softens the
metals. They become amenable to deformation. This
softening occurs with or without a change in the metallic
structure. Heating to lower temperatures (below the critical
temperature) of the metal softens it by relieving the internal
stresses. On the other hand, metals heated to temperatures
above the critical temperatures leads to changes in crystal
structures and recrystallization like annealing. Further some
metals and alloys are melted, ceramic products vitrified,
coals coked, metals like zinc are vaporized and many other
processes are performed in Furnaces.
Induction furnaces are widely used in the iron industry for
the casting of the different grades of cast iron products.
Refractory wall of induction melting furnace is a key
component which is used as insulation layer. It is made of
ramming mass like silica, alumina, magnesia etc. The
refractory wall is directly influenced by the thermal cycling
of the high temperature molten iron in the furnace. Thermal
fatigue failure is easy to happen for it because of the larger
phase transformation thermal stresses and it has a shorter
life. This can cause serious production accidents. Therefore,
the service life problem of the refractory wall has always
been a focus of attention in the application of this to the
industry. (A V K Suryanarayana, Fuels Furnaces Refractory
and Pyrometry).
A comprehensive literature review on computational
investigation on different kinds of furnaces is done to study
research trends. (Nirajkumar Mehta, May 2012). A review
is done on applications of different numerical methods in
heat transfer with its applications. (N C Mehta, Vipul B
Gondaliya et al, February 2013). Thermal fatigue analysis
of induction melting furnace wall is done for silica ramming
mass. (N C Mehta, Akash D Raiyani et al, February 2013).
A review is done for research on induction heating. (Vimal
R Nakum et al, April 2013). A review is done for metal
forming analysis using different numerical methods. (N C
Mehta et al, May 2013). Transient heat transfer analysis of
induction furnace is done by using finite element analysis.
(Vipul Gondaliya et al, August 2013). Thermal fatigue
analysis of induction furnace wall is done for alumina
ramming mass. (N C Mehta et al, October 2013).
Thermal analysis of hot wall condenser is done for domestic
refrigerator using numerical method for temperature
distribution. (Akash D Raiyani et al, July 2014).
Optimisation of wall thickness is done for minimum heat
loss for induction furnace by finite element analysis.
(Dipesh D Shukla et al, December 2014). A review is done
on numerical analysis of furnace. (N C Mehta et al, April
2015). Thermal fatigue analysis of induction furnace wall is
done for zirconia. (Nirajkumar C Mehta et al, April 2015).
Comparison of finite difference method and finite element
method is done for 2 D transient heat transfer problem.
International Journal of Civil, Mechanical and Energy Science (IJCMES) [Vol-3, Issue-1, Jan-Feb, 2017]
https://dx.doi.org/10.24001/ijcmes.3.1.7 ISSN: 2455-5304
www.ijcmes.com Page | 43
(Nirajkumar Mehta et al, April 2015). Thermal fatigue
analysis of induction furnace wall is done for magnesia
ramming mass. (Nirajkumar C Mehta et al, June 2015).
Advanced mathematical modelling of heat transfer is done
for induction furnace wall of zirconia. (Nirajkumar C Mehta
et al, December 2016). Advanced heat transfer analysis is
done for alumina based refractory wall of induction furnace.
(Nirajkumar Mehta et al, December 2016).
Here, Explicit Finite Difference Method is used to find out
temperature and thermal stress variation with respect to
time.
II. DEVELOPMENT OF ADVANCED EXPLICIT
FINITE DIFFERENCE MODEL
We have divided Induction Furnace Wall into a Nodal
Network as shown in Fig. 1. It is divided into 24 nodes. We
have derived Explicit Finite Difference Equations for all
nodes as per the boundary conditions applied to it. The
furnace wall is having thermal conduction heat transfer
between different nodes. It is having atmospheric heat
convection ha applied from top side of the furnace wall
which is open to atmosphere. It is having heat convection
from molten metal from inside which is hi. It is having heat
convection ho from cooling water which is circulating
outside the furnace wall. (Yunus A Cengel, Heat and Mass
Transfer).
To solve this advanced heat transfer problem of induction
melting furnace wall which is made from Alumina
Ramming Mass, the following initial and boundary
conditions, material properties and basic assumptions are
made:
Refractory Materials for induction furnace wall meets the
basic assumptions in the science of mechanics.
 Environmental Temperature is homogeneous at
27° C.
 Ignore the influence of heat radiation.
 Ignore the effect of gravity field.
 The surface of induction melting furnace wall is
clean.
 The initial temperature of the induction melting
furnace is set 27° C and it is agreement with the
ambient temperature during solving the problem.
 Heat convections are considered constant for this
analysis.
 Scarp material input inside furnace is considered
uniform for our analysis.
Fig.1: Nodal network for finite difference method
Node 1:
ℎ𝑎
∆𝑥
2
(𝑇∞ − 𝑇1
𝑖
)+ ℎ𝑜
∆𝑦
2
(𝑇∞ − 𝑇1
𝑖
) + k
∆𝑦
2
𝑇2
𝑖
− 𝑇1
𝑖
∆𝑥
+ k
∆𝑥
2
𝑇4
𝑖
− 𝑇1
𝑖
∆𝑦
=
𝜌
∆𝑥
2
∆𝑦
2
∁
𝑇1
𝑖+1
−𝑇1
𝑖
∆𝑡
𝑇1
𝑖+1
= ((ℎ𝑎
∆𝑥
2
( 𝑇∞ − 𝑇1
𝑖
)+ ℎ𝑜
∆𝑦
2
( 𝑇∞ − 𝑇1
𝑖
) + k
∆𝑦
2
𝑇2
𝑖
− 𝑇1
𝑖
∆𝑥
+
k
∆𝑥
2
𝑇4
𝑖
− 𝑇1
𝑖
∆𝑦
)
4∆𝑡
𝜌∁∆𝑥∆𝑦
)+ 𝑇1
𝑖
Node 2:
ℎ𝑎∆𝑥 ( 𝑇∞ − 𝑇2
𝑖
) + k
∆𝑦
2
𝑇1
𝑖
− 𝑇2
𝑖
∆𝑥
+ k
∆𝑦
2
𝑇3
𝑖
− 𝑇2
𝑖
∆𝑥
+ k ∆𝑥
𝑇5
𝑖
− 𝑇2
𝑖
∆𝑦
=
𝜌∆𝑥
∆𝑦
2
∁
𝑇2
𝑖+1
−𝑇2
𝑖
∆𝑡
𝑇2
𝑖+1
= ((ℎ𝑎∆𝑥 ( 𝑇∞ − 𝑇2
𝑖
) + k
∆𝑦
2
𝑇1
𝑖
− 𝑇2
𝑖
∆𝑥
+ k
∆𝑦
2
𝑇3
𝑖
− 𝑇2
𝑖
∆𝑥
+
k∆𝑥
𝑇5
𝑖
− 𝑇2
𝑖
∆𝑦
)
2∆𝑡
𝜌∁∆𝑥∆𝑦
) + 𝑇2
𝑖
Node 3:
ℎ𝑎
∆𝑥
2
(𝑇∞ − 𝑇3
𝑖
)+ ℎ𝑖
∆𝑦
2
(𝑇ℎ − 𝑇3
𝑖
) + k
∆𝑦
2
𝑇2
𝑖
− 𝑇3
𝑖
∆𝑥
+ k
∆𝑥
2
𝑇6
𝑖
− 𝑇3
𝑖
∆𝑦
=
𝜌
∆𝑥
2
∆𝑦
2
∁
𝑇3
𝑖+1
−𝑇3
𝑖
∆𝑡
𝑇3
𝑖+1
= (( ℎ𝑎
∆𝑥
2
( 𝑇∞ − 𝑇3
𝑖
) + ℎ𝑖
∆𝑦
2
( 𝑇ℎ − 𝑇3
𝑖
) + k
∆𝑦
2
𝑇2
𝑖
− 𝑇3
𝑖
∆𝑥
+
k
∆𝑥
2
𝑇6
𝑖
− 𝑇3
𝑖
∆𝑦
)
4∆𝑡
𝜌∁∆𝑥∆𝑦
) + 𝑇3
𝑖
Node 4:
ℎ𝑜∆𝑦 ( 𝑇∞ − 𝑇4
𝑖
) + k ∆𝑦
𝑇5
𝑖
− 𝑇4
𝑖
∆𝑥
+ k
∆𝑥
2
𝑇1
𝑖
− 𝑇4
𝑖
∆𝑦
+ k
∆𝑥
2
𝑇7
𝑖
− 𝑇4
𝑖
∆𝑦
=
𝜌
∆𝑥
2
∆𝑦∁
𝑇4
𝑖+4
−𝑇4
𝑖
∆𝑡
International Journal of Civil, Mechanical and Energy Science (IJCMES) [Vol-3, Issue-1, Jan-Feb, 2017]
https://dx.doi.org/10.24001/ijcmes.3.1.7 ISSN: 2455-5304
www.ijcmes.com Page | 44
𝑇4
𝑖+4
= ((ℎ𝑜∆𝑦 ( 𝑇∞ − 𝑇4
𝑖
) + k ∆𝑦
𝑇5
𝑖
− 𝑇4
𝑖
∆𝑥
+ k
∆𝑥
2
𝑇1
𝑖
− 𝑇4
𝑖
∆𝑦
+
k
∆𝑥
2
𝑇7
𝑖
− 𝑇4
𝑖
∆𝑦
)
2∆𝑡
𝜌∁∆𝑥∆𝑦
) + 𝑇4
𝑖
Node 5:
k ∆𝑦
𝑇4
𝑖
− 𝑇5
𝑖
∆𝑥
+ k ∆𝑦
𝑇6
𝑖
− 𝑇5
𝑖
∆𝑥
+ k ∆𝑥
𝑇2
𝑖
− 𝑇5
𝑖
∆𝑦
+ k ∆𝑥
𝑇8
𝑖
− 𝑇5
𝑖
∆𝑦
=
𝜌∆𝑥∆𝑦∁
𝑇5
𝑖+1
−𝑇5
𝑖
∆𝑡
𝑇5
𝑖+1
= ((k ∆𝑦
𝑇4
𝑖
− 𝑇5
𝑖
∆𝑥
+ k ∆𝑦
𝑇6
𝑖
− 𝑇5
𝑖
∆𝑥
+ k ∆𝑥
𝑇2
𝑖
− 𝑇5
𝑖
∆𝑦
+
k∆𝑥
𝑇8
𝑖
− 𝑇5
𝑖
∆𝑦
)
∆𝑡
𝜌∁∆𝑥∆𝑦
) + 𝑇5
𝑖
Node 6:
ℎ𝑖∆𝑦 ( 𝑇ℎ − 𝑇6
𝑖
) + k ∆𝑦
𝑇2
𝑖
− 𝑇6
𝑖
∆𝑥
+ k
∆𝑥
2
𝑇3
𝑖
− 𝑇6
𝑖
∆𝑦
+ k
∆𝑥
2
𝑇9
𝑖
− 𝑇6
𝑖
∆𝑦
=
𝜌
∆𝑥
2
∆𝑦∁
𝑇6
𝑖+1
−𝑇6
𝑖
∆𝑡
𝑇6
𝑖+1
= (( ℎ𝑖∆𝑦 ( 𝑇ℎ − 𝑇6
𝑖
) + k ∆𝑦
𝑇2
𝑖
− 𝑇6
𝑖
∆𝑥
+ k
∆𝑥
2
𝑇3
𝑖
− 𝑇6
𝑖
∆𝑦
+
k
∆𝑥
2
𝑇9
𝑖
− 𝑇6
𝑖
∆𝑦
)
2∆𝑡
𝜌∁∆𝑥∆𝑦
) + 𝑇6
𝑖
Node 7:
ℎ𝑜∆𝑦 ( 𝑇∞ − 𝑇7
𝑖
) + k ∆𝑦
𝑇8
𝑖
− 𝑇7
𝑖
∆𝑥
+ k
∆𝑥
2
𝑇4
𝑖
− 𝑇7
𝑖
∆𝑦
+ k
∆𝑥
2
𝑇10
𝑖
− 𝑇7
𝑖
∆𝑦
=
𝜌
∆𝑥
2
∆𝑦∁
𝑇7
𝑖+7
−𝑇7
𝑖
∆𝑡
𝑇7
𝑖+7
= (( ℎ𝑜∆𝑦 ( 𝑇∞ − 𝑇7
𝑖
) + k ∆𝑦
𝑇8
𝑖
− 𝑇7
𝑖
∆𝑥
+ k
∆𝑥
2
𝑇4
𝑖
− 𝑇7
𝑖
∆𝑦
+
k
∆𝑥
2
𝑇10
𝑖
− 𝑇7
𝑖
∆𝑦
)
2∆𝑡
𝜌∁∆𝑥∆𝑦
) + 𝑇7
𝑖
Node 8:
k ∆𝑦
𝑇7
𝑖
− 𝑇8
𝑖
∆𝑥
+ k ∆𝑦
𝑇9
𝑖
− 𝑇8
𝑖
∆𝑥
+ k ∆𝑥
𝑇5
𝑖
− 𝑇8
𝑖
∆𝑦
+ k ∆𝑥
𝑇11
𝑖
− 𝑇8
𝑖
∆𝑦
=
𝜌∆𝑥∆𝑦∁
𝑇8
𝑖+1
−𝑇8
𝑖
∆𝑡
𝑇8
𝑖+1
= (( k ∆𝑦
𝑇7
𝑖
− 𝑇8
𝑖
∆𝑥
+ k ∆𝑦
𝑇9
𝑖
− 𝑇8
𝑖
∆𝑥
+ k ∆𝑥
𝑇5
𝑖
− 𝑇8
𝑖
∆𝑦
+
k∆𝑥
𝑇11
𝑖
− 𝑇8
𝑖
∆𝑦
)
∆𝑡
𝜌∁∆𝑥∆𝑦
) + 𝑇8
𝑖
Node 9:
ℎ𝑖∆𝑦 ( 𝑇ℎ − 𝑇9
𝑖
) + k ∆𝑦
𝑇8
𝑖
− 𝑇9
𝑖
∆𝑥
+ k
∆𝑥
2
𝑇6
𝑖
− 𝑇9
𝑖
∆𝑦
+ k
∆𝑥
2
𝑇12
𝑖
− 𝑇9
𝑖
∆𝑦
=
𝜌
∆𝑥
2
∆𝑦∁
𝑇9
𝑖+1
−𝑇9
𝑖
∆𝑡
𝑇9
𝑖+1
= ((ℎ𝑖∆𝑦 ( 𝑇ℎ − 𝑇9
𝑖
) + k ∆𝑦
𝑇8
𝑖
− 𝑇9
𝑖
∆𝑥
+ k
∆𝑥
2
𝑇6
𝑖
− 𝑇9
𝑖
∆𝑦
+
k
∆𝑥
2
𝑇12
𝑖
− 𝑇9
𝑖
∆𝑦
)
2∆𝑡
𝜌∁∆𝑥∆𝑦
) + 𝑇9
𝑖
Node 10:
ℎ𝑜∆𝑦(𝑇∞ − 𝑇10
𝑖
) + k∆𝑦
𝑇11
𝑖
− 𝑇10
𝑖
∆𝑥
+ k
∆𝑥
2
𝑇7
𝑖
− 𝑇10
𝑖
∆𝑦
+ k
∆𝑥
2
𝑇15
𝑖
− 𝑇10
𝑖
∆𝑦
=
𝜌
∆𝑥
2
∆𝑦∁
𝑇10
𝑖+10
−𝑇10
𝑖
∆𝑡
𝑇10
𝑖+10
= ((ℎ𝑜∆𝑦 ( 𝑇∞ − 𝑇10
𝑖
) + k ∆𝑦
𝑇11
𝑖
− 𝑇10
𝑖
∆𝑥
+ k
∆𝑥
2
𝑇7
𝑖
− 𝑇10
𝑖
∆𝑦
+
k
∆𝑥
2
𝑇15
𝑖
− 𝑇10
𝑖
∆𝑦
)
2∆𝑡
𝜌∁∆𝑥∆𝑦
) + 𝑇10
𝑖
Node 11:
k ∆𝑦
𝑇10
𝑖
− 𝑇11
𝑖
∆𝑥
+ k ∆𝑦
𝑇12
𝑖
− 𝑇11
𝑖
∆𝑥
+ k ∆𝑥
𝑇8
𝑖
− 𝑇11
𝑖
∆𝑦
+ k ∆𝑥
𝑇16
𝑖
− 𝑇11
𝑖
∆𝑦
=
𝜌∆𝑥∆𝑦∁
𝑇11
𝑖+1
−𝑇11
𝑖
∆𝑡
𝑇11
𝑖+1
= (( k ∆𝑦
𝑇10
𝑖
− 𝑇11
𝑖
∆𝑥
+ k ∆𝑦
𝑇12
𝑖
− 𝑇11
𝑖
∆𝑥
+ k ∆𝑥
𝑇8
𝑖
− 𝑇11
𝑖
∆𝑦
+
k∆𝑥
𝑇16
𝑖
− 𝑇11
𝑖
∆𝑦
)
∆𝑡
𝜌∁∆𝑥∆𝑦
) + 𝑇11
𝑖
Node 12:
ℎ𝑖
∆𝑥
2
( 𝑇ℎ − 𝑇12
𝑖
) + ℎ𝑖
∆𝑦
2
( 𝑇ℎ − 𝑇12
𝑖
) + k ∆𝑦
𝑇11
𝑖
− 𝑇12
𝑖
∆𝑥
+
k
∆𝑦
2
𝑇13
𝑖
− 𝑇12
𝑖
∆𝑥
+ k
∆𝑥
2
𝑇9
𝑖
− 𝑇12
𝑖
∆𝑦
+ k∆𝑥
𝑇17
𝑖
− 𝑇12
𝑖
∆𝑦
= 𝜌
3∆𝑥∆𝑦
4
∁
𝑇12
𝑖+1
−𝑇12
𝑖
∆𝑡
𝑇12
𝑖+1
= (( ℎ𝑖
∆𝑥
2
(𝑇ℎ − 𝑇12
𝑖
) + ℎ𝑖
∆𝑦
2
(𝑇ℎ − 𝑇12
𝑖
) + k∆𝑦
𝑇11
𝑖
− 𝑇12
𝑖
∆𝑥
+
k
∆𝑦
2
𝑇13
𝑖
− 𝑇12
𝑖
∆𝑥
+ k
∆𝑥
2
𝑇9
𝑖
− 𝑇12
𝑖
∆𝑦
+ k∆𝑥
𝑇17
𝑖
− 𝑇12
𝑖
∆𝑦
)
4∆𝑡
3𝜌∁∆𝑥∆𝑦
) + 𝑇12
𝑖
Node 13:
ℎ𝑖∆𝑥(𝑇ℎ − 𝑇13
𝑖
)+ k
∆𝑦
2
𝑇12
𝑖
− 𝑇13
𝑖
∆𝑥
+ k
∆𝑦
2
𝑇14
𝑖
− 𝑇13
𝑖
∆𝑥
+ k∆𝑥
𝑇18
𝑖
− 𝑇13
𝑖
∆𝑦
=
𝜌∆𝑥
∆𝑦
2
∁
𝑇13
𝑖+1
−𝑇13
𝑖
∆𝑡
𝑇13
𝑖+1
= (( ℎ𝑖∆𝑥 ( 𝑇ℎ − 𝑇13
𝑖
) + k
∆𝑦
2
𝑇12
𝑖
− 𝑇13
𝑖
∆𝑥
+ k
∆𝑦
2
𝑇14
𝑖
− 𝑇13
𝑖
∆𝑥
+
k∆𝑥
𝑇18
𝑖
− 𝑇13
𝑖
∆𝑦
)
2∆𝑡
𝜌∁∆𝑥∆𝑦
) + 𝑇13
𝑖
Node 14:
ℎ𝑖
∆𝑥
2
(𝑇ℎ − 𝑇14
𝑖
)+ ℎ𝑖
∆𝑦
2
(𝑇ℎ − 𝑇14
𝑖
) + k
∆𝑦
2
𝑇13
𝑖
− 𝑇14
𝑖
∆𝑥
+ k
∆𝑥
2
𝑇19
𝑖
− 𝑇14
𝑖
∆𝑦
= 𝜌
∆𝑥
2
∆𝑦
2
∁
𝑇14
𝑖+1
−𝑇14
𝑖
∆𝑡
𝑇14
𝑖+1
= (( ℎ𝑖
∆𝑥
2
(𝑇ℎ − 𝑇14
𝑖
)+ ℎ𝑖
∆𝑦
2
(𝑇ℎ − 𝑇14
𝑖
) + k
∆𝑦
2
𝑇13
𝑖
− 𝑇14
𝑖
∆𝑥
+
k
∆𝑥
2
𝑇19
𝑖
− 𝑇14
𝑖
∆𝑦
)
4∆𝑡
𝜌∁∆𝑥∆𝑦
) + 𝑇14
𝑖
Node 15:
ℎ𝑜∆𝑦(𝑇∞ − 𝑇15
𝑖
) + k∆𝑦
𝑇16
𝑖
− 𝑇15
𝑖
∆𝑥
+ k
∆𝑥
2
𝑇10
𝑖
− 𝑇15
𝑖
∆𝑦
+ k
∆𝑥
2
𝑇20
𝑖
− 𝑇15
𝑖
∆𝑦
=
𝜌
∆𝑥
2
∆𝑦∁
𝑇15
𝑖+15
−𝑇15
𝑖
∆𝑡
𝑇15
𝑖+15
= (( ℎ𝑜∆𝑦( 𝑇∞ − 𝑇15
𝑖
) + k∆𝑦
𝑇16
𝑖
− 𝑇15
𝑖
∆𝑥
+ k
∆𝑥
2
𝑇10
𝑖
− 𝑇15
𝑖
∆𝑦
+
k
∆𝑥
2
𝑇20
𝑖
− 𝑇15
𝑖
∆𝑦
)
2∆𝑡
𝜌∁∆𝑥∆𝑦
) + 𝑇15
𝑖
International Journal of Civil, Mechanical and Energy Science (IJCMES) [Vol-3, Issue-1, Jan-Feb, 2017]
https://dx.doi.org/10.24001/ijcmes.3.1.7 ISSN: 2455-5304
www.ijcmes.com Page | 45
Node 16:
k∆𝑦
𝑇15
𝑖
− 𝑇16
𝑖
∆𝑥
+ k∆𝑦
𝑇17
𝑖
− 𝑇16
𝑖
∆𝑥
+ k∆𝑥
𝑇11
𝑖
− 𝑇16
𝑖
∆𝑦
+ k∆𝑥
𝑇21
𝑖
− 𝑇16
𝑖
∆𝑦
=
𝜌∆𝑥∆𝑦∁
𝑇16
𝑖+1
−𝑇16
𝑖
∆𝑡
𝑇16
𝑖+1
= (( k ∆𝑦
𝑇15
𝑖
− 𝑇16
𝑖
∆𝑥
+ k ∆𝑦
𝑇17
𝑖
− 𝑇16
𝑖
∆𝑥
+ k ∆𝑥
𝑇11
𝑖
− 𝑇16
𝑖
∆𝑦
+
k∆𝑥
𝑇21
𝑖
− 𝑇16
𝑖
∆𝑦
)
∆𝑡
𝜌∁∆𝑥∆𝑦
) + 𝑇16
𝑖
Node 17:
k∆𝑦
𝑇16
𝑖
− 𝑇17
𝑖
∆𝑥
+ k∆𝑦
𝑇18
𝑖
− 𝑇17
𝑖
∆𝑥
+ k∆𝑥
𝑇12
𝑖
− 𝑇17
𝑖
∆𝑦
+ k∆𝑥
𝑇22
𝑖
− 𝑇17
𝑖
∆𝑦
=
𝜌∆𝑥∆𝑦∁
𝑇17
𝑖+1
−𝑇17
𝑖
∆𝑡
𝑇17
𝑖+1
= (( k ∆𝑦
𝑇16
𝑖
− 𝑇17
𝑖
∆𝑥
+ k ∆𝑦
𝑇18
𝑖
− 𝑇17
𝑖
∆𝑥
+ k ∆𝑥
𝑇12
𝑖
− 𝑇17
𝑖
∆𝑦
+
k∆𝑥
𝑇22
𝑖
− 𝑇17
𝑖
∆𝑦
)
∆𝑡
𝜌∁∆𝑥∆𝑦
) + 𝑇17
𝑖
Node 18:
k∆𝑦
𝑇17
𝑖
− 𝑇18
𝑖
∆𝑥
+ k∆𝑦
𝑇19
𝑖
− 𝑇18
𝑖
∆𝑥
+ k∆𝑥
𝑇13
𝑖
− 𝑇18
𝑖
∆𝑦
+ k∆𝑥
𝑇23
𝑖
− 𝑇18
𝑖
∆𝑦
=
𝜌∆𝑥∆𝑦∁
𝑇18
𝑖+1
−𝑇18
𝑖
∆𝑡
𝑇18
𝑖+1
= (( k ∆𝑦
𝑇17
𝑖
− 𝑇18
𝑖
∆𝑥
+ k ∆𝑦
𝑇19
𝑖
− 𝑇18
𝑖
∆𝑥
+ k ∆𝑥
𝑇13
𝑖
− 𝑇18
𝑖
∆𝑦
+
k∆𝑥
𝑇23
𝑖
− 𝑇18
𝑖
∆𝑦
)
∆𝑡
𝜌∁∆𝑥∆𝑦
) + 𝑇18
𝑖
Node 19:
ℎ𝑖∆𝑦(𝑇ℎ − 𝑇19
𝑖
) + k∆𝑦
𝑇18
𝑖
− 𝑇19
𝑖
∆𝑥
+ k
∆𝑥
2
𝑇14
𝑖
− 𝑇19
𝑖
∆𝑦
+ k
∆𝑥
2
𝑇24
𝑖
− 𝑇19
𝑖
∆𝑦
=
𝜌
∆𝑥
2
∆𝑦∁
𝑇19
𝑖+1
−𝑇19
𝑖
∆𝑡
𝑇19
𝑖+1
= ((ℎ𝑖∆𝑦 ( 𝑇ℎ − 𝑇19
𝑖
) + k ∆𝑦
𝑇18
𝑖
− 𝑇19
𝑖
∆𝑥
+ k
∆𝑥
2
𝑇14
𝑖
− 𝑇19
𝑖
∆𝑦
+
k
∆𝑥
2
𝑇24
𝑖
− 𝑇19
𝑖
∆𝑦
)
2∆𝑡
𝜌∁∆𝑥∆𝑦
) + 𝑇19
𝑖
Node 20:
ℎ𝑜
∆𝑥
2
( 𝑇∞ − 𝑇20
𝑖
) + ℎ𝑜
∆𝑦
2
( 𝑇∞ − 𝑇20
𝑖
) + k
∆𝑦
2
𝑇21
𝑖
− 𝑇20
𝑖
∆𝑥
+
k
∆𝑥
2
𝑇15
𝑖
− 𝑇20
𝑖
∆𝑦
= 𝜌
∆𝑥
2
∆𝑦
2
∁
𝑇20
𝑖+20
−𝑇20
𝑖
∆𝑡
𝑇20
𝑖+20
= ((ℎ𝑜
∆𝑥
2
( 𝑇∞ − 𝑇20
𝑖
) + ℎ𝑜
∆𝑦
2
( 𝑇∞ − 𝑇20
𝑖
) +
k
∆𝑦
2
𝑇21
𝑖
− 𝑇20
𝑖
∆𝑥
+ k
∆𝑥
2
𝑇15
𝑖
− 𝑇20
𝑖
∆𝑦
)
4∆𝑡
𝜌∁∆𝑥∆𝑦
) + 𝑇20
𝑖
Node 21:
ℎ𝑜∆𝑥(𝑇∞ − 𝑇21
𝑖
)+ k
∆𝑦
2
𝑇20
𝑖
− 𝑇21
𝑖
∆𝑥
+ k
∆𝑦
2
𝑇22
𝑖
− 𝑇21
𝑖
∆𝑥
+ k∆𝑥
𝑇16
𝑖
− 𝑇21
𝑖
∆𝑦
=
𝜌∆𝑥
∆𝑦
2
∁
𝑇21
𝑖+1
−𝑇21
𝑖
∆𝑡
𝑇21
𝑖+1
= ((ℎ𝑜∆𝑥 ( 𝑇∞ − 𝑇21
𝑖
) + k
∆𝑦
2
𝑇20
𝑖
− 𝑇21
𝑖
∆𝑥
+ k
∆𝑦
2
𝑇22
𝑖
− 𝑇21
𝑖
∆𝑥
+
k∆𝑥
𝑇16
𝑖
− 𝑇21
𝑖
∆𝑦
)
2∆𝑡
𝜌∁∆𝑥∆𝑦
) + 𝑇21
𝑖
Node 22:
ℎ𝑜∆𝑥(𝑇∞ − 𝑇22
𝑖
)+ k
∆𝑦
2
𝑇21
𝑖
− 𝑇22
𝑖
∆𝑥
+ k
∆𝑦
2
𝑇23
𝑖
− 𝑇22
𝑖
∆𝑥
+ k∆𝑥
𝑇17
𝑖
− 𝑇22
𝑖
∆𝑦
=
𝜌∆𝑥
∆𝑦
2
∁
𝑇22
𝑖+1
−𝑇22
𝑖
∆𝑡
𝑇22
𝑖+1
= ((ℎ𝑜∆𝑥 ( 𝑇∞ − 𝑇22
𝑖
) + k
∆𝑦
2
𝑇21
𝑖
− 𝑇22
𝑖
∆𝑥
+ k
∆𝑦
2
𝑇23
𝑖
− 𝑇22
𝑖
∆𝑥
+
k∆𝑥
𝑇17
𝑖
− 𝑇22
𝑖
∆𝑦
)
2∆𝑡
𝜌∁∆𝑥∆𝑦
) + 𝑇22
𝑖
Node 23:
ℎ𝑜∆𝑥(𝑇∞ − 𝑇23
𝑖
)+ k
∆𝑦
2
𝑇22
𝑖
− 𝑇23
𝑖
∆𝑥
+ k
∆𝑦
2
𝑇24
𝑖
− 𝑇23
𝑖
∆𝑥
+ k∆𝑥
𝑇18
𝑖
− 𝑇23
𝑖
∆𝑦
=
𝜌∆𝑥
∆𝑦
2
∁
𝑇23
𝑖+1
−𝑇23
𝑖
∆𝑡
𝑇23
𝑖+1
= ((ℎ𝑜∆𝑥 ( 𝑇∞ − 𝑇23
𝑖
) + k
∆𝑦
2
𝑇22
𝑖
− 𝑇23
𝑖
∆𝑥
+ k
∆𝑦
2
𝑇24
𝑖
− 𝑇23
𝑖
∆𝑥
+
k∆𝑥
𝑇18
𝑖
− 𝑇23
𝑖
∆𝑦
)
2∆𝑡
𝜌∁∆𝑥∆𝑦
) + 𝑇23
𝑖
Node 24:
ℎ𝑜
∆𝑥
2
( 𝑇∞ − 𝑇24
𝑖
) + ℎ𝑖
∆𝑦
2
( 𝑇ℎ − 𝑇24
𝑖
) + k
∆𝑦
2
𝑇23
𝑖
− 𝑇24
𝑖
∆𝑥
+
k
∆𝑥
2
𝑇19
𝑖
− 𝑇24
𝑖
∆𝑦
= 𝜌
∆𝑥
2
∆𝑦
2
∁
𝑇24
𝑖+1
−𝑇24
𝑖
∆𝑡
𝑇24
𝑖+1
= ((ℎ𝑜
∆𝑥
2
(𝑇∞ − 𝑇24
𝑖
)+ ℎ𝑖
∆𝑦
2
(𝑇ℎ − 𝑇24
𝑖
) + k
∆𝑦
2
𝑇23
𝑖
− 𝑇24
𝑖
∆𝑥
+
k
∆𝑥
2
𝑇19
𝑖
− 𝑇24
𝑖
∆𝑦
)
4∆𝑡
𝜌∁∆𝑥∆𝑦
) + 𝑇24
𝑖
III. PROGRAMMING & SOLUTION
With the help of a computer program we can solve the
matrix created by finite difference equations for 24 nodes.
We can calculate temperature distribution and stress
distribution with respect to time.
Table.1: Material Property and Boundary Conditions
Material Properties and Boundary
Conditions for Alumina Ramming Mass
Unit
1
Internal Film Co-efficient
hi
200 W/m2
K
2
External Film Co-efficient
ho
40 W/m2
K
3
Atmosphere Film Co-
efficient ha
10 W/m2
K
4 Density 3400 Kg/m3
5 Time Interval Δt 10 Secon
International Journal of Civil, Mechanical and Energy Science (IJCMES) [Vol-3, Issue-1, Jan-Feb, 2017]
https://dx.doi.org/10.24001/ijcmes.3.1.7 ISSN: 2455-5304
www.ijcmes.com Page | 46
ds
6 Thermal Conductivity k
2.6 W/m
K
7
Temperature outside
Furnace Wall
303
Kelvin
8
Temperature inside
Furnace Wall
1873
Kelvin
9 Temperature of Air 303 Kelvin
10 Specific Heat 920 J/kg K
11 Elasticity Constant 220000 N/ m2
12
Thermal Expansion Co-
efficient
0.00000
088
m/ K
13 Ultimate Stress 500 MPa
Computer Program
#include<iostream.h>
#include<conio.h>
#include<math.h>
#include<complex.h>
#include<fstream.h>
void main()
{ clrscr;
ofstreammyfile;
myfile.open ("outputfdm.txt");
myfile<<"Writing this to a file.n";
float T[25][500];
float S[25][500];
float hi,ho,ha,To,r,t,k,Ta,c,Th,E,Af,Sut,Se,m,N,L;
cout<<"Enter in W/m2 K value of hi";
cin>>hi;
cout<<"Enter in W/m2 K value of ho";
cin>>ho;
cout<<"Enter in W/m2 K value of ha";
cin>>ha;
cout<<"Enter in Kg/m3 value of density";
cin>>r;
cout<<"Enter in seconds time interval delta t";
cin>>t;
cout<<"Enter in W/m K value of thermal conductivity";
cin>>k;
cout<<"Enter in Kelvin Temperature outside Furnace
Wall";
cin>>Ta;
cout<<"Enter in Kelvin Temperature inside Furnace Wall";
cin>>Th;
cout<<"Enter in Kelvin Temperature of Air";
cin>>To;
cout<<"Enter in J/Kg K value of Specific Heat";
cin>>c;
cout<<"Enter in N/m2 value of Elasticity Constant";
cin>>E;
cout<<"Enter in m/K Thermal Expansion Co-efficient";
cin>>Af;
cout<<"Enter in MPA value of Ultimate Stress";
cin>>Sut;
T[1][0]=300;
T[2][0]=300;
T[3][0]=300;
T[4][0]=300;
T[5][0]=300;
T[6][0]=300;
T[7][0]=300;
T[8][0]=300;
T[9][0]=300;
T[10][0]=300;
T[11][0]=300;
T[12][0]=300;
T[13][0]=300;
T[14][0]=300;
T[15][0]=300;
T[16][0]=300;
T[17][0]=300;
T[18][0]=300;
T[19][0]=300;
T[20][0]=300;
T[21][0]=300;
T[22][0]=300;
T[23][0]=300;
T[24][0]=300;
for (inti=0; i<=270;i++)
{
T[1][i+1] = (((0.5*ha*0.06*(To-T[1][i])) +(ho*0.3*(Ta-
T[1][i])/2)+(0.5*k*0.3*(T[2][i]-
T[1][i])/0.06)+(0.5*k*0.06*(T[4][i]-T[1][i])/0.3)
)*((4*t)/(r*c*0.06*0.3)))+T[1][i];
T[2][i+1] = (((ha*0.06*(To-T[2][i]))+(0.5*k*0.3*(T[1][i]-
T[2][i])/0.06)+(0.5*k*0.3*(T[3][i]-T[2][i])/0.06)
+(0.5*k*0.06*(T[5][i]-
T[2][i])/0.3))*((2*t)/(r*c*0.06*0.3)))+T[2][i];
T[3][i+1] = (((ha*0.06*(To-T[3][i])*0.5) +( hi*0.3*(Th-
T[3][i])*0.5 ) +(0.5*k*0.3*(T[2][i]-
T[3][i])/0.06)+(0.5*k*0.06*(T[6][i]-T[3][i])/0.3))
*((4*t)/(r*c*0.06*0.3)))+T[3][i];
T[4][i+1] = ((( ho*0.3*(Ta-T[4][i])) +(k*0.3*(T[5][i]-
T[4][i])/0.06)+(0.5*k*0.06*(T[1][i]-T[4][i])/0.3) +
(0.5*k*0.06*(T[7][i]-T[4][i])/0.3))
*((2*t)/(r*c*0.06*0.3)))+T[4][i];
International Journal of Civil, Mechanical and Energy Science (IJCMES) [Vol-3, Issue-1, Jan-Feb, 2017]
https://dx.doi.org/10.24001/ijcmes.3.1.7 ISSN: 2455-5304
www.ijcmes.com Page | 47
T[5][i+1] = (((k*0.3*(T[4][i]-
T[5][i])/0.06)+(k*0.3*(T[6][i]-T[5][i])/0.06) +
(k*0.06*(T[8][i]-T[5][i])/0.3))
*((t)/(r*c*0.06*0.3)))+T[5][i];
T[6][i+1] = (((hi*0.3*(Th-T[6][i])) + (k*0.3*(T[2][i]-
T[6][i])/0.06)+(0.5*k*0.06*(T[3][i]-T[6][i])/0.3) +
(0.5*k*0.06*(T[9][i]-T[6][i])/0.3))
*((2*t)/(r*c*0.06*0.3)))+T[6][i];
T[7][i+1] = (((ho*0.3*(Ta-T[7][i])) + (k*0.3*(T[8][i]-
T[7][i])/0.06)+(0.5*k*0.06*(T[4][i]-T[7][i])/0.3) +
(0.5*k*0.06*(T[10][i]-T[7][i])/0.3))
*((2*t)/(r*c*0.06*0.3)))+T[7][i];
T[8][i+1] = (((k*0.3*(T[7][i]-T[8][i])/0.06)+(
k*0.3*(T[9][i]-T[8][i])/0.06 ) +(k*0.06*(T[5][i]-
T[8][i])/0.3) + (k*0.06*(T[11][i]-T[8][i])/0.3))
*((t)/(r*c*0.06*0.3)))+T[8][i];
T[9][i+1] = (( (hi*0.3*(Th-T[9][i]))+(k*0.3*(T[8][i]-
T[9][i])/0.06)+ (0.5*k*0.06*(T[6][i]-T[9][i])/0.3) +
(0.5*k*0.06*(T[12][i]-T[9][i])/0.3))
*((2*t)/(r*c*0.06*0.3)))+T[9][i];
T[10][i+1] = (( (ho*0.18*(Ta-T[10][i]))+(k*0.18*(T[11][i]-
T[10][i])/0.06)+ (0.5*k*0.06*(T[7][i]-T[10][i])/0.18) +
(0.5*k*0.06*(T[15][i]-T[10][i])/0.18))
*((2*t)/(r*c*0.06*0.18)))+T[10][i];
T[11][i+1] = (( (k*0.18*(T[10][i]-T[11][i])/0.06)+
(k*0.18*(T[12][i]-T[11][i])/0.06)+ (k*0.06*(T[8][i]-
T[11][i])/0.18) + (k*0.06*(T[16][i]-T[11][i])/0.18))
*((t)/(r*c*0.06*0.18)))+T[11][i];
T[12][i+1] = (( (0.5*hi*0.12*(Th-T[12][i]))+(
0.5*hi*0.18*(Th-T[12][i])) +(k*0.18*(T[11][i]-
T[12][i])/0.12)+ (0.5*k*0.18*(T[13][i]-
T[12][i])/0.12)+(0.5*k*0.12*(T[9][i]-T[12][i])/0.18) +
(k*0.12*(T[17][i]-T[12][i])/0.18))
*((4*t)/(3*r*c*0.12*0.18))) +T[12][i];
T[13][i+1] = (( (hi*0.18*(Th-
T[13][i]))+(0.5*k*0.18*(T[12][i]-T[13][i])/0.18)+
(0.5*k*0.18*(T[14][i]-T[13][i])/0.18)+ (k*0.18*(T[18][i]-
T[13][i])/0.18)) *((2*t)/(r*c*0.18*0.18)))+T[13][i];
T[14][i+1] = (( (0.5*hi*0.18*(Th-
T[14][i]))+(0.5*hi*0.18*(Th-T[14][i]))
+(0.5*k*0.18*(T[13][i]-T[14][i])/0.18)+
(0.5*k*0.18*(T[19][i]-T[14][i])/0.18))
*((4*t)/(r*c*0.18*0.18)))+T[14][i];
T[15][i+1] = (( (ho*0.06*(Ta-T[15][i]))+(k*0.06*(T[16][i]-
T[15][i])/0.06)+ (0.5*k*0.06*(T[10][i]-T[15][i])/0.06)+(
0.5*k*0.06*(T[20][i]-T[15][i])/0.06))
*((2*t)/(r*c*0.06*0.06)))+T[15][i];
T[16][i+1] = (( (k*0.06*(T[15][i]-T[16][i])/0.06)+
(k*0.06*(T[17][i]-T[16][i])/0.06 )+(k*0.06*(T[11][i]-
T[16][i])/0.06)+( k*0.06*(T[21][i]-T[16][i])/0.06))
*((t)/(r*c*0.06*0.06)))+T[16][i];
T[17][i+1] = (( (k*0.06*(T[16][i]-T[17][i])/0.12)+
(k*0.06*(T[18][i]-T[17][i])/0.12 )+(k*0.12*(T[12][i]-
T[17][i])/0.06)+( k*0.12*(T[22][i]-T[17][i])/0.06))
*((t)/(r*c*0.12*0.06)))+T[17][i];
T[18][i+1] = (( (k*0.06*(T[17][i]-T[18][i])/0.18)+
(k*0.06*(T[19][i]-T[18][i])/0.18 )+(k*0.18*(T[13][i]-
T[18][i])/0.06)+( k*0.18*(T[23][i]-T[18][i])/0.06))
*((t)/(r*c*0.18*0.06)))+T[18][i];
T[19][i+1] = (( (hi*0.06*(Th-T[19][i]))+(k*0.06*(T[18][i]-
T[19][i])/0.18)+ (0.5*k*0.18*(T[14][i]-T[19][i])/0.06)+(
0.5*k*0.18*(T[24][i]-T[19][i])/0.06))
*((2*t)/(r*c*0.18*0.06)))+T[19][i];
T[20][i+1] = (( (0.5*ho*0.06*(Ta-T[20][i]))+(
0.5*ho*0.06*(Ta-T[20][i]))+(0.5*k*0.06*(T[21][i]-
T[20][i])/0.06)+ (0.5*k*0.06*(T[15][i]-
T[20][i])/0.06))*((4*t)/(r*c*0.06*0.06)))+T[20][i];
T[21][i+1] = (( (0.5*ho*0.06*(Ta-
T[21][i]))+(0.5*k*0.06*(T[20][i]-T[21][i])/0.06)+(
0.5*k*0.06*(T[22][i]-T[21][i])/0.06)+ (k*0.06*(T[16][i]-
T[21][i])/0.06))*((2*t)/(r*c*0.06*0.06)))+T[21][i];
T[22][i+1] = (( (ho*0.12*(Ta-
T[22][i]))+(0.5*k*0.06*(T[21][i]-T[22][i])/0.12)+(
0.5*k*0.06*(T[23][i]-T[22][i])/0.12)+ (k*0.12*(T[17][i]-
T[22][i])/0.06))*((2*t)/(r*c*0.12*0.06)))+T[22][i];
T[23][i+1] = (( (ho*0.18*(Ta-
T[23][i]))+(0.5*k*0.06*(T[22][i]-T[23][i])/0.18)+(
0.5*k*0.06*(T[24][i]-T[23][i])/0.18)+ (k*0.18*(T[18][i]-
T[23][i])/0.06))*((2*t)/(r*c*0.18*0.06)))+T[23][i];
T[24][i+1] = (( (0.5*ho*0.18*(Ta-T[24][i]))+(
0.5*hi*0.06*(Th-T[24][i])) +(0.5*k*0.06*(T[23][i]-
T[24][i])/0.18)+ (0.5*k*0.18*(T[19][i]-
T[24][i])/0.06))*((4*t)/(r*c*0.18*0.06)))+T[24][i];
S[14][i] = E*Af*T[14][i];
}
for (i=271; i<=360;i++)
{
hi=ha;
Th=Ta;
T[1][i+1] = (((0.5*ha*0.06*(To-T[1][i])) +(ho*0.3*(Ta-
T[1][i])/2)+(0.5*k*0.3*(T[2][i]-
T[1][i])/0.06)+(0.5*k*0.06*(T[4][i]-T[1][i])/0.3)
)*((4*t)/(r*c*0.06*0.3)))+T[1][i];
T[2][i+1] = (((ha*0.06*(To-T[2][i]))+(0.5*k*0.3*(T[1][i]-
T[2][i])/0.06)+(0.5*k*0.3*(T[3][i]-T[2][i])/0.06)
International Journal of Civil, Mechanical and Energy Science (IJCMES) [Vol-3, Issue-1, Jan-Feb, 2017]
https://dx.doi.org/10.24001/ijcmes.3.1.7 ISSN: 2455-5304
www.ijcmes.com Page | 48
+(0.5*k*0.06*(T[5][i]-
T[2][i])/0.3))*((2*t)/(r*c*0.06*0.3)))+T[2][i];
T[3][i+1] = (((ha*0.06*(To-T[3][i])*0.5) +( hi*0.3*(Th-
T[3][i])*0.5 ) +(0.5*k*0.3*(T[2][i]-
T[3][i])/0.06)+(0.5*k*0.06*(T[6][i]-T[3][i])/0.3))
*((4*t)/(r*c*0.06*0.3)))+T[3][i];
T[4][i+1] = ((( ho*0.3*(Ta-T[4][i])) +(k*0.3*(T[5][i]-
T[4][i])/0.06)+(0.5*k*0.06*(T[1][i]-T[4][i])/0.3) +
(0.5*k*0.06*(T[7][i]-T[4][i])/0.3))
*((2*t)/(r*c*0.06*0.3)))+T[4][i];
T[5][i+1] = (((k*0.3*(T[4][i]-
T[5][i])/0.06)+(k*0.3*(T[6][i]-T[5][i])/0.06) +
(k*0.06*(T[8][i]-T[5][i])/0.3))
*((t)/(r*c*0.06*0.3)))+T[5][i];
T[6][i+1] = (((hi*0.3*(Th-T[6][i])) + (k*0.3*(T[2][i]-
T[6][i])/0.06)+(0.5*k*0.06*(T[3][i]-T[6][i])/0.3) +
(0.5*k*0.06*(T[9][i]-T[6][i])/0.3))
*((2*t)/(r*c*0.06*0.3)))+T[6][i];
T[7][i+1] = (((ho*0.3*(Ta-T[7][i])) + (k*0.3*(T[8][i]-
T[7][i])/0.06)+(0.5*k*0.06*(T[4][i]-T[7][i])/0.3) +
(0.5*k*0.06*(T[10][i]-T[7][i])/0.3))
*((2*t)/(r*c*0.06*0.3)))+T[7][i];
T[8][i+1] = (((k*0.3*(T[7][i]-T[8][i])/0.06)+(
k*0.3*(T[9][i]-T[8][i])/0.06 ) +(k*0.06*(T[5][i]-
T[8][i])/0.3) + (k*0.06*(T[11][i]-T[8][i])/0.3))
*((t)/(r*c*0.06*0.3)))+T[8][i];
T[9][i+1] = (( (hi*0.3*(Th-T[9][i]))+(k*0.3*(T[8][i]-
T[9][i])/0.06)+ (0.5*k*0.06*(T[6][i]-T[9][i])/0.3) +
(0.5*k*0.06*(T[12][i]-T[9][i])/0.3))
*((2*t)/(r*c*0.06*0.3)))+T[9][i];
T[10][i+1] = (( (ho*0.18*(Ta-T[10][i]))+(k*0.18*(T[11][i]-
T[10][i])/0.06)+ (0.5*k*0.06*(T[7][i]-T[10][i])/0.18) +
(0.5*k*0.06*(T[15][i]-T[10][i])/0.18))
*((2*t)/(r*c*0.06*0.18)))+T[10][i];
T[11][i+1] = (( (k*0.18*(T[10][i]-T[11][i])/0.06)+
(k*0.18*(T[12][i]-T[11][i])/0.06)+ (k*0.06*(T[8][i]-
T[11][i])/0.18) + (k*0.06*(T[16][i]-T[11][i])/0.18))
*((t)/(r*c*0.06*0.18)))+T[11][i];
T[12][i+1] = (( (0.5*hi*0.12*(Th-T[12][i]))+(
0.5*hi*0.18*(Th-T[12][i])) +(k*0.18*(T[11][i]-
T[12][i])/0.12)+ (0.5*k*0.18*(T[13][i]-
T[12][i])/0.12)+(0.5*k*0.12*(T[9][i]-T[12][i])/0.18) +
(k*0.12*(T[17][i]-T[12][i])/0.18))
*((4*t)/(3*r*c*0.12*0.18))) +T[12][i];
T[13][i+1] = (( (hi*0.18*(Th-
T[13][i]))+(0.5*k*0.18*(T[12][i]-T[13][i])/0.18)+
(0.5*k*0.18*(T[14][i]-T[13][i])/0.18)+ (k*0.18*(T[18][i]-
T[13][i])/0.18)) *((2*t)/(r*c*0.18*0.18)))+T[13][i];
T[14][i+1] = (( (0.5*hi*0.18*(Th-
T[14][i]))+(0.5*hi*0.18*(Th-T[14][i]))
+(0.5*k*0.18*(T[13][i]-T[14][i])/0.18)+
(0.5*k*0.18*(T[19][i]-T[14][i])/0.18))
*((4*t)/(r*c*0.18*0.18)))+T[14][i];
T[15][i+1] = (( (ho*0.06*(Ta-T[15][i]))+(k*0.06*(T[16][i]-
T[15][i])/0.06)+ (0.5*k*0.06*(T[10][i]-T[15][i])/0.06)+(
0.5*k*0.06*(T[20][i]-T[15][i])/0.06))
*((2*t)/(r*c*0.06*0.06)))+T[15][i];
T[16][i+1] = (( (k*0.06*(T[15][i]-T[16][i])/0.06)+
(k*0.06*(T[17][i]-T[16][i])/0.06 )+(k*0.06*(T[11][i]-
T[16][i])/0.06)+( k*0.06*(T[21][i]-T[16][i])/0.06))
*((t)/(r*c*0.06*0.06)))+T[16][i];
T[17][i+1] = (( (k*0.06*(T[16][i]-T[17][i])/0.12)+
(k*0.06*(T[18][i]-T[17][i])/0.12 )+(k*0.12*(T[12][i]-
T[17][i])/0.06)+( k*0.12*(T[22][i]-T[17][i])/0.06))
*((t)/(r*c*0.12*0.06)))+T[17][i];
T[18][i+1] = (( (k*0.06*(T[17][i]-T[18][i])/0.18)+
(k*0.06*(T[19][i]-T[18][i])/0.18 )+(k*0.18*(T[13][i]-
T[18][i])/0.06)+( k*0.18*(T[23][i]-T[18][i])/0.06))
*((t)/(r*c*0.18*0.06)))+T[18][i];
T[19][i+1] = (( (hi*0.06*(Th-T[19][i]))+(k*0.06*(T[18][i]-
T[19][i])/0.18)+ (0.5*k*0.18*(T[14][i]-T[19][i])/0.06)+(
0.5*k*0.18*(T[24][i]-T[19][i])/0.06))
*((2*t)/(r*c*0.18*0.06)))+T[19][i];
T[20][i+1] = (( (0.5*ho*0.06*(Ta-T[20][i]))+(
0.5*ho*0.06*(Ta-T[20][i]))+(0.5*k*0.06*(T[21][i]-
T[20][i])/0.06)+ (0.5*k*0.06*(T[15][i]-
T[20][i])/0.06))*((4*t)/(r*c*0.06*0.06)))+T[20][i];
T[21][i+1] = (( (0.5*ho*0.06*(Ta-
T[21][i]))+(0.5*k*0.06*(T[20][i]-T[21][i])/0.06)+(
0.5*k*0.06*(T[22][i]-T[21][i])/0.06)+ (k*0.06*(T[16][i]-
T[21][i])/0.06))*((2*t)/(r*c*0.06*0.06)))+T[21][i];
T[22][i+1] = (( (ho*0.12*(Ta-
T[22][i]))+(0.5*k*0.06*(T[21][i]-T[22][i])/0.12)+(
0.5*k*0.06*(T[23][i]-T[22][i])/0.12)+ (k*0.12*(T[17][i]-
T[22][i])/0.06))*((2*t)/(r*c*0.12*0.06)))+T[22][i];
T[23][i+1] = (( (ho*0.18*(Ta-
T[23][i]))+(0.5*k*0.06*(T[22][i]-T[23][i])/0.18)+(
0.5*k*0.06*(T[24][i]-T[23][i])/0.18)+ (k*0.18*(T[18][i]-
T[23][i])/0.06))*((2*t)/(r*c*0.18*0.06)))+T[23][i];
T[24][i+1] = (( (0.5*ho*0.18*(Ta-T[24][i]))+(
0.5*hi*0.06*(Th-T[24][i])) +(0.5*k*0.06*(T[23][i]-
T[24][i])/0.18)+ (0.5*k*0.18*(T[19][i]-
T[24][i])/0.06))*((4*t)/(r*c*0.18*0.06)))+T[24][i];
S[14][i] = E*Af*T[14][i];
}
for(i=0; i<=360;i=i+6)
International Journal of Civil, Mechanical and Energy Science (IJCMES) [Vol-3, Issue-1, Jan-Feb, 2017]
https://dx.doi.org/10.24001/ijcmes.3.1.7 ISSN: 2455-5304
www.ijcmes.com Page | 49
{
myfile<<"MAXIMUM TEMPERATURE AFTER
"<<i/6<<" MINUTES"<<T[14][i]<<" KELVIN"<<endl;
myfile<<"MAXIMUM STRESS AFTER "<<i/6<<"
MINUTES "<<S[14][i]<<" MPa"<<endl; }
for(i=0; i<=300; i++)
{
if (i==270)
{
myfile<<"S"<<S[14][i];
Se=0.15*Sut;
m = (Sut-Se)/7;
N = 7 -((S[14][i]-Se)/m);
L = pow(10,N);
myfile<<"N"<<N;
myfile<<"LIFE CYCLE"<<L;
myfile.close();
}
}
getch(); }
IV. RESULTS AND DISCUSSION
We can see from the Fig. 2 that maximum temperature is
increasing from atmospheric temperature 300 K and reaches
to maximum temperature 1787 K in 45 minutes and then
starts reducing and reaches to 869 K in next 15 minutes. It
again starts increasing and reaches to maximum 1787 K
after 105 minutes and again starts reducing. There are 10
similar temperature cycles in one day.
Fig.2: Maximum temperature v/s time graph for alumina
ramming mass
Fig.3: Maximum thermal stress v/s time graph for alumina
ramming mass
We can see from the Fig. 3 that maximum thermal stress is
increasing from initial condition 0 MPa and reaches to
maximum stress 346 MPa in 45 minutes and then starts
reducing and reaches to 168 MPa in next 15 minutes. It
again starts increasing and reaches to maximum stress 346
MPa after 105 minutes and again it starts reducing. There
are 10 similar thermal stress cycles in one day.
Stress-Life Method
To determine life of any component by Stress-Life Method,
we need to find out ultimate strength and endurance limit of
the component for the required material.
We know the values of ultimate stress for these all
materials. Alumina ramming mass is having ultimate
strength of 500 MPa. We can find out Se’ from the
equation given below or we can say dividing value of
ultimate strength.
We know value of ultimate stress of alumina
ramming mass is 500 Mpa.
We know the relation between Sut and Se’ so that we can
find out Se’.
Se’ = 0.5 * Sut= 250 MPa
Endurance Limit Modifying Factors
We have seen that the rotating-beam specimen used in the
laboratory to determine endurance limits is prepared very
carefully and tested under closely controlled conditions.
It is unrealistic to expect the endurance limit of a
mechanical or structural member to match the values
obtained in the laboratory.
0
500
1000
1500
2000
1
43
85
127
169
211
253
295
337
379
421
463
505
547
589
Temperature(Kelvin)
Time (Minutes)
Maximum Temperature v/s Time
Alumina Ramming Mass
0
100
200
300
400
1
43
85
127
169
211
253
295
337
379
421
463
505
547
589
Stress(MPa)
Time (Minutes)
Maximum Stress v/s Time Alumina
Ramming Mass
International Journal of Civil, Mechanical and Energy Science (IJCMES) [Vol-3, Issue-1, Jan-Feb, 2017]
https://dx.doi.org/10.24001/ijcmes.3.1.7 ISSN: 2455-5304
www.ijcmes.com Page | 50
Some differences include
Material: composition, basis of failure, variability
Manufacturing: method, heat treatment, fretting corrosion,
surface condition, stress concentration
Environment: corrosion, temperature, stress state, relaxation
times
Design: size, shape, life, stress state, stress concentration,
speed, fretting, galling
Marin identified factors that quantified the effects of surface
condition, size, loading, temperature, and miscellaneous
items. The question of whether to adjust the endurance limit
by subtractive corrections or multiplicative corrections was
resolved by an extensive statistical analysis of a 4340
(electric furnace, aircraft quality) steel, in which a
correlation coefficient of 0.85 was found for the
multiplicative form and 0.40 for the additive form.
A Marin equation is therefore written as
Se = ka*kb*kc*kd*ke*kf* Se’
Where,
ka= surface condition modification factor = 0.84
kb= size modification factor = 0.98
kc= load modification factor = 0.96
kd= temperature modification factor = 0.45
ke= reliability factor = 0.9
kf= miscellaneous-effects modification factor = 0.95
Se’= specimen endurance limit
Se = endurance limit at the critical location of a machine
part in the geometry and condition of use.
We can find out different factor like surface finish factor,
size factor, loading factor, temperature factor, reliability
factor, miscellaneous effects factor as per the guideline.
(Joseph E. Shigleyet al, Machine Engineering Design)
Now, we can find out endurance limit for all different
materials.
Se = ka*kb*kc*kd*ke*kf*Se' = 75 MPa
Fig. 3: Stress v/s Life Cycle for Alumina Ramming Mass
N (No. of working cycles) = LminX (100-Probability) / (100
X Miscellaneous Factor)
D (No. of working days) = N / (No. of working cycles per
day)
Table.2: Number of Working Cycles and Number of
Working Days with Probability
Sr.
No.
Probability
(%)
No. of working
cycles for
Alumina
Ramming Mass
No. of
days
working
1 100 342 38.0
2 90 349 38.8
3 80 356 39.5
4 70 363 40.3
5 60 369 41.0
6 50 376 41.8
7 40 383 42.6
8 30 390 43.3
9 20 397 44.1
10 10 404 44.8
We can understand from this table that all cases of
induction furnace wall will work for minimum 342 working
cycles and 38 days. The probability will be decreasing
continuously with increase in life span and working days. It
happens very rarely that induction furnace wall will work
for 404 working cycles and 44.8 days so its probability is
minimum 10% of cases can be having such a large life span.
0
100
200
300
400
500
600
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
Stress(MPa)
Life Cycle (Log N)
Stress v/s Life Cycle Alumina Ramming
Mass
International Journal of Civil, Mechanical and Energy Science (IJCMES) [Vol-3, Issue-1, Jan-Feb, 2017]
https://dx.doi.org/10.24001/ijcmes.3.1.7 ISSN: 2455-5304
www.ijcmes.com Page | 51
V. CONCLUSION
Induction Melting Furnaces are highly used now- a-days for
melting of different kinds of materials. The problem comes
from the alumina ramming mass of losing its material
properties and failure occurs within 340-370 hours of
lifetime. It will disturb production schedule as it requires
time to replace the induction melting furnace wall of
alumina ramming mass. Explicit finite difference analysis is
done for induction melting furnace refractory wall and
validation is done with respect to experimental Results.
Explicit finite difference analysis is done with respect to
actual working conditions of induction furnace and material
properties of alumina ramming mass. Then S – log N
Curves are plotted for Life Span Prediction.
We had found life span of different materials like alumina
ramming mass is 340-370 cycles. From the results of
experimental study and explicit finite difference analysis of
thermal fatigue failure of induction melting furnace wall, it
can be seen that finite difference model exactly predicts the
failure of the induction furnace refractory wall and the
definite solution conditions in the finite difference
numerical calculation are accurate. The fatigue life of the
induction melting furnace refractory wall under thermal
fatigue working conditions was predicted using stress-life
method by plotting S – log N curves for alumina ramming
mass on the basis of explicit finite difference calculations
and maximum thermal stress in the induction melting
furnace refractory wall. We can use it as a linear to increase
lifespan or we can use premixed alumina ramming mass for
economical and better working lifespan of induction
melting furnace wall.
The accuracy of the fatigue life prediction for the induction
melting furnace refractory wall depends upon temperature
and thermal stress spectrum calculated at the critical point
by explicit finite difference method and S-log N curves
prepared from the material properties and boundary
condition for alumina ramming mass.
REFERENCES
[1] Nirajkumar Mehta, (May 2012), Review on
Computational Investigation on Different Kinds of
Furnaces, International Conference on Emerging
Technologies and Applications in Engineering,
Technology and Sciences, Volume 3, pp 1 – 7.
[2] N C Mehta, Vipul B Gondaliya, Jayesh V Gundaniya,
(February 2013), Applications of Different Numerical
Methods in Heat Transfer - A Review, International
Journal of Emerging Technology and Advanced
Engineering, Volume 3, Issue 2, pp 363 – 368.
[3] N C Mehta, Akash D Raiyani, Vikas R Gondalia,
(February 2013), Thermal Fatigue Analysis of
Induction Melting Furnace Wall for Silica ramming
mass, International Journal of Emerging Technology
and Advanced Engineering, Volume 3, Issue 2, pp 357
– 362.
[4] Vimal R Nakum, Kevin M Vyas, Niraj C Mehta, (April
2013), Research on Induction Heating - A Review,
International Journal of Science and Engineering
Applications, Volume 2, Issue 6, pp 141 – 144, DOI:
10.7753/IJSEA0206.1005.
[5] N C Mehta, Viral V Shiyani, Jemish R Nasit, (May
2013), Metal Forming Analysis, International Journal
of Emerging Technology and Advanced Engineering,
Volume 3, Issue 5, pp 190 - 196.
[6] VipulGondaliya, MehulPujara, Nirajkumar Mehta,
(August 2013), Transient Heat Transfer Analysis of
Induction Furnace by Using Finite Element Analysis,
International Journal of Applied Research, Volume 3,
Issue 8, pp 231 – 234.
[7] N C Mehta, Vasim G Machhar, Ravi K Popat, (October
2013), Thermal Fatigue Analysis of Induction Furnace
Wall for Alumina ramming mass, International Journal
of Science and Engineering Applications, Volume 2,
Issue 10, pp 186 – 190, DOI:
10.7753/IJSEA0210.1002.
[8] Akash D Raiyani, N R Sheth, Niraj C Mehta, (July
2014), Thermal Analysis of Hot Wall Condenser for
Domestic Refrigerator, International Journal of Science
and Research, Volume 3, Issue 7, pp 622 – 626.
[9] Nirajkumar C Mehta, Dipesh D Shukla, Ravi K Popat,
(December 2014), Optimisation of Wall Thickness for
Minimum Heat Loss for Induction Furnace by FEA,
Indian Foundry Journal, Volume 60, No. 12, pp 19-25.
[10]Nirajkumar C Mehta, Dr.Dipesh D Shukla, Vishvash B
Rajyaguru, (April 2015), Numerical Analysis of
Furnace: Review, National Conference on Recent
Research and Development in Core Disciplines of
Engineering, Vadodara, Volume: 2, pp 1 -7.
[11]Nirajkumar C Mehta, Dr.Dipesh D Shukla, Vishvash B
Rajyaguru, (April 2015), Thermal Fatigue Analysis of
Induction Furnace Wall for Zirconia, National
Conference on Recent Research and Development in
Core Disciplines of Engineering, Vadodara, Volume: 2,
pp 1 – 6.
[12]Nirajkumar C Mehta, Dr.Dipesh D Shukla, Pragnesh D
Kandoliya, (April 2015), Comparison of Finite
Difference Method and Finite Element Method for 2 D
Transient Heat Transfer Problem, National Conference
International Journal of Civil, Mechanical and Energy Science (IJCMES) [Vol-3, Issue-1, Jan-Feb, 2017]
https://dx.doi.org/10.24001/ijcmes.3.1.7 ISSN: 2455-5304
www.ijcmes.com Page | 52
on Recent Research and Development in Core
Disciplines of Engineering, Vadodara, Volume: 2, pp 1
– 10.
[13]Nirajkumar C Mehta, Dr.Dipesh D Shukla, (June
2015), Thermal Fatigue Analysis of Induction Furnace
Wall for Magnesia Ramming Mass, ASME 2015
Applied Mechanics and Materials Conference, At
Seattle, Washington, United States of America,
Volume: 12, pp 1 – 6.
[14]Nirajkumar C Mehta, Dr.Dipesh D Shukla, Pragnesh D
Kandoliya, (December 2016), Advanced Mathematical
Modeling of Heat Transfer in Induction Furnace Wall
of Zirconia, International Journal of Engineering
Research and Technology, Volume 5, Issue 10, pp 176
– 181, DOI: 10.17577/IJERTV5IS120128
[15]Nirajkumar C Mehta, Dr.Dipesh D Shukla, Pragnesh D
Kandoliya, (December 2016), Advanced Heat Transfer
Analysis of Alumina Based Refractory Wall of
Induction Furnace, National Conference on Emerging
Trends in Engineering, Volume 1, pp 1 – 6.
[16]A V K Suryanarayana, Fuels Furnaces Refractory and
Pyrometry, B S Publications
[17]Heat and Mass Transfer A practical Approach, by
Yunus A Cengel
[18]Machine Engineering Design, by Joseph E. Shigley and
Charles R. Mischke, TATA McGRAW HILL
Publication, sixth edition John Campbell, Castings,
(2nd Edition)

More Related Content

What's hot

Thermal performance & fire resistance of autoclaved aerated concrete exposed ...
Thermal performance & fire resistance of autoclaved aerated concrete exposed ...Thermal performance & fire resistance of autoclaved aerated concrete exposed ...
Thermal performance & fire resistance of autoclaved aerated concrete exposed ...
eSAT Publishing House
 
Thermal performance &amp; fire resistance of autoclaved aerated concrete expo...
Thermal performance &amp; fire resistance of autoclaved aerated concrete expo...Thermal performance &amp; fire resistance of autoclaved aerated concrete expo...
Thermal performance &amp; fire resistance of autoclaved aerated concrete expo...
eSAT Journals
 
Thermal Performance Analysis for Optimal Passive Cooling Heat Sink Design
Thermal Performance Analysis for Optimal Passive Cooling Heat Sink DesignThermal Performance Analysis for Optimal Passive Cooling Heat Sink Design
Thermal Performance Analysis for Optimal Passive Cooling Heat Sink Design
TELKOMNIKA JOURNAL
 
Magnetic refrigeration
Magnetic refrigerationMagnetic refrigeration
Magnetic refrigeration
Basitali Nevarekar
 
Exergy analysis of magnetic refrigeration
Exergy analysis of magnetic refrigerationExergy analysis of magnetic refrigeration
Exergy analysis of magnetic refrigeration
Manoj maurya
 
Magnetic refrigerator
Magnetic refrigeratorMagnetic refrigerator
Magnetic refrigerator
Kapil Goyal
 
IRJET- Effect of Thermal Properties on Fly Ash based Concrete
IRJET- Effect of Thermal Properties on Fly Ash based ConcreteIRJET- Effect of Thermal Properties on Fly Ash based Concrete
IRJET- Effect of Thermal Properties on Fly Ash based Concrete
IRJET Journal
 
Ag4101187192
Ag4101187192Ag4101187192
Ag4101187192
IJERA Editor
 
PPT on Magnetic Refrigeration
PPT on Magnetic Refrigeration PPT on Magnetic Refrigeration
PPT on Magnetic Refrigeration
Shiva Nand
 
Critical heat flux enhancement in pool boiling with al2 o3 water nanofluid
Critical heat flux enhancement in pool boiling with al2 o3 water nanofluidCritical heat flux enhancement in pool boiling with al2 o3 water nanofluid
Critical heat flux enhancement in pool boiling with al2 o3 water nanofluid
eSAT Journals
 
report magnetic refrigeration
report magnetic refrigerationreport magnetic refrigeration
report magnetic refrigeration
jaseemjm
 
Nanomaterials 10-02386-v2
Nanomaterials 10-02386-v2Nanomaterials 10-02386-v2
Nanomaterials 10-02386-v2
SALTREE
 
Numerical investigation on heat sink by computational fluid dynamics (cfd)
Numerical investigation on heat sink by computational fluid dynamics (cfd)Numerical investigation on heat sink by computational fluid dynamics (cfd)
Numerical investigation on heat sink by computational fluid dynamics (cfd)
eSAT Publishing House
 
30120140503011
3012014050301130120140503011
30120140503011
IAEME Publication
 
seminar on Magnetic Refrigeration - Solid refrigerant
seminar on Magnetic Refrigeration - Solid refrigerantseminar on Magnetic Refrigeration - Solid refrigerant
seminar on Magnetic Refrigeration - Solid refrigerant
Vishal Talape
 
Introduction to Magnetic Refrigeration
Introduction to Magnetic RefrigerationIntroduction to Magnetic Refrigeration
Introduction to Magnetic Refrigeration
Samet Baykul
 
Magnetic refrigeration Seminar PPT
Magnetic refrigeration Seminar PPTMagnetic refrigeration Seminar PPT
Magnetic refrigeration Seminar PPT
Er. Aman Agrawal
 
Experimental Heat Transfer Analysis of Different PCM Material used in Concret...
Experimental Heat Transfer Analysis of Different PCM Material used in Concret...Experimental Heat Transfer Analysis of Different PCM Material used in Concret...
Experimental Heat Transfer Analysis of Different PCM Material used in Concret...
Swapnil Shahade
 
Magnetic refrigeration1
Magnetic refrigeration1Magnetic refrigeration1
Magnetic refrigeration1
AnoopkrishnaS
 
Magnetic refrigiration
Magnetic refrigirationMagnetic refrigiration
Magnetic refrigiration
Jagadeesh
 

What's hot (20)

Thermal performance & fire resistance of autoclaved aerated concrete exposed ...
Thermal performance & fire resistance of autoclaved aerated concrete exposed ...Thermal performance & fire resistance of autoclaved aerated concrete exposed ...
Thermal performance & fire resistance of autoclaved aerated concrete exposed ...
 
Thermal performance &amp; fire resistance of autoclaved aerated concrete expo...
Thermal performance &amp; fire resistance of autoclaved aerated concrete expo...Thermal performance &amp; fire resistance of autoclaved aerated concrete expo...
Thermal performance &amp; fire resistance of autoclaved aerated concrete expo...
 
Thermal Performance Analysis for Optimal Passive Cooling Heat Sink Design
Thermal Performance Analysis for Optimal Passive Cooling Heat Sink DesignThermal Performance Analysis for Optimal Passive Cooling Heat Sink Design
Thermal Performance Analysis for Optimal Passive Cooling Heat Sink Design
 
Magnetic refrigeration
Magnetic refrigerationMagnetic refrigeration
Magnetic refrigeration
 
Exergy analysis of magnetic refrigeration
Exergy analysis of magnetic refrigerationExergy analysis of magnetic refrigeration
Exergy analysis of magnetic refrigeration
 
Magnetic refrigerator
Magnetic refrigeratorMagnetic refrigerator
Magnetic refrigerator
 
IRJET- Effect of Thermal Properties on Fly Ash based Concrete
IRJET- Effect of Thermal Properties on Fly Ash based ConcreteIRJET- Effect of Thermal Properties on Fly Ash based Concrete
IRJET- Effect of Thermal Properties on Fly Ash based Concrete
 
Ag4101187192
Ag4101187192Ag4101187192
Ag4101187192
 
PPT on Magnetic Refrigeration
PPT on Magnetic Refrigeration PPT on Magnetic Refrigeration
PPT on Magnetic Refrigeration
 
Critical heat flux enhancement in pool boiling with al2 o3 water nanofluid
Critical heat flux enhancement in pool boiling with al2 o3 water nanofluidCritical heat flux enhancement in pool boiling with al2 o3 water nanofluid
Critical heat flux enhancement in pool boiling with al2 o3 water nanofluid
 
report magnetic refrigeration
report magnetic refrigerationreport magnetic refrigeration
report magnetic refrigeration
 
Nanomaterials 10-02386-v2
Nanomaterials 10-02386-v2Nanomaterials 10-02386-v2
Nanomaterials 10-02386-v2
 
Numerical investigation on heat sink by computational fluid dynamics (cfd)
Numerical investigation on heat sink by computational fluid dynamics (cfd)Numerical investigation on heat sink by computational fluid dynamics (cfd)
Numerical investigation on heat sink by computational fluid dynamics (cfd)
 
30120140503011
3012014050301130120140503011
30120140503011
 
seminar on Magnetic Refrigeration - Solid refrigerant
seminar on Magnetic Refrigeration - Solid refrigerantseminar on Magnetic Refrigeration - Solid refrigerant
seminar on Magnetic Refrigeration - Solid refrigerant
 
Introduction to Magnetic Refrigeration
Introduction to Magnetic RefrigerationIntroduction to Magnetic Refrigeration
Introduction to Magnetic Refrigeration
 
Magnetic refrigeration Seminar PPT
Magnetic refrigeration Seminar PPTMagnetic refrigeration Seminar PPT
Magnetic refrigeration Seminar PPT
 
Experimental Heat Transfer Analysis of Different PCM Material used in Concret...
Experimental Heat Transfer Analysis of Different PCM Material used in Concret...Experimental Heat Transfer Analysis of Different PCM Material used in Concret...
Experimental Heat Transfer Analysis of Different PCM Material used in Concret...
 
Magnetic refrigeration1
Magnetic refrigeration1Magnetic refrigeration1
Magnetic refrigeration1
 
Magnetic refrigiration
Magnetic refrigirationMagnetic refrigiration
Magnetic refrigiration
 

Similar to computational investigation for life cycle of alumina based induction furnace wall

FIRE RESISTANT ANALYSIS OF RC BEAM COLUMN JOINT
FIRE RESISTANT ANALYSIS OF RC BEAM COLUMN JOINTFIRE RESISTANT ANALYSIS OF RC BEAM COLUMN JOINT
FIRE RESISTANT ANALYSIS OF RC BEAM COLUMN JOINT
IRJET Journal
 
EXPERIMENTAL STUDY OF MIXED CONVECTION HEAT TRANSFER USING CIRCULAR, SQUARE, ...
EXPERIMENTAL STUDY OF MIXED CONVECTION HEAT TRANSFER USING CIRCULAR, SQUARE, ...EXPERIMENTAL STUDY OF MIXED CONVECTION HEAT TRANSFER USING CIRCULAR, SQUARE, ...
EXPERIMENTAL STUDY OF MIXED CONVECTION HEAT TRANSFER USING CIRCULAR, SQUARE, ...
ijiert bestjournal
 
Behaviour of steel structure under the effect of fire loading
Behaviour of steel structure under the effect of fire loadingBehaviour of steel structure under the effect of fire loading
Behaviour of steel structure under the effect of fire loading
IJERA Editor
 
Analysis of Temperature loss of Hot Metal during Hot Rolling Process at Steel...
Analysis of Temperature loss of Hot Metal during Hot Rolling Process at Steel...Analysis of Temperature loss of Hot Metal during Hot Rolling Process at Steel...
Analysis of Temperature loss of Hot Metal during Hot Rolling Process at Steel...
IJMER
 
Experimental Investigation of Pool Boiling Enhancement on Different Structure...
Experimental Investigation of Pool Boiling Enhancement on Different Structure...Experimental Investigation of Pool Boiling Enhancement on Different Structure...
Experimental Investigation of Pool Boiling Enhancement on Different Structure...
IRJET Journal
 
Bv35420424
Bv35420424Bv35420424
Bv35420424
IJERA Editor
 
Analysis of A Double Spiral Counter Flow Calorimeter in Impinging Flame Jet U...
Analysis of A Double Spiral Counter Flow Calorimeter in Impinging Flame Jet U...Analysis of A Double Spiral Counter Flow Calorimeter in Impinging Flame Jet U...
Analysis of A Double Spiral Counter Flow Calorimeter in Impinging Flame Jet U...
IJERA Editor
 
Ansys simulation of temperature distribution in plate casting 29983
Ansys simulation of temperature distribution in plate casting 29983Ansys simulation of temperature distribution in plate casting 29983
Ansys simulation of temperature distribution in plate casting 29983
EditorIJAERD
 
30120130406018 2-3
30120130406018 2-330120130406018 2-3
30120130406018 2-3
IAEME Publication
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
ijceronline
 
Thermal Stress Analysis of Electro Discharge Machining
Thermal Stress Analysis of Electro Discharge MachiningThermal Stress Analysis of Electro Discharge Machining
Thermal Stress Analysis of Electro Discharge Machining
IJESFT
 
Thermal performance analysis of opaque facades for the different thickness
Thermal performance analysis of opaque facades for the different thicknessThermal performance analysis of opaque facades for the different thickness
Thermal performance analysis of opaque facades for the different thickness
eSAT Publishing House
 
THERMAL ANALYSIS OF SHELL AND TUBE TYPE HEAT EXCHANGER TO DEMONSTRATE THE HEA...
THERMAL ANALYSIS OF SHELL AND TUBE TYPE HEAT EXCHANGER TO DEMONSTRATE THE HEA...THERMAL ANALYSIS OF SHELL AND TUBE TYPE HEAT EXCHANGER TO DEMONSTRATE THE HEA...
THERMAL ANALYSIS OF SHELL AND TUBE TYPE HEAT EXCHANGER TO DEMONSTRATE THE HEA...
IAEME Publication
 
FINITE ELEMENT SIMULATION OF WELDING IN STEEL PIPES AND PLATES
FINITE ELEMENT SIMULATION OF WELDING IN STEEL PIPES AND PLATESFINITE ELEMENT SIMULATION OF WELDING IN STEEL PIPES AND PLATES
FINITE ELEMENT SIMULATION OF WELDING IN STEEL PIPES AND PLATES
Ijorat1
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
ijceronline
 
Experimental Investigation of Heat Transfer by Electrically Heated Rectangula...
Experimental Investigation of Heat Transfer by Electrically Heated Rectangula...Experimental Investigation of Heat Transfer by Electrically Heated Rectangula...
Experimental Investigation of Heat Transfer by Electrically Heated Rectangula...
IRJET Journal
 
Ag03101950206
Ag03101950206Ag03101950206
Ag03101950206
ijceronline
 
Study of effects of heat treatment on the hardness and microstructure of weld...
Study of effects of heat treatment on the hardness and microstructure of weld...Study of effects of heat treatment on the hardness and microstructure of weld...
Study of effects of heat treatment on the hardness and microstructure of weld...
Alexander Decker
 
IRJET- Experimental Analysis to Investigate the Thermal Performance of differ...
IRJET- Experimental Analysis to Investigate the Thermal Performance of differ...IRJET- Experimental Analysis to Investigate the Thermal Performance of differ...
IRJET- Experimental Analysis to Investigate the Thermal Performance of differ...
IRJET Journal
 
Testing and Validation of Thermoelectric Coolers
Testing and Validation of Thermoelectric CoolersTesting and Validation of Thermoelectric Coolers
Testing and Validation of Thermoelectric Coolers
IJERA Editor
 

Similar to computational investigation for life cycle of alumina based induction furnace wall (20)

FIRE RESISTANT ANALYSIS OF RC BEAM COLUMN JOINT
FIRE RESISTANT ANALYSIS OF RC BEAM COLUMN JOINTFIRE RESISTANT ANALYSIS OF RC BEAM COLUMN JOINT
FIRE RESISTANT ANALYSIS OF RC BEAM COLUMN JOINT
 
EXPERIMENTAL STUDY OF MIXED CONVECTION HEAT TRANSFER USING CIRCULAR, SQUARE, ...
EXPERIMENTAL STUDY OF MIXED CONVECTION HEAT TRANSFER USING CIRCULAR, SQUARE, ...EXPERIMENTAL STUDY OF MIXED CONVECTION HEAT TRANSFER USING CIRCULAR, SQUARE, ...
EXPERIMENTAL STUDY OF MIXED CONVECTION HEAT TRANSFER USING CIRCULAR, SQUARE, ...
 
Behaviour of steel structure under the effect of fire loading
Behaviour of steel structure under the effect of fire loadingBehaviour of steel structure under the effect of fire loading
Behaviour of steel structure under the effect of fire loading
 
Analysis of Temperature loss of Hot Metal during Hot Rolling Process at Steel...
Analysis of Temperature loss of Hot Metal during Hot Rolling Process at Steel...Analysis of Temperature loss of Hot Metal during Hot Rolling Process at Steel...
Analysis of Temperature loss of Hot Metal during Hot Rolling Process at Steel...
 
Experimental Investigation of Pool Boiling Enhancement on Different Structure...
Experimental Investigation of Pool Boiling Enhancement on Different Structure...Experimental Investigation of Pool Boiling Enhancement on Different Structure...
Experimental Investigation of Pool Boiling Enhancement on Different Structure...
 
Bv35420424
Bv35420424Bv35420424
Bv35420424
 
Analysis of A Double Spiral Counter Flow Calorimeter in Impinging Flame Jet U...
Analysis of A Double Spiral Counter Flow Calorimeter in Impinging Flame Jet U...Analysis of A Double Spiral Counter Flow Calorimeter in Impinging Flame Jet U...
Analysis of A Double Spiral Counter Flow Calorimeter in Impinging Flame Jet U...
 
Ansys simulation of temperature distribution in plate casting 29983
Ansys simulation of temperature distribution in plate casting 29983Ansys simulation of temperature distribution in plate casting 29983
Ansys simulation of temperature distribution in plate casting 29983
 
30120130406018 2-3
30120130406018 2-330120130406018 2-3
30120130406018 2-3
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
 
Thermal Stress Analysis of Electro Discharge Machining
Thermal Stress Analysis of Electro Discharge MachiningThermal Stress Analysis of Electro Discharge Machining
Thermal Stress Analysis of Electro Discharge Machining
 
Thermal performance analysis of opaque facades for the different thickness
Thermal performance analysis of opaque facades for the different thicknessThermal performance analysis of opaque facades for the different thickness
Thermal performance analysis of opaque facades for the different thickness
 
THERMAL ANALYSIS OF SHELL AND TUBE TYPE HEAT EXCHANGER TO DEMONSTRATE THE HEA...
THERMAL ANALYSIS OF SHELL AND TUBE TYPE HEAT EXCHANGER TO DEMONSTRATE THE HEA...THERMAL ANALYSIS OF SHELL AND TUBE TYPE HEAT EXCHANGER TO DEMONSTRATE THE HEA...
THERMAL ANALYSIS OF SHELL AND TUBE TYPE HEAT EXCHANGER TO DEMONSTRATE THE HEA...
 
FINITE ELEMENT SIMULATION OF WELDING IN STEEL PIPES AND PLATES
FINITE ELEMENT SIMULATION OF WELDING IN STEEL PIPES AND PLATESFINITE ELEMENT SIMULATION OF WELDING IN STEEL PIPES AND PLATES
FINITE ELEMENT SIMULATION OF WELDING IN STEEL PIPES AND PLATES
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
 
Experimental Investigation of Heat Transfer by Electrically Heated Rectangula...
Experimental Investigation of Heat Transfer by Electrically Heated Rectangula...Experimental Investigation of Heat Transfer by Electrically Heated Rectangula...
Experimental Investigation of Heat Transfer by Electrically Heated Rectangula...
 
Ag03101950206
Ag03101950206Ag03101950206
Ag03101950206
 
Study of effects of heat treatment on the hardness and microstructure of weld...
Study of effects of heat treatment on the hardness and microstructure of weld...Study of effects of heat treatment on the hardness and microstructure of weld...
Study of effects of heat treatment on the hardness and microstructure of weld...
 
IRJET- Experimental Analysis to Investigate the Thermal Performance of differ...
IRJET- Experimental Analysis to Investigate the Thermal Performance of differ...IRJET- Experimental Analysis to Investigate the Thermal Performance of differ...
IRJET- Experimental Analysis to Investigate the Thermal Performance of differ...
 
Testing and Validation of Thermoelectric Coolers
Testing and Validation of Thermoelectric CoolersTesting and Validation of Thermoelectric Coolers
Testing and Validation of Thermoelectric Coolers
 

Recently uploaded

Recycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part IIIRecycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part III
Aditya Rajan Patra
 
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
171ticu
 
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.pptUnit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
KrishnaveniKrishnara1
 
New techniques for characterising damage in rock slopes.pdf
New techniques for characterising damage in rock slopes.pdfNew techniques for characterising damage in rock slopes.pdf
New techniques for characterising damage in rock slopes.pdf
wisnuprabawa3
 
Generative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of contentGenerative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of content
Hitesh Mohapatra
 
Engine Lubrication performance System.pdf
Engine Lubrication performance System.pdfEngine Lubrication performance System.pdf
Engine Lubrication performance System.pdf
mamamaam477
 
Textile Chemical Processing and Dyeing.pdf
Textile Chemical Processing and Dyeing.pdfTextile Chemical Processing and Dyeing.pdf
Textile Chemical Processing and Dyeing.pdf
NazakatAliKhoso2
 
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming PipelinesHarnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
Christina Lin
 
Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...
IJECEIAES
 
ISPM 15 Heat Treated Wood Stamps and why your shipping must have one
ISPM 15 Heat Treated Wood Stamps and why your shipping must have oneISPM 15 Heat Treated Wood Stamps and why your shipping must have one
ISPM 15 Heat Treated Wood Stamps and why your shipping must have one
Las Vegas Warehouse
 
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMSA SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
IJNSA Journal
 
TIME DIVISION MULTIPLEXING TECHNIQUE FOR COMMUNICATION SYSTEM
TIME DIVISION MULTIPLEXING TECHNIQUE FOR COMMUNICATION SYSTEMTIME DIVISION MULTIPLEXING TECHNIQUE FOR COMMUNICATION SYSTEM
TIME DIVISION MULTIPLEXING TECHNIQUE FOR COMMUNICATION SYSTEM
HODECEDSIET
 
ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024
Rahul
 
Modelagem de um CSTR com reação endotermica.pdf
Modelagem de um CSTR com reação endotermica.pdfModelagem de um CSTR com reação endotermica.pdf
Modelagem de um CSTR com reação endotermica.pdf
camseq
 
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
IJECEIAES
 
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Sinan KOZAK
 
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdfIron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
RadiNasr
 
CSM Cloud Service Management Presentarion
CSM Cloud Service Management PresentarionCSM Cloud Service Management Presentarion
CSM Cloud Service Management Presentarion
rpskprasana
 
International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...
gerogepatton
 
Heat Resistant Concrete Presentation ppt
Heat Resistant Concrete Presentation pptHeat Resistant Concrete Presentation ppt
Heat Resistant Concrete Presentation ppt
mamunhossenbd75
 

Recently uploaded (20)

Recycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part IIIRecycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part III
 
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
 
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.pptUnit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
 
New techniques for characterising damage in rock slopes.pdf
New techniques for characterising damage in rock slopes.pdfNew techniques for characterising damage in rock slopes.pdf
New techniques for characterising damage in rock slopes.pdf
 
Generative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of contentGenerative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of content
 
Engine Lubrication performance System.pdf
Engine Lubrication performance System.pdfEngine Lubrication performance System.pdf
Engine Lubrication performance System.pdf
 
Textile Chemical Processing and Dyeing.pdf
Textile Chemical Processing and Dyeing.pdfTextile Chemical Processing and Dyeing.pdf
Textile Chemical Processing and Dyeing.pdf
 
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming PipelinesHarnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
 
Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...
 
ISPM 15 Heat Treated Wood Stamps and why your shipping must have one
ISPM 15 Heat Treated Wood Stamps and why your shipping must have oneISPM 15 Heat Treated Wood Stamps and why your shipping must have one
ISPM 15 Heat Treated Wood Stamps and why your shipping must have one
 
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMSA SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
 
TIME DIVISION MULTIPLEXING TECHNIQUE FOR COMMUNICATION SYSTEM
TIME DIVISION MULTIPLEXING TECHNIQUE FOR COMMUNICATION SYSTEMTIME DIVISION MULTIPLEXING TECHNIQUE FOR COMMUNICATION SYSTEM
TIME DIVISION MULTIPLEXING TECHNIQUE FOR COMMUNICATION SYSTEM
 
ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024
 
Modelagem de um CSTR com reação endotermica.pdf
Modelagem de um CSTR com reação endotermica.pdfModelagem de um CSTR com reação endotermica.pdf
Modelagem de um CSTR com reação endotermica.pdf
 
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
 
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
 
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdfIron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
 
CSM Cloud Service Management Presentarion
CSM Cloud Service Management PresentarionCSM Cloud Service Management Presentarion
CSM Cloud Service Management Presentarion
 
International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...
 
Heat Resistant Concrete Presentation ppt
Heat Resistant Concrete Presentation pptHeat Resistant Concrete Presentation ppt
Heat Resistant Concrete Presentation ppt
 

computational investigation for life cycle of alumina based induction furnace wall

  • 1. International Journal of Civil, Mechanical and Energy Science (IJCMES) [Vol-3, Issue-1, Jan-Feb, 2017] https://dx.doi.org/10.24001/ijcmes.3.1.7 ISSN: 2455-5304 www.ijcmes.com Page | 42 Computational Investigation for Life Cycle of Alumina based Induction Furnace Wall Nirajkumar C Mehta1 , Dr. Dipesh D Shukla2 1 Ph. D. Student, Rai University, Ahmedabad, India 2 Director, Amity University, Jaipur, India Abstract— Furnaces are most commonly used for melting of materials. Induction furnaces are more beneficial as no fuel is required. It is a problem to find life cycle of Induction Melting Furnace Wall under load variation. The induction melting furnace wall is made of alumina ramming mass which is one kind of refractory material. The failure occurs due to cyclic thermal stresses due to heating and cooling cycles. Temperature distribution and thermal stress distribution fields of the induction melting furnace refractory wall were calculated by using explicit finite difference analysis based on the physical description of its failure under low cycle thermal fatigue conditions. The life span of the refractory wall is required to be found out by means of critical thermal stresses created inside the refractory wall of induction melting furnace wall from modified S – log N Curve. Keywords— Advanced stress life analysis, Temperature distribution, Stress distribution, explicit finite difference method, Alumina ramming mass. I. INTRODUCTION Furnace is a term used to identify a closed space here heat is applied to a body in order to raise its temperature. The source of heat may be fuel or electricity. Commonly, metals and alloys and sometimes non-metals are heated in furnaces. The purpose of heating defines the temperature of heating and heating rate. Increase in temperature softens the metals. They become amenable to deformation. This softening occurs with or without a change in the metallic structure. Heating to lower temperatures (below the critical temperature) of the metal softens it by relieving the internal stresses. On the other hand, metals heated to temperatures above the critical temperatures leads to changes in crystal structures and recrystallization like annealing. Further some metals and alloys are melted, ceramic products vitrified, coals coked, metals like zinc are vaporized and many other processes are performed in Furnaces. Induction furnaces are widely used in the iron industry for the casting of the different grades of cast iron products. Refractory wall of induction melting furnace is a key component which is used as insulation layer. It is made of ramming mass like silica, alumina, magnesia etc. The refractory wall is directly influenced by the thermal cycling of the high temperature molten iron in the furnace. Thermal fatigue failure is easy to happen for it because of the larger phase transformation thermal stresses and it has a shorter life. This can cause serious production accidents. Therefore, the service life problem of the refractory wall has always been a focus of attention in the application of this to the industry. (A V K Suryanarayana, Fuels Furnaces Refractory and Pyrometry). A comprehensive literature review on computational investigation on different kinds of furnaces is done to study research trends. (Nirajkumar Mehta, May 2012). A review is done on applications of different numerical methods in heat transfer with its applications. (N C Mehta, Vipul B Gondaliya et al, February 2013). Thermal fatigue analysis of induction melting furnace wall is done for silica ramming mass. (N C Mehta, Akash D Raiyani et al, February 2013). A review is done for research on induction heating. (Vimal R Nakum et al, April 2013). A review is done for metal forming analysis using different numerical methods. (N C Mehta et al, May 2013). Transient heat transfer analysis of induction furnace is done by using finite element analysis. (Vipul Gondaliya et al, August 2013). Thermal fatigue analysis of induction furnace wall is done for alumina ramming mass. (N C Mehta et al, October 2013). Thermal analysis of hot wall condenser is done for domestic refrigerator using numerical method for temperature distribution. (Akash D Raiyani et al, July 2014). Optimisation of wall thickness is done for minimum heat loss for induction furnace by finite element analysis. (Dipesh D Shukla et al, December 2014). A review is done on numerical analysis of furnace. (N C Mehta et al, April 2015). Thermal fatigue analysis of induction furnace wall is done for zirconia. (Nirajkumar C Mehta et al, April 2015). Comparison of finite difference method and finite element method is done for 2 D transient heat transfer problem.
  • 2. International Journal of Civil, Mechanical and Energy Science (IJCMES) [Vol-3, Issue-1, Jan-Feb, 2017] https://dx.doi.org/10.24001/ijcmes.3.1.7 ISSN: 2455-5304 www.ijcmes.com Page | 43 (Nirajkumar Mehta et al, April 2015). Thermal fatigue analysis of induction furnace wall is done for magnesia ramming mass. (Nirajkumar C Mehta et al, June 2015). Advanced mathematical modelling of heat transfer is done for induction furnace wall of zirconia. (Nirajkumar C Mehta et al, December 2016). Advanced heat transfer analysis is done for alumina based refractory wall of induction furnace. (Nirajkumar Mehta et al, December 2016). Here, Explicit Finite Difference Method is used to find out temperature and thermal stress variation with respect to time. II. DEVELOPMENT OF ADVANCED EXPLICIT FINITE DIFFERENCE MODEL We have divided Induction Furnace Wall into a Nodal Network as shown in Fig. 1. It is divided into 24 nodes. We have derived Explicit Finite Difference Equations for all nodes as per the boundary conditions applied to it. The furnace wall is having thermal conduction heat transfer between different nodes. It is having atmospheric heat convection ha applied from top side of the furnace wall which is open to atmosphere. It is having heat convection from molten metal from inside which is hi. It is having heat convection ho from cooling water which is circulating outside the furnace wall. (Yunus A Cengel, Heat and Mass Transfer). To solve this advanced heat transfer problem of induction melting furnace wall which is made from Alumina Ramming Mass, the following initial and boundary conditions, material properties and basic assumptions are made: Refractory Materials for induction furnace wall meets the basic assumptions in the science of mechanics.  Environmental Temperature is homogeneous at 27° C.  Ignore the influence of heat radiation.  Ignore the effect of gravity field.  The surface of induction melting furnace wall is clean.  The initial temperature of the induction melting furnace is set 27° C and it is agreement with the ambient temperature during solving the problem.  Heat convections are considered constant for this analysis.  Scarp material input inside furnace is considered uniform for our analysis. Fig.1: Nodal network for finite difference method Node 1: ℎ𝑎 ∆𝑥 2 (𝑇∞ − 𝑇1 𝑖 )+ ℎ𝑜 ∆𝑦 2 (𝑇∞ − 𝑇1 𝑖 ) + k ∆𝑦 2 𝑇2 𝑖 − 𝑇1 𝑖 ∆𝑥 + k ∆𝑥 2 𝑇4 𝑖 − 𝑇1 𝑖 ∆𝑦 = 𝜌 ∆𝑥 2 ∆𝑦 2 ∁ 𝑇1 𝑖+1 −𝑇1 𝑖 ∆𝑡 𝑇1 𝑖+1 = ((ℎ𝑎 ∆𝑥 2 ( 𝑇∞ − 𝑇1 𝑖 )+ ℎ𝑜 ∆𝑦 2 ( 𝑇∞ − 𝑇1 𝑖 ) + k ∆𝑦 2 𝑇2 𝑖 − 𝑇1 𝑖 ∆𝑥 + k ∆𝑥 2 𝑇4 𝑖 − 𝑇1 𝑖 ∆𝑦 ) 4∆𝑡 𝜌∁∆𝑥∆𝑦 )+ 𝑇1 𝑖 Node 2: ℎ𝑎∆𝑥 ( 𝑇∞ − 𝑇2 𝑖 ) + k ∆𝑦 2 𝑇1 𝑖 − 𝑇2 𝑖 ∆𝑥 + k ∆𝑦 2 𝑇3 𝑖 − 𝑇2 𝑖 ∆𝑥 + k ∆𝑥 𝑇5 𝑖 − 𝑇2 𝑖 ∆𝑦 = 𝜌∆𝑥 ∆𝑦 2 ∁ 𝑇2 𝑖+1 −𝑇2 𝑖 ∆𝑡 𝑇2 𝑖+1 = ((ℎ𝑎∆𝑥 ( 𝑇∞ − 𝑇2 𝑖 ) + k ∆𝑦 2 𝑇1 𝑖 − 𝑇2 𝑖 ∆𝑥 + k ∆𝑦 2 𝑇3 𝑖 − 𝑇2 𝑖 ∆𝑥 + k∆𝑥 𝑇5 𝑖 − 𝑇2 𝑖 ∆𝑦 ) 2∆𝑡 𝜌∁∆𝑥∆𝑦 ) + 𝑇2 𝑖 Node 3: ℎ𝑎 ∆𝑥 2 (𝑇∞ − 𝑇3 𝑖 )+ ℎ𝑖 ∆𝑦 2 (𝑇ℎ − 𝑇3 𝑖 ) + k ∆𝑦 2 𝑇2 𝑖 − 𝑇3 𝑖 ∆𝑥 + k ∆𝑥 2 𝑇6 𝑖 − 𝑇3 𝑖 ∆𝑦 = 𝜌 ∆𝑥 2 ∆𝑦 2 ∁ 𝑇3 𝑖+1 −𝑇3 𝑖 ∆𝑡 𝑇3 𝑖+1 = (( ℎ𝑎 ∆𝑥 2 ( 𝑇∞ − 𝑇3 𝑖 ) + ℎ𝑖 ∆𝑦 2 ( 𝑇ℎ − 𝑇3 𝑖 ) + k ∆𝑦 2 𝑇2 𝑖 − 𝑇3 𝑖 ∆𝑥 + k ∆𝑥 2 𝑇6 𝑖 − 𝑇3 𝑖 ∆𝑦 ) 4∆𝑡 𝜌∁∆𝑥∆𝑦 ) + 𝑇3 𝑖 Node 4: ℎ𝑜∆𝑦 ( 𝑇∞ − 𝑇4 𝑖 ) + k ∆𝑦 𝑇5 𝑖 − 𝑇4 𝑖 ∆𝑥 + k ∆𝑥 2 𝑇1 𝑖 − 𝑇4 𝑖 ∆𝑦 + k ∆𝑥 2 𝑇7 𝑖 − 𝑇4 𝑖 ∆𝑦 = 𝜌 ∆𝑥 2 ∆𝑦∁ 𝑇4 𝑖+4 −𝑇4 𝑖 ∆𝑡
  • 3. International Journal of Civil, Mechanical and Energy Science (IJCMES) [Vol-3, Issue-1, Jan-Feb, 2017] https://dx.doi.org/10.24001/ijcmes.3.1.7 ISSN: 2455-5304 www.ijcmes.com Page | 44 𝑇4 𝑖+4 = ((ℎ𝑜∆𝑦 ( 𝑇∞ − 𝑇4 𝑖 ) + k ∆𝑦 𝑇5 𝑖 − 𝑇4 𝑖 ∆𝑥 + k ∆𝑥 2 𝑇1 𝑖 − 𝑇4 𝑖 ∆𝑦 + k ∆𝑥 2 𝑇7 𝑖 − 𝑇4 𝑖 ∆𝑦 ) 2∆𝑡 𝜌∁∆𝑥∆𝑦 ) + 𝑇4 𝑖 Node 5: k ∆𝑦 𝑇4 𝑖 − 𝑇5 𝑖 ∆𝑥 + k ∆𝑦 𝑇6 𝑖 − 𝑇5 𝑖 ∆𝑥 + k ∆𝑥 𝑇2 𝑖 − 𝑇5 𝑖 ∆𝑦 + k ∆𝑥 𝑇8 𝑖 − 𝑇5 𝑖 ∆𝑦 = 𝜌∆𝑥∆𝑦∁ 𝑇5 𝑖+1 −𝑇5 𝑖 ∆𝑡 𝑇5 𝑖+1 = ((k ∆𝑦 𝑇4 𝑖 − 𝑇5 𝑖 ∆𝑥 + k ∆𝑦 𝑇6 𝑖 − 𝑇5 𝑖 ∆𝑥 + k ∆𝑥 𝑇2 𝑖 − 𝑇5 𝑖 ∆𝑦 + k∆𝑥 𝑇8 𝑖 − 𝑇5 𝑖 ∆𝑦 ) ∆𝑡 𝜌∁∆𝑥∆𝑦 ) + 𝑇5 𝑖 Node 6: ℎ𝑖∆𝑦 ( 𝑇ℎ − 𝑇6 𝑖 ) + k ∆𝑦 𝑇2 𝑖 − 𝑇6 𝑖 ∆𝑥 + k ∆𝑥 2 𝑇3 𝑖 − 𝑇6 𝑖 ∆𝑦 + k ∆𝑥 2 𝑇9 𝑖 − 𝑇6 𝑖 ∆𝑦 = 𝜌 ∆𝑥 2 ∆𝑦∁ 𝑇6 𝑖+1 −𝑇6 𝑖 ∆𝑡 𝑇6 𝑖+1 = (( ℎ𝑖∆𝑦 ( 𝑇ℎ − 𝑇6 𝑖 ) + k ∆𝑦 𝑇2 𝑖 − 𝑇6 𝑖 ∆𝑥 + k ∆𝑥 2 𝑇3 𝑖 − 𝑇6 𝑖 ∆𝑦 + k ∆𝑥 2 𝑇9 𝑖 − 𝑇6 𝑖 ∆𝑦 ) 2∆𝑡 𝜌∁∆𝑥∆𝑦 ) + 𝑇6 𝑖 Node 7: ℎ𝑜∆𝑦 ( 𝑇∞ − 𝑇7 𝑖 ) + k ∆𝑦 𝑇8 𝑖 − 𝑇7 𝑖 ∆𝑥 + k ∆𝑥 2 𝑇4 𝑖 − 𝑇7 𝑖 ∆𝑦 + k ∆𝑥 2 𝑇10 𝑖 − 𝑇7 𝑖 ∆𝑦 = 𝜌 ∆𝑥 2 ∆𝑦∁ 𝑇7 𝑖+7 −𝑇7 𝑖 ∆𝑡 𝑇7 𝑖+7 = (( ℎ𝑜∆𝑦 ( 𝑇∞ − 𝑇7 𝑖 ) + k ∆𝑦 𝑇8 𝑖 − 𝑇7 𝑖 ∆𝑥 + k ∆𝑥 2 𝑇4 𝑖 − 𝑇7 𝑖 ∆𝑦 + k ∆𝑥 2 𝑇10 𝑖 − 𝑇7 𝑖 ∆𝑦 ) 2∆𝑡 𝜌∁∆𝑥∆𝑦 ) + 𝑇7 𝑖 Node 8: k ∆𝑦 𝑇7 𝑖 − 𝑇8 𝑖 ∆𝑥 + k ∆𝑦 𝑇9 𝑖 − 𝑇8 𝑖 ∆𝑥 + k ∆𝑥 𝑇5 𝑖 − 𝑇8 𝑖 ∆𝑦 + k ∆𝑥 𝑇11 𝑖 − 𝑇8 𝑖 ∆𝑦 = 𝜌∆𝑥∆𝑦∁ 𝑇8 𝑖+1 −𝑇8 𝑖 ∆𝑡 𝑇8 𝑖+1 = (( k ∆𝑦 𝑇7 𝑖 − 𝑇8 𝑖 ∆𝑥 + k ∆𝑦 𝑇9 𝑖 − 𝑇8 𝑖 ∆𝑥 + k ∆𝑥 𝑇5 𝑖 − 𝑇8 𝑖 ∆𝑦 + k∆𝑥 𝑇11 𝑖 − 𝑇8 𝑖 ∆𝑦 ) ∆𝑡 𝜌∁∆𝑥∆𝑦 ) + 𝑇8 𝑖 Node 9: ℎ𝑖∆𝑦 ( 𝑇ℎ − 𝑇9 𝑖 ) + k ∆𝑦 𝑇8 𝑖 − 𝑇9 𝑖 ∆𝑥 + k ∆𝑥 2 𝑇6 𝑖 − 𝑇9 𝑖 ∆𝑦 + k ∆𝑥 2 𝑇12 𝑖 − 𝑇9 𝑖 ∆𝑦 = 𝜌 ∆𝑥 2 ∆𝑦∁ 𝑇9 𝑖+1 −𝑇9 𝑖 ∆𝑡 𝑇9 𝑖+1 = ((ℎ𝑖∆𝑦 ( 𝑇ℎ − 𝑇9 𝑖 ) + k ∆𝑦 𝑇8 𝑖 − 𝑇9 𝑖 ∆𝑥 + k ∆𝑥 2 𝑇6 𝑖 − 𝑇9 𝑖 ∆𝑦 + k ∆𝑥 2 𝑇12 𝑖 − 𝑇9 𝑖 ∆𝑦 ) 2∆𝑡 𝜌∁∆𝑥∆𝑦 ) + 𝑇9 𝑖 Node 10: ℎ𝑜∆𝑦(𝑇∞ − 𝑇10 𝑖 ) + k∆𝑦 𝑇11 𝑖 − 𝑇10 𝑖 ∆𝑥 + k ∆𝑥 2 𝑇7 𝑖 − 𝑇10 𝑖 ∆𝑦 + k ∆𝑥 2 𝑇15 𝑖 − 𝑇10 𝑖 ∆𝑦 = 𝜌 ∆𝑥 2 ∆𝑦∁ 𝑇10 𝑖+10 −𝑇10 𝑖 ∆𝑡 𝑇10 𝑖+10 = ((ℎ𝑜∆𝑦 ( 𝑇∞ − 𝑇10 𝑖 ) + k ∆𝑦 𝑇11 𝑖 − 𝑇10 𝑖 ∆𝑥 + k ∆𝑥 2 𝑇7 𝑖 − 𝑇10 𝑖 ∆𝑦 + k ∆𝑥 2 𝑇15 𝑖 − 𝑇10 𝑖 ∆𝑦 ) 2∆𝑡 𝜌∁∆𝑥∆𝑦 ) + 𝑇10 𝑖 Node 11: k ∆𝑦 𝑇10 𝑖 − 𝑇11 𝑖 ∆𝑥 + k ∆𝑦 𝑇12 𝑖 − 𝑇11 𝑖 ∆𝑥 + k ∆𝑥 𝑇8 𝑖 − 𝑇11 𝑖 ∆𝑦 + k ∆𝑥 𝑇16 𝑖 − 𝑇11 𝑖 ∆𝑦 = 𝜌∆𝑥∆𝑦∁ 𝑇11 𝑖+1 −𝑇11 𝑖 ∆𝑡 𝑇11 𝑖+1 = (( k ∆𝑦 𝑇10 𝑖 − 𝑇11 𝑖 ∆𝑥 + k ∆𝑦 𝑇12 𝑖 − 𝑇11 𝑖 ∆𝑥 + k ∆𝑥 𝑇8 𝑖 − 𝑇11 𝑖 ∆𝑦 + k∆𝑥 𝑇16 𝑖 − 𝑇11 𝑖 ∆𝑦 ) ∆𝑡 𝜌∁∆𝑥∆𝑦 ) + 𝑇11 𝑖 Node 12: ℎ𝑖 ∆𝑥 2 ( 𝑇ℎ − 𝑇12 𝑖 ) + ℎ𝑖 ∆𝑦 2 ( 𝑇ℎ − 𝑇12 𝑖 ) + k ∆𝑦 𝑇11 𝑖 − 𝑇12 𝑖 ∆𝑥 + k ∆𝑦 2 𝑇13 𝑖 − 𝑇12 𝑖 ∆𝑥 + k ∆𝑥 2 𝑇9 𝑖 − 𝑇12 𝑖 ∆𝑦 + k∆𝑥 𝑇17 𝑖 − 𝑇12 𝑖 ∆𝑦 = 𝜌 3∆𝑥∆𝑦 4 ∁ 𝑇12 𝑖+1 −𝑇12 𝑖 ∆𝑡 𝑇12 𝑖+1 = (( ℎ𝑖 ∆𝑥 2 (𝑇ℎ − 𝑇12 𝑖 ) + ℎ𝑖 ∆𝑦 2 (𝑇ℎ − 𝑇12 𝑖 ) + k∆𝑦 𝑇11 𝑖 − 𝑇12 𝑖 ∆𝑥 + k ∆𝑦 2 𝑇13 𝑖 − 𝑇12 𝑖 ∆𝑥 + k ∆𝑥 2 𝑇9 𝑖 − 𝑇12 𝑖 ∆𝑦 + k∆𝑥 𝑇17 𝑖 − 𝑇12 𝑖 ∆𝑦 ) 4∆𝑡 3𝜌∁∆𝑥∆𝑦 ) + 𝑇12 𝑖 Node 13: ℎ𝑖∆𝑥(𝑇ℎ − 𝑇13 𝑖 )+ k ∆𝑦 2 𝑇12 𝑖 − 𝑇13 𝑖 ∆𝑥 + k ∆𝑦 2 𝑇14 𝑖 − 𝑇13 𝑖 ∆𝑥 + k∆𝑥 𝑇18 𝑖 − 𝑇13 𝑖 ∆𝑦 = 𝜌∆𝑥 ∆𝑦 2 ∁ 𝑇13 𝑖+1 −𝑇13 𝑖 ∆𝑡 𝑇13 𝑖+1 = (( ℎ𝑖∆𝑥 ( 𝑇ℎ − 𝑇13 𝑖 ) + k ∆𝑦 2 𝑇12 𝑖 − 𝑇13 𝑖 ∆𝑥 + k ∆𝑦 2 𝑇14 𝑖 − 𝑇13 𝑖 ∆𝑥 + k∆𝑥 𝑇18 𝑖 − 𝑇13 𝑖 ∆𝑦 ) 2∆𝑡 𝜌∁∆𝑥∆𝑦 ) + 𝑇13 𝑖 Node 14: ℎ𝑖 ∆𝑥 2 (𝑇ℎ − 𝑇14 𝑖 )+ ℎ𝑖 ∆𝑦 2 (𝑇ℎ − 𝑇14 𝑖 ) + k ∆𝑦 2 𝑇13 𝑖 − 𝑇14 𝑖 ∆𝑥 + k ∆𝑥 2 𝑇19 𝑖 − 𝑇14 𝑖 ∆𝑦 = 𝜌 ∆𝑥 2 ∆𝑦 2 ∁ 𝑇14 𝑖+1 −𝑇14 𝑖 ∆𝑡 𝑇14 𝑖+1 = (( ℎ𝑖 ∆𝑥 2 (𝑇ℎ − 𝑇14 𝑖 )+ ℎ𝑖 ∆𝑦 2 (𝑇ℎ − 𝑇14 𝑖 ) + k ∆𝑦 2 𝑇13 𝑖 − 𝑇14 𝑖 ∆𝑥 + k ∆𝑥 2 𝑇19 𝑖 − 𝑇14 𝑖 ∆𝑦 ) 4∆𝑡 𝜌∁∆𝑥∆𝑦 ) + 𝑇14 𝑖 Node 15: ℎ𝑜∆𝑦(𝑇∞ − 𝑇15 𝑖 ) + k∆𝑦 𝑇16 𝑖 − 𝑇15 𝑖 ∆𝑥 + k ∆𝑥 2 𝑇10 𝑖 − 𝑇15 𝑖 ∆𝑦 + k ∆𝑥 2 𝑇20 𝑖 − 𝑇15 𝑖 ∆𝑦 = 𝜌 ∆𝑥 2 ∆𝑦∁ 𝑇15 𝑖+15 −𝑇15 𝑖 ∆𝑡 𝑇15 𝑖+15 = (( ℎ𝑜∆𝑦( 𝑇∞ − 𝑇15 𝑖 ) + k∆𝑦 𝑇16 𝑖 − 𝑇15 𝑖 ∆𝑥 + k ∆𝑥 2 𝑇10 𝑖 − 𝑇15 𝑖 ∆𝑦 + k ∆𝑥 2 𝑇20 𝑖 − 𝑇15 𝑖 ∆𝑦 ) 2∆𝑡 𝜌∁∆𝑥∆𝑦 ) + 𝑇15 𝑖
  • 4. International Journal of Civil, Mechanical and Energy Science (IJCMES) [Vol-3, Issue-1, Jan-Feb, 2017] https://dx.doi.org/10.24001/ijcmes.3.1.7 ISSN: 2455-5304 www.ijcmes.com Page | 45 Node 16: k∆𝑦 𝑇15 𝑖 − 𝑇16 𝑖 ∆𝑥 + k∆𝑦 𝑇17 𝑖 − 𝑇16 𝑖 ∆𝑥 + k∆𝑥 𝑇11 𝑖 − 𝑇16 𝑖 ∆𝑦 + k∆𝑥 𝑇21 𝑖 − 𝑇16 𝑖 ∆𝑦 = 𝜌∆𝑥∆𝑦∁ 𝑇16 𝑖+1 −𝑇16 𝑖 ∆𝑡 𝑇16 𝑖+1 = (( k ∆𝑦 𝑇15 𝑖 − 𝑇16 𝑖 ∆𝑥 + k ∆𝑦 𝑇17 𝑖 − 𝑇16 𝑖 ∆𝑥 + k ∆𝑥 𝑇11 𝑖 − 𝑇16 𝑖 ∆𝑦 + k∆𝑥 𝑇21 𝑖 − 𝑇16 𝑖 ∆𝑦 ) ∆𝑡 𝜌∁∆𝑥∆𝑦 ) + 𝑇16 𝑖 Node 17: k∆𝑦 𝑇16 𝑖 − 𝑇17 𝑖 ∆𝑥 + k∆𝑦 𝑇18 𝑖 − 𝑇17 𝑖 ∆𝑥 + k∆𝑥 𝑇12 𝑖 − 𝑇17 𝑖 ∆𝑦 + k∆𝑥 𝑇22 𝑖 − 𝑇17 𝑖 ∆𝑦 = 𝜌∆𝑥∆𝑦∁ 𝑇17 𝑖+1 −𝑇17 𝑖 ∆𝑡 𝑇17 𝑖+1 = (( k ∆𝑦 𝑇16 𝑖 − 𝑇17 𝑖 ∆𝑥 + k ∆𝑦 𝑇18 𝑖 − 𝑇17 𝑖 ∆𝑥 + k ∆𝑥 𝑇12 𝑖 − 𝑇17 𝑖 ∆𝑦 + k∆𝑥 𝑇22 𝑖 − 𝑇17 𝑖 ∆𝑦 ) ∆𝑡 𝜌∁∆𝑥∆𝑦 ) + 𝑇17 𝑖 Node 18: k∆𝑦 𝑇17 𝑖 − 𝑇18 𝑖 ∆𝑥 + k∆𝑦 𝑇19 𝑖 − 𝑇18 𝑖 ∆𝑥 + k∆𝑥 𝑇13 𝑖 − 𝑇18 𝑖 ∆𝑦 + k∆𝑥 𝑇23 𝑖 − 𝑇18 𝑖 ∆𝑦 = 𝜌∆𝑥∆𝑦∁ 𝑇18 𝑖+1 −𝑇18 𝑖 ∆𝑡 𝑇18 𝑖+1 = (( k ∆𝑦 𝑇17 𝑖 − 𝑇18 𝑖 ∆𝑥 + k ∆𝑦 𝑇19 𝑖 − 𝑇18 𝑖 ∆𝑥 + k ∆𝑥 𝑇13 𝑖 − 𝑇18 𝑖 ∆𝑦 + k∆𝑥 𝑇23 𝑖 − 𝑇18 𝑖 ∆𝑦 ) ∆𝑡 𝜌∁∆𝑥∆𝑦 ) + 𝑇18 𝑖 Node 19: ℎ𝑖∆𝑦(𝑇ℎ − 𝑇19 𝑖 ) + k∆𝑦 𝑇18 𝑖 − 𝑇19 𝑖 ∆𝑥 + k ∆𝑥 2 𝑇14 𝑖 − 𝑇19 𝑖 ∆𝑦 + k ∆𝑥 2 𝑇24 𝑖 − 𝑇19 𝑖 ∆𝑦 = 𝜌 ∆𝑥 2 ∆𝑦∁ 𝑇19 𝑖+1 −𝑇19 𝑖 ∆𝑡 𝑇19 𝑖+1 = ((ℎ𝑖∆𝑦 ( 𝑇ℎ − 𝑇19 𝑖 ) + k ∆𝑦 𝑇18 𝑖 − 𝑇19 𝑖 ∆𝑥 + k ∆𝑥 2 𝑇14 𝑖 − 𝑇19 𝑖 ∆𝑦 + k ∆𝑥 2 𝑇24 𝑖 − 𝑇19 𝑖 ∆𝑦 ) 2∆𝑡 𝜌∁∆𝑥∆𝑦 ) + 𝑇19 𝑖 Node 20: ℎ𝑜 ∆𝑥 2 ( 𝑇∞ − 𝑇20 𝑖 ) + ℎ𝑜 ∆𝑦 2 ( 𝑇∞ − 𝑇20 𝑖 ) + k ∆𝑦 2 𝑇21 𝑖 − 𝑇20 𝑖 ∆𝑥 + k ∆𝑥 2 𝑇15 𝑖 − 𝑇20 𝑖 ∆𝑦 = 𝜌 ∆𝑥 2 ∆𝑦 2 ∁ 𝑇20 𝑖+20 −𝑇20 𝑖 ∆𝑡 𝑇20 𝑖+20 = ((ℎ𝑜 ∆𝑥 2 ( 𝑇∞ − 𝑇20 𝑖 ) + ℎ𝑜 ∆𝑦 2 ( 𝑇∞ − 𝑇20 𝑖 ) + k ∆𝑦 2 𝑇21 𝑖 − 𝑇20 𝑖 ∆𝑥 + k ∆𝑥 2 𝑇15 𝑖 − 𝑇20 𝑖 ∆𝑦 ) 4∆𝑡 𝜌∁∆𝑥∆𝑦 ) + 𝑇20 𝑖 Node 21: ℎ𝑜∆𝑥(𝑇∞ − 𝑇21 𝑖 )+ k ∆𝑦 2 𝑇20 𝑖 − 𝑇21 𝑖 ∆𝑥 + k ∆𝑦 2 𝑇22 𝑖 − 𝑇21 𝑖 ∆𝑥 + k∆𝑥 𝑇16 𝑖 − 𝑇21 𝑖 ∆𝑦 = 𝜌∆𝑥 ∆𝑦 2 ∁ 𝑇21 𝑖+1 −𝑇21 𝑖 ∆𝑡 𝑇21 𝑖+1 = ((ℎ𝑜∆𝑥 ( 𝑇∞ − 𝑇21 𝑖 ) + k ∆𝑦 2 𝑇20 𝑖 − 𝑇21 𝑖 ∆𝑥 + k ∆𝑦 2 𝑇22 𝑖 − 𝑇21 𝑖 ∆𝑥 + k∆𝑥 𝑇16 𝑖 − 𝑇21 𝑖 ∆𝑦 ) 2∆𝑡 𝜌∁∆𝑥∆𝑦 ) + 𝑇21 𝑖 Node 22: ℎ𝑜∆𝑥(𝑇∞ − 𝑇22 𝑖 )+ k ∆𝑦 2 𝑇21 𝑖 − 𝑇22 𝑖 ∆𝑥 + k ∆𝑦 2 𝑇23 𝑖 − 𝑇22 𝑖 ∆𝑥 + k∆𝑥 𝑇17 𝑖 − 𝑇22 𝑖 ∆𝑦 = 𝜌∆𝑥 ∆𝑦 2 ∁ 𝑇22 𝑖+1 −𝑇22 𝑖 ∆𝑡 𝑇22 𝑖+1 = ((ℎ𝑜∆𝑥 ( 𝑇∞ − 𝑇22 𝑖 ) + k ∆𝑦 2 𝑇21 𝑖 − 𝑇22 𝑖 ∆𝑥 + k ∆𝑦 2 𝑇23 𝑖 − 𝑇22 𝑖 ∆𝑥 + k∆𝑥 𝑇17 𝑖 − 𝑇22 𝑖 ∆𝑦 ) 2∆𝑡 𝜌∁∆𝑥∆𝑦 ) + 𝑇22 𝑖 Node 23: ℎ𝑜∆𝑥(𝑇∞ − 𝑇23 𝑖 )+ k ∆𝑦 2 𝑇22 𝑖 − 𝑇23 𝑖 ∆𝑥 + k ∆𝑦 2 𝑇24 𝑖 − 𝑇23 𝑖 ∆𝑥 + k∆𝑥 𝑇18 𝑖 − 𝑇23 𝑖 ∆𝑦 = 𝜌∆𝑥 ∆𝑦 2 ∁ 𝑇23 𝑖+1 −𝑇23 𝑖 ∆𝑡 𝑇23 𝑖+1 = ((ℎ𝑜∆𝑥 ( 𝑇∞ − 𝑇23 𝑖 ) + k ∆𝑦 2 𝑇22 𝑖 − 𝑇23 𝑖 ∆𝑥 + k ∆𝑦 2 𝑇24 𝑖 − 𝑇23 𝑖 ∆𝑥 + k∆𝑥 𝑇18 𝑖 − 𝑇23 𝑖 ∆𝑦 ) 2∆𝑡 𝜌∁∆𝑥∆𝑦 ) + 𝑇23 𝑖 Node 24: ℎ𝑜 ∆𝑥 2 ( 𝑇∞ − 𝑇24 𝑖 ) + ℎ𝑖 ∆𝑦 2 ( 𝑇ℎ − 𝑇24 𝑖 ) + k ∆𝑦 2 𝑇23 𝑖 − 𝑇24 𝑖 ∆𝑥 + k ∆𝑥 2 𝑇19 𝑖 − 𝑇24 𝑖 ∆𝑦 = 𝜌 ∆𝑥 2 ∆𝑦 2 ∁ 𝑇24 𝑖+1 −𝑇24 𝑖 ∆𝑡 𝑇24 𝑖+1 = ((ℎ𝑜 ∆𝑥 2 (𝑇∞ − 𝑇24 𝑖 )+ ℎ𝑖 ∆𝑦 2 (𝑇ℎ − 𝑇24 𝑖 ) + k ∆𝑦 2 𝑇23 𝑖 − 𝑇24 𝑖 ∆𝑥 + k ∆𝑥 2 𝑇19 𝑖 − 𝑇24 𝑖 ∆𝑦 ) 4∆𝑡 𝜌∁∆𝑥∆𝑦 ) + 𝑇24 𝑖 III. PROGRAMMING & SOLUTION With the help of a computer program we can solve the matrix created by finite difference equations for 24 nodes. We can calculate temperature distribution and stress distribution with respect to time. Table.1: Material Property and Boundary Conditions Material Properties and Boundary Conditions for Alumina Ramming Mass Unit 1 Internal Film Co-efficient hi 200 W/m2 K 2 External Film Co-efficient ho 40 W/m2 K 3 Atmosphere Film Co- efficient ha 10 W/m2 K 4 Density 3400 Kg/m3 5 Time Interval Δt 10 Secon
  • 5. International Journal of Civil, Mechanical and Energy Science (IJCMES) [Vol-3, Issue-1, Jan-Feb, 2017] https://dx.doi.org/10.24001/ijcmes.3.1.7 ISSN: 2455-5304 www.ijcmes.com Page | 46 ds 6 Thermal Conductivity k 2.6 W/m K 7 Temperature outside Furnace Wall 303 Kelvin 8 Temperature inside Furnace Wall 1873 Kelvin 9 Temperature of Air 303 Kelvin 10 Specific Heat 920 J/kg K 11 Elasticity Constant 220000 N/ m2 12 Thermal Expansion Co- efficient 0.00000 088 m/ K 13 Ultimate Stress 500 MPa Computer Program #include<iostream.h> #include<conio.h> #include<math.h> #include<complex.h> #include<fstream.h> void main() { clrscr; ofstreammyfile; myfile.open ("outputfdm.txt"); myfile<<"Writing this to a file.n"; float T[25][500]; float S[25][500]; float hi,ho,ha,To,r,t,k,Ta,c,Th,E,Af,Sut,Se,m,N,L; cout<<"Enter in W/m2 K value of hi"; cin>>hi; cout<<"Enter in W/m2 K value of ho"; cin>>ho; cout<<"Enter in W/m2 K value of ha"; cin>>ha; cout<<"Enter in Kg/m3 value of density"; cin>>r; cout<<"Enter in seconds time interval delta t"; cin>>t; cout<<"Enter in W/m K value of thermal conductivity"; cin>>k; cout<<"Enter in Kelvin Temperature outside Furnace Wall"; cin>>Ta; cout<<"Enter in Kelvin Temperature inside Furnace Wall"; cin>>Th; cout<<"Enter in Kelvin Temperature of Air"; cin>>To; cout<<"Enter in J/Kg K value of Specific Heat"; cin>>c; cout<<"Enter in N/m2 value of Elasticity Constant"; cin>>E; cout<<"Enter in m/K Thermal Expansion Co-efficient"; cin>>Af; cout<<"Enter in MPA value of Ultimate Stress"; cin>>Sut; T[1][0]=300; T[2][0]=300; T[3][0]=300; T[4][0]=300; T[5][0]=300; T[6][0]=300; T[7][0]=300; T[8][0]=300; T[9][0]=300; T[10][0]=300; T[11][0]=300; T[12][0]=300; T[13][0]=300; T[14][0]=300; T[15][0]=300; T[16][0]=300; T[17][0]=300; T[18][0]=300; T[19][0]=300; T[20][0]=300; T[21][0]=300; T[22][0]=300; T[23][0]=300; T[24][0]=300; for (inti=0; i<=270;i++) { T[1][i+1] = (((0.5*ha*0.06*(To-T[1][i])) +(ho*0.3*(Ta- T[1][i])/2)+(0.5*k*0.3*(T[2][i]- T[1][i])/0.06)+(0.5*k*0.06*(T[4][i]-T[1][i])/0.3) )*((4*t)/(r*c*0.06*0.3)))+T[1][i]; T[2][i+1] = (((ha*0.06*(To-T[2][i]))+(0.5*k*0.3*(T[1][i]- T[2][i])/0.06)+(0.5*k*0.3*(T[3][i]-T[2][i])/0.06) +(0.5*k*0.06*(T[5][i]- T[2][i])/0.3))*((2*t)/(r*c*0.06*0.3)))+T[2][i]; T[3][i+1] = (((ha*0.06*(To-T[3][i])*0.5) +( hi*0.3*(Th- T[3][i])*0.5 ) +(0.5*k*0.3*(T[2][i]- T[3][i])/0.06)+(0.5*k*0.06*(T[6][i]-T[3][i])/0.3)) *((4*t)/(r*c*0.06*0.3)))+T[3][i]; T[4][i+1] = ((( ho*0.3*(Ta-T[4][i])) +(k*0.3*(T[5][i]- T[4][i])/0.06)+(0.5*k*0.06*(T[1][i]-T[4][i])/0.3) + (0.5*k*0.06*(T[7][i]-T[4][i])/0.3)) *((2*t)/(r*c*0.06*0.3)))+T[4][i];
  • 6. International Journal of Civil, Mechanical and Energy Science (IJCMES) [Vol-3, Issue-1, Jan-Feb, 2017] https://dx.doi.org/10.24001/ijcmes.3.1.7 ISSN: 2455-5304 www.ijcmes.com Page | 47 T[5][i+1] = (((k*0.3*(T[4][i]- T[5][i])/0.06)+(k*0.3*(T[6][i]-T[5][i])/0.06) + (k*0.06*(T[8][i]-T[5][i])/0.3)) *((t)/(r*c*0.06*0.3)))+T[5][i]; T[6][i+1] = (((hi*0.3*(Th-T[6][i])) + (k*0.3*(T[2][i]- T[6][i])/0.06)+(0.5*k*0.06*(T[3][i]-T[6][i])/0.3) + (0.5*k*0.06*(T[9][i]-T[6][i])/0.3)) *((2*t)/(r*c*0.06*0.3)))+T[6][i]; T[7][i+1] = (((ho*0.3*(Ta-T[7][i])) + (k*0.3*(T[8][i]- T[7][i])/0.06)+(0.5*k*0.06*(T[4][i]-T[7][i])/0.3) + (0.5*k*0.06*(T[10][i]-T[7][i])/0.3)) *((2*t)/(r*c*0.06*0.3)))+T[7][i]; T[8][i+1] = (((k*0.3*(T[7][i]-T[8][i])/0.06)+( k*0.3*(T[9][i]-T[8][i])/0.06 ) +(k*0.06*(T[5][i]- T[8][i])/0.3) + (k*0.06*(T[11][i]-T[8][i])/0.3)) *((t)/(r*c*0.06*0.3)))+T[8][i]; T[9][i+1] = (( (hi*0.3*(Th-T[9][i]))+(k*0.3*(T[8][i]- T[9][i])/0.06)+ (0.5*k*0.06*(T[6][i]-T[9][i])/0.3) + (0.5*k*0.06*(T[12][i]-T[9][i])/0.3)) *((2*t)/(r*c*0.06*0.3)))+T[9][i]; T[10][i+1] = (( (ho*0.18*(Ta-T[10][i]))+(k*0.18*(T[11][i]- T[10][i])/0.06)+ (0.5*k*0.06*(T[7][i]-T[10][i])/0.18) + (0.5*k*0.06*(T[15][i]-T[10][i])/0.18)) *((2*t)/(r*c*0.06*0.18)))+T[10][i]; T[11][i+1] = (( (k*0.18*(T[10][i]-T[11][i])/0.06)+ (k*0.18*(T[12][i]-T[11][i])/0.06)+ (k*0.06*(T[8][i]- T[11][i])/0.18) + (k*0.06*(T[16][i]-T[11][i])/0.18)) *((t)/(r*c*0.06*0.18)))+T[11][i]; T[12][i+1] = (( (0.5*hi*0.12*(Th-T[12][i]))+( 0.5*hi*0.18*(Th-T[12][i])) +(k*0.18*(T[11][i]- T[12][i])/0.12)+ (0.5*k*0.18*(T[13][i]- T[12][i])/0.12)+(0.5*k*0.12*(T[9][i]-T[12][i])/0.18) + (k*0.12*(T[17][i]-T[12][i])/0.18)) *((4*t)/(3*r*c*0.12*0.18))) +T[12][i]; T[13][i+1] = (( (hi*0.18*(Th- T[13][i]))+(0.5*k*0.18*(T[12][i]-T[13][i])/0.18)+ (0.5*k*0.18*(T[14][i]-T[13][i])/0.18)+ (k*0.18*(T[18][i]- T[13][i])/0.18)) *((2*t)/(r*c*0.18*0.18)))+T[13][i]; T[14][i+1] = (( (0.5*hi*0.18*(Th- T[14][i]))+(0.5*hi*0.18*(Th-T[14][i])) +(0.5*k*0.18*(T[13][i]-T[14][i])/0.18)+ (0.5*k*0.18*(T[19][i]-T[14][i])/0.18)) *((4*t)/(r*c*0.18*0.18)))+T[14][i]; T[15][i+1] = (( (ho*0.06*(Ta-T[15][i]))+(k*0.06*(T[16][i]- T[15][i])/0.06)+ (0.5*k*0.06*(T[10][i]-T[15][i])/0.06)+( 0.5*k*0.06*(T[20][i]-T[15][i])/0.06)) *((2*t)/(r*c*0.06*0.06)))+T[15][i]; T[16][i+1] = (( (k*0.06*(T[15][i]-T[16][i])/0.06)+ (k*0.06*(T[17][i]-T[16][i])/0.06 )+(k*0.06*(T[11][i]- T[16][i])/0.06)+( k*0.06*(T[21][i]-T[16][i])/0.06)) *((t)/(r*c*0.06*0.06)))+T[16][i]; T[17][i+1] = (( (k*0.06*(T[16][i]-T[17][i])/0.12)+ (k*0.06*(T[18][i]-T[17][i])/0.12 )+(k*0.12*(T[12][i]- T[17][i])/0.06)+( k*0.12*(T[22][i]-T[17][i])/0.06)) *((t)/(r*c*0.12*0.06)))+T[17][i]; T[18][i+1] = (( (k*0.06*(T[17][i]-T[18][i])/0.18)+ (k*0.06*(T[19][i]-T[18][i])/0.18 )+(k*0.18*(T[13][i]- T[18][i])/0.06)+( k*0.18*(T[23][i]-T[18][i])/0.06)) *((t)/(r*c*0.18*0.06)))+T[18][i]; T[19][i+1] = (( (hi*0.06*(Th-T[19][i]))+(k*0.06*(T[18][i]- T[19][i])/0.18)+ (0.5*k*0.18*(T[14][i]-T[19][i])/0.06)+( 0.5*k*0.18*(T[24][i]-T[19][i])/0.06)) *((2*t)/(r*c*0.18*0.06)))+T[19][i]; T[20][i+1] = (( (0.5*ho*0.06*(Ta-T[20][i]))+( 0.5*ho*0.06*(Ta-T[20][i]))+(0.5*k*0.06*(T[21][i]- T[20][i])/0.06)+ (0.5*k*0.06*(T[15][i]- T[20][i])/0.06))*((4*t)/(r*c*0.06*0.06)))+T[20][i]; T[21][i+1] = (( (0.5*ho*0.06*(Ta- T[21][i]))+(0.5*k*0.06*(T[20][i]-T[21][i])/0.06)+( 0.5*k*0.06*(T[22][i]-T[21][i])/0.06)+ (k*0.06*(T[16][i]- T[21][i])/0.06))*((2*t)/(r*c*0.06*0.06)))+T[21][i]; T[22][i+1] = (( (ho*0.12*(Ta- T[22][i]))+(0.5*k*0.06*(T[21][i]-T[22][i])/0.12)+( 0.5*k*0.06*(T[23][i]-T[22][i])/0.12)+ (k*0.12*(T[17][i]- T[22][i])/0.06))*((2*t)/(r*c*0.12*0.06)))+T[22][i]; T[23][i+1] = (( (ho*0.18*(Ta- T[23][i]))+(0.5*k*0.06*(T[22][i]-T[23][i])/0.18)+( 0.5*k*0.06*(T[24][i]-T[23][i])/0.18)+ (k*0.18*(T[18][i]- T[23][i])/0.06))*((2*t)/(r*c*0.18*0.06)))+T[23][i]; T[24][i+1] = (( (0.5*ho*0.18*(Ta-T[24][i]))+( 0.5*hi*0.06*(Th-T[24][i])) +(0.5*k*0.06*(T[23][i]- T[24][i])/0.18)+ (0.5*k*0.18*(T[19][i]- T[24][i])/0.06))*((4*t)/(r*c*0.18*0.06)))+T[24][i]; S[14][i] = E*Af*T[14][i]; } for (i=271; i<=360;i++) { hi=ha; Th=Ta; T[1][i+1] = (((0.5*ha*0.06*(To-T[1][i])) +(ho*0.3*(Ta- T[1][i])/2)+(0.5*k*0.3*(T[2][i]- T[1][i])/0.06)+(0.5*k*0.06*(T[4][i]-T[1][i])/0.3) )*((4*t)/(r*c*0.06*0.3)))+T[1][i]; T[2][i+1] = (((ha*0.06*(To-T[2][i]))+(0.5*k*0.3*(T[1][i]- T[2][i])/0.06)+(0.5*k*0.3*(T[3][i]-T[2][i])/0.06)
  • 7. International Journal of Civil, Mechanical and Energy Science (IJCMES) [Vol-3, Issue-1, Jan-Feb, 2017] https://dx.doi.org/10.24001/ijcmes.3.1.7 ISSN: 2455-5304 www.ijcmes.com Page | 48 +(0.5*k*0.06*(T[5][i]- T[2][i])/0.3))*((2*t)/(r*c*0.06*0.3)))+T[2][i]; T[3][i+1] = (((ha*0.06*(To-T[3][i])*0.5) +( hi*0.3*(Th- T[3][i])*0.5 ) +(0.5*k*0.3*(T[2][i]- T[3][i])/0.06)+(0.5*k*0.06*(T[6][i]-T[3][i])/0.3)) *((4*t)/(r*c*0.06*0.3)))+T[3][i]; T[4][i+1] = ((( ho*0.3*(Ta-T[4][i])) +(k*0.3*(T[5][i]- T[4][i])/0.06)+(0.5*k*0.06*(T[1][i]-T[4][i])/0.3) + (0.5*k*0.06*(T[7][i]-T[4][i])/0.3)) *((2*t)/(r*c*0.06*0.3)))+T[4][i]; T[5][i+1] = (((k*0.3*(T[4][i]- T[5][i])/0.06)+(k*0.3*(T[6][i]-T[5][i])/0.06) + (k*0.06*(T[8][i]-T[5][i])/0.3)) *((t)/(r*c*0.06*0.3)))+T[5][i]; T[6][i+1] = (((hi*0.3*(Th-T[6][i])) + (k*0.3*(T[2][i]- T[6][i])/0.06)+(0.5*k*0.06*(T[3][i]-T[6][i])/0.3) + (0.5*k*0.06*(T[9][i]-T[6][i])/0.3)) *((2*t)/(r*c*0.06*0.3)))+T[6][i]; T[7][i+1] = (((ho*0.3*(Ta-T[7][i])) + (k*0.3*(T[8][i]- T[7][i])/0.06)+(0.5*k*0.06*(T[4][i]-T[7][i])/0.3) + (0.5*k*0.06*(T[10][i]-T[7][i])/0.3)) *((2*t)/(r*c*0.06*0.3)))+T[7][i]; T[8][i+1] = (((k*0.3*(T[7][i]-T[8][i])/0.06)+( k*0.3*(T[9][i]-T[8][i])/0.06 ) +(k*0.06*(T[5][i]- T[8][i])/0.3) + (k*0.06*(T[11][i]-T[8][i])/0.3)) *((t)/(r*c*0.06*0.3)))+T[8][i]; T[9][i+1] = (( (hi*0.3*(Th-T[9][i]))+(k*0.3*(T[8][i]- T[9][i])/0.06)+ (0.5*k*0.06*(T[6][i]-T[9][i])/0.3) + (0.5*k*0.06*(T[12][i]-T[9][i])/0.3)) *((2*t)/(r*c*0.06*0.3)))+T[9][i]; T[10][i+1] = (( (ho*0.18*(Ta-T[10][i]))+(k*0.18*(T[11][i]- T[10][i])/0.06)+ (0.5*k*0.06*(T[7][i]-T[10][i])/0.18) + (0.5*k*0.06*(T[15][i]-T[10][i])/0.18)) *((2*t)/(r*c*0.06*0.18)))+T[10][i]; T[11][i+1] = (( (k*0.18*(T[10][i]-T[11][i])/0.06)+ (k*0.18*(T[12][i]-T[11][i])/0.06)+ (k*0.06*(T[8][i]- T[11][i])/0.18) + (k*0.06*(T[16][i]-T[11][i])/0.18)) *((t)/(r*c*0.06*0.18)))+T[11][i]; T[12][i+1] = (( (0.5*hi*0.12*(Th-T[12][i]))+( 0.5*hi*0.18*(Th-T[12][i])) +(k*0.18*(T[11][i]- T[12][i])/0.12)+ (0.5*k*0.18*(T[13][i]- T[12][i])/0.12)+(0.5*k*0.12*(T[9][i]-T[12][i])/0.18) + (k*0.12*(T[17][i]-T[12][i])/0.18)) *((4*t)/(3*r*c*0.12*0.18))) +T[12][i]; T[13][i+1] = (( (hi*0.18*(Th- T[13][i]))+(0.5*k*0.18*(T[12][i]-T[13][i])/0.18)+ (0.5*k*0.18*(T[14][i]-T[13][i])/0.18)+ (k*0.18*(T[18][i]- T[13][i])/0.18)) *((2*t)/(r*c*0.18*0.18)))+T[13][i]; T[14][i+1] = (( (0.5*hi*0.18*(Th- T[14][i]))+(0.5*hi*0.18*(Th-T[14][i])) +(0.5*k*0.18*(T[13][i]-T[14][i])/0.18)+ (0.5*k*0.18*(T[19][i]-T[14][i])/0.18)) *((4*t)/(r*c*0.18*0.18)))+T[14][i]; T[15][i+1] = (( (ho*0.06*(Ta-T[15][i]))+(k*0.06*(T[16][i]- T[15][i])/0.06)+ (0.5*k*0.06*(T[10][i]-T[15][i])/0.06)+( 0.5*k*0.06*(T[20][i]-T[15][i])/0.06)) *((2*t)/(r*c*0.06*0.06)))+T[15][i]; T[16][i+1] = (( (k*0.06*(T[15][i]-T[16][i])/0.06)+ (k*0.06*(T[17][i]-T[16][i])/0.06 )+(k*0.06*(T[11][i]- T[16][i])/0.06)+( k*0.06*(T[21][i]-T[16][i])/0.06)) *((t)/(r*c*0.06*0.06)))+T[16][i]; T[17][i+1] = (( (k*0.06*(T[16][i]-T[17][i])/0.12)+ (k*0.06*(T[18][i]-T[17][i])/0.12 )+(k*0.12*(T[12][i]- T[17][i])/0.06)+( k*0.12*(T[22][i]-T[17][i])/0.06)) *((t)/(r*c*0.12*0.06)))+T[17][i]; T[18][i+1] = (( (k*0.06*(T[17][i]-T[18][i])/0.18)+ (k*0.06*(T[19][i]-T[18][i])/0.18 )+(k*0.18*(T[13][i]- T[18][i])/0.06)+( k*0.18*(T[23][i]-T[18][i])/0.06)) *((t)/(r*c*0.18*0.06)))+T[18][i]; T[19][i+1] = (( (hi*0.06*(Th-T[19][i]))+(k*0.06*(T[18][i]- T[19][i])/0.18)+ (0.5*k*0.18*(T[14][i]-T[19][i])/0.06)+( 0.5*k*0.18*(T[24][i]-T[19][i])/0.06)) *((2*t)/(r*c*0.18*0.06)))+T[19][i]; T[20][i+1] = (( (0.5*ho*0.06*(Ta-T[20][i]))+( 0.5*ho*0.06*(Ta-T[20][i]))+(0.5*k*0.06*(T[21][i]- T[20][i])/0.06)+ (0.5*k*0.06*(T[15][i]- T[20][i])/0.06))*((4*t)/(r*c*0.06*0.06)))+T[20][i]; T[21][i+1] = (( (0.5*ho*0.06*(Ta- T[21][i]))+(0.5*k*0.06*(T[20][i]-T[21][i])/0.06)+( 0.5*k*0.06*(T[22][i]-T[21][i])/0.06)+ (k*0.06*(T[16][i]- T[21][i])/0.06))*((2*t)/(r*c*0.06*0.06)))+T[21][i]; T[22][i+1] = (( (ho*0.12*(Ta- T[22][i]))+(0.5*k*0.06*(T[21][i]-T[22][i])/0.12)+( 0.5*k*0.06*(T[23][i]-T[22][i])/0.12)+ (k*0.12*(T[17][i]- T[22][i])/0.06))*((2*t)/(r*c*0.12*0.06)))+T[22][i]; T[23][i+1] = (( (ho*0.18*(Ta- T[23][i]))+(0.5*k*0.06*(T[22][i]-T[23][i])/0.18)+( 0.5*k*0.06*(T[24][i]-T[23][i])/0.18)+ (k*0.18*(T[18][i]- T[23][i])/0.06))*((2*t)/(r*c*0.18*0.06)))+T[23][i]; T[24][i+1] = (( (0.5*ho*0.18*(Ta-T[24][i]))+( 0.5*hi*0.06*(Th-T[24][i])) +(0.5*k*0.06*(T[23][i]- T[24][i])/0.18)+ (0.5*k*0.18*(T[19][i]- T[24][i])/0.06))*((4*t)/(r*c*0.18*0.06)))+T[24][i]; S[14][i] = E*Af*T[14][i]; } for(i=0; i<=360;i=i+6)
  • 8. International Journal of Civil, Mechanical and Energy Science (IJCMES) [Vol-3, Issue-1, Jan-Feb, 2017] https://dx.doi.org/10.24001/ijcmes.3.1.7 ISSN: 2455-5304 www.ijcmes.com Page | 49 { myfile<<"MAXIMUM TEMPERATURE AFTER "<<i/6<<" MINUTES"<<T[14][i]<<" KELVIN"<<endl; myfile<<"MAXIMUM STRESS AFTER "<<i/6<<" MINUTES "<<S[14][i]<<" MPa"<<endl; } for(i=0; i<=300; i++) { if (i==270) { myfile<<"S"<<S[14][i]; Se=0.15*Sut; m = (Sut-Se)/7; N = 7 -((S[14][i]-Se)/m); L = pow(10,N); myfile<<"N"<<N; myfile<<"LIFE CYCLE"<<L; myfile.close(); } } getch(); } IV. RESULTS AND DISCUSSION We can see from the Fig. 2 that maximum temperature is increasing from atmospheric temperature 300 K and reaches to maximum temperature 1787 K in 45 minutes and then starts reducing and reaches to 869 K in next 15 minutes. It again starts increasing and reaches to maximum 1787 K after 105 minutes and again starts reducing. There are 10 similar temperature cycles in one day. Fig.2: Maximum temperature v/s time graph for alumina ramming mass Fig.3: Maximum thermal stress v/s time graph for alumina ramming mass We can see from the Fig. 3 that maximum thermal stress is increasing from initial condition 0 MPa and reaches to maximum stress 346 MPa in 45 minutes and then starts reducing and reaches to 168 MPa in next 15 minutes. It again starts increasing and reaches to maximum stress 346 MPa after 105 minutes and again it starts reducing. There are 10 similar thermal stress cycles in one day. Stress-Life Method To determine life of any component by Stress-Life Method, we need to find out ultimate strength and endurance limit of the component for the required material. We know the values of ultimate stress for these all materials. Alumina ramming mass is having ultimate strength of 500 MPa. We can find out Se’ from the equation given below or we can say dividing value of ultimate strength. We know value of ultimate stress of alumina ramming mass is 500 Mpa. We know the relation between Sut and Se’ so that we can find out Se’. Se’ = 0.5 * Sut= 250 MPa Endurance Limit Modifying Factors We have seen that the rotating-beam specimen used in the laboratory to determine endurance limits is prepared very carefully and tested under closely controlled conditions. It is unrealistic to expect the endurance limit of a mechanical or structural member to match the values obtained in the laboratory. 0 500 1000 1500 2000 1 43 85 127 169 211 253 295 337 379 421 463 505 547 589 Temperature(Kelvin) Time (Minutes) Maximum Temperature v/s Time Alumina Ramming Mass 0 100 200 300 400 1 43 85 127 169 211 253 295 337 379 421 463 505 547 589 Stress(MPa) Time (Minutes) Maximum Stress v/s Time Alumina Ramming Mass
  • 9. International Journal of Civil, Mechanical and Energy Science (IJCMES) [Vol-3, Issue-1, Jan-Feb, 2017] https://dx.doi.org/10.24001/ijcmes.3.1.7 ISSN: 2455-5304 www.ijcmes.com Page | 50 Some differences include Material: composition, basis of failure, variability Manufacturing: method, heat treatment, fretting corrosion, surface condition, stress concentration Environment: corrosion, temperature, stress state, relaxation times Design: size, shape, life, stress state, stress concentration, speed, fretting, galling Marin identified factors that quantified the effects of surface condition, size, loading, temperature, and miscellaneous items. The question of whether to adjust the endurance limit by subtractive corrections or multiplicative corrections was resolved by an extensive statistical analysis of a 4340 (electric furnace, aircraft quality) steel, in which a correlation coefficient of 0.85 was found for the multiplicative form and 0.40 for the additive form. A Marin equation is therefore written as Se = ka*kb*kc*kd*ke*kf* Se’ Where, ka= surface condition modification factor = 0.84 kb= size modification factor = 0.98 kc= load modification factor = 0.96 kd= temperature modification factor = 0.45 ke= reliability factor = 0.9 kf= miscellaneous-effects modification factor = 0.95 Se’= specimen endurance limit Se = endurance limit at the critical location of a machine part in the geometry and condition of use. We can find out different factor like surface finish factor, size factor, loading factor, temperature factor, reliability factor, miscellaneous effects factor as per the guideline. (Joseph E. Shigleyet al, Machine Engineering Design) Now, we can find out endurance limit for all different materials. Se = ka*kb*kc*kd*ke*kf*Se' = 75 MPa Fig. 3: Stress v/s Life Cycle for Alumina Ramming Mass N (No. of working cycles) = LminX (100-Probability) / (100 X Miscellaneous Factor) D (No. of working days) = N / (No. of working cycles per day) Table.2: Number of Working Cycles and Number of Working Days with Probability Sr. No. Probability (%) No. of working cycles for Alumina Ramming Mass No. of days working 1 100 342 38.0 2 90 349 38.8 3 80 356 39.5 4 70 363 40.3 5 60 369 41.0 6 50 376 41.8 7 40 383 42.6 8 30 390 43.3 9 20 397 44.1 10 10 404 44.8 We can understand from this table that all cases of induction furnace wall will work for minimum 342 working cycles and 38 days. The probability will be decreasing continuously with increase in life span and working days. It happens very rarely that induction furnace wall will work for 404 working cycles and 44.8 days so its probability is minimum 10% of cases can be having such a large life span. 0 100 200 300 400 500 600 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 Stress(MPa) Life Cycle (Log N) Stress v/s Life Cycle Alumina Ramming Mass
  • 10. International Journal of Civil, Mechanical and Energy Science (IJCMES) [Vol-3, Issue-1, Jan-Feb, 2017] https://dx.doi.org/10.24001/ijcmes.3.1.7 ISSN: 2455-5304 www.ijcmes.com Page | 51 V. CONCLUSION Induction Melting Furnaces are highly used now- a-days for melting of different kinds of materials. The problem comes from the alumina ramming mass of losing its material properties and failure occurs within 340-370 hours of lifetime. It will disturb production schedule as it requires time to replace the induction melting furnace wall of alumina ramming mass. Explicit finite difference analysis is done for induction melting furnace refractory wall and validation is done with respect to experimental Results. Explicit finite difference analysis is done with respect to actual working conditions of induction furnace and material properties of alumina ramming mass. Then S – log N Curves are plotted for Life Span Prediction. We had found life span of different materials like alumina ramming mass is 340-370 cycles. From the results of experimental study and explicit finite difference analysis of thermal fatigue failure of induction melting furnace wall, it can be seen that finite difference model exactly predicts the failure of the induction furnace refractory wall and the definite solution conditions in the finite difference numerical calculation are accurate. The fatigue life of the induction melting furnace refractory wall under thermal fatigue working conditions was predicted using stress-life method by plotting S – log N curves for alumina ramming mass on the basis of explicit finite difference calculations and maximum thermal stress in the induction melting furnace refractory wall. We can use it as a linear to increase lifespan or we can use premixed alumina ramming mass for economical and better working lifespan of induction melting furnace wall. The accuracy of the fatigue life prediction for the induction melting furnace refractory wall depends upon temperature and thermal stress spectrum calculated at the critical point by explicit finite difference method and S-log N curves prepared from the material properties and boundary condition for alumina ramming mass. REFERENCES [1] Nirajkumar Mehta, (May 2012), Review on Computational Investigation on Different Kinds of Furnaces, International Conference on Emerging Technologies and Applications in Engineering, Technology and Sciences, Volume 3, pp 1 – 7. [2] N C Mehta, Vipul B Gondaliya, Jayesh V Gundaniya, (February 2013), Applications of Different Numerical Methods in Heat Transfer - A Review, International Journal of Emerging Technology and Advanced Engineering, Volume 3, Issue 2, pp 363 – 368. [3] N C Mehta, Akash D Raiyani, Vikas R Gondalia, (February 2013), Thermal Fatigue Analysis of Induction Melting Furnace Wall for Silica ramming mass, International Journal of Emerging Technology and Advanced Engineering, Volume 3, Issue 2, pp 357 – 362. [4] Vimal R Nakum, Kevin M Vyas, Niraj C Mehta, (April 2013), Research on Induction Heating - A Review, International Journal of Science and Engineering Applications, Volume 2, Issue 6, pp 141 – 144, DOI: 10.7753/IJSEA0206.1005. [5] N C Mehta, Viral V Shiyani, Jemish R Nasit, (May 2013), Metal Forming Analysis, International Journal of Emerging Technology and Advanced Engineering, Volume 3, Issue 5, pp 190 - 196. [6] VipulGondaliya, MehulPujara, Nirajkumar Mehta, (August 2013), Transient Heat Transfer Analysis of Induction Furnace by Using Finite Element Analysis, International Journal of Applied Research, Volume 3, Issue 8, pp 231 – 234. [7] N C Mehta, Vasim G Machhar, Ravi K Popat, (October 2013), Thermal Fatigue Analysis of Induction Furnace Wall for Alumina ramming mass, International Journal of Science and Engineering Applications, Volume 2, Issue 10, pp 186 – 190, DOI: 10.7753/IJSEA0210.1002. [8] Akash D Raiyani, N R Sheth, Niraj C Mehta, (July 2014), Thermal Analysis of Hot Wall Condenser for Domestic Refrigerator, International Journal of Science and Research, Volume 3, Issue 7, pp 622 – 626. [9] Nirajkumar C Mehta, Dipesh D Shukla, Ravi K Popat, (December 2014), Optimisation of Wall Thickness for Minimum Heat Loss for Induction Furnace by FEA, Indian Foundry Journal, Volume 60, No. 12, pp 19-25. [10]Nirajkumar C Mehta, Dr.Dipesh D Shukla, Vishvash B Rajyaguru, (April 2015), Numerical Analysis of Furnace: Review, National Conference on Recent Research and Development in Core Disciplines of Engineering, Vadodara, Volume: 2, pp 1 -7. [11]Nirajkumar C Mehta, Dr.Dipesh D Shukla, Vishvash B Rajyaguru, (April 2015), Thermal Fatigue Analysis of Induction Furnace Wall for Zirconia, National Conference on Recent Research and Development in Core Disciplines of Engineering, Vadodara, Volume: 2, pp 1 – 6. [12]Nirajkumar C Mehta, Dr.Dipesh D Shukla, Pragnesh D Kandoliya, (April 2015), Comparison of Finite Difference Method and Finite Element Method for 2 D Transient Heat Transfer Problem, National Conference
  • 11. International Journal of Civil, Mechanical and Energy Science (IJCMES) [Vol-3, Issue-1, Jan-Feb, 2017] https://dx.doi.org/10.24001/ijcmes.3.1.7 ISSN: 2455-5304 www.ijcmes.com Page | 52 on Recent Research and Development in Core Disciplines of Engineering, Vadodara, Volume: 2, pp 1 – 10. [13]Nirajkumar C Mehta, Dr.Dipesh D Shukla, (June 2015), Thermal Fatigue Analysis of Induction Furnace Wall for Magnesia Ramming Mass, ASME 2015 Applied Mechanics and Materials Conference, At Seattle, Washington, United States of America, Volume: 12, pp 1 – 6. [14]Nirajkumar C Mehta, Dr.Dipesh D Shukla, Pragnesh D Kandoliya, (December 2016), Advanced Mathematical Modeling of Heat Transfer in Induction Furnace Wall of Zirconia, International Journal of Engineering Research and Technology, Volume 5, Issue 10, pp 176 – 181, DOI: 10.17577/IJERTV5IS120128 [15]Nirajkumar C Mehta, Dr.Dipesh D Shukla, Pragnesh D Kandoliya, (December 2016), Advanced Heat Transfer Analysis of Alumina Based Refractory Wall of Induction Furnace, National Conference on Emerging Trends in Engineering, Volume 1, pp 1 – 6. [16]A V K Suryanarayana, Fuels Furnaces Refractory and Pyrometry, B S Publications [17]Heat and Mass Transfer A practical Approach, by Yunus A Cengel [18]Machine Engineering Design, by Joseph E. Shigley and Charles R. Mischke, TATA McGRAW HILL Publication, sixth edition John Campbell, Castings, (2nd Edition)