SlideShare a Scribd company logo
IV. Orthogonal Frequency Division
Multiplexing (OFDM)
© Tallal Elshabrawy
Introduction
2
Evolution of Wireless Communication Standards
OFDM
© Tallal Elshabrawy 3
Wireless Communication Channels
 Communications over wireless channels suffer from multi-path
propagation
 Multi-path channels are usually frequency selective
 OFDM supports high data rate communications over frequency
selective channels
From “Wireless Communications” Edfors, Molisch, Tufvesson
© Tallal Elshabrawy 4
Multi-Path Propagation Modeling
Multi-path results from reflection, diffraction, and scattering off environment
surroundings
Note: The figure above demonstrates the roles of reflection and scattering only on multi-path
Power
Time
τ0 τ1 τ2
Multi-Path
Components
© Tallal Elshabrawy 5
Multi-Path Propagation Modeling
As the mobile receiver (i.e. car) moves in the environment, the strength of each
multi-path component varies
Power
Time
τ0 τ1 τ2
Multi-Path
Components
© Tallal Elshabrawy 6
Multi-Path Propagation Modeling
Power
Time
τ0 τ1 τ2
Multi-Path
Components
As the mobile receiver (i.e. car) moves in the environment, the strength of each
multi-path component varies
© Tallal Elshabrawy
Multi-Path = Frequency-Selective!
7
1 μs
0.5 0.5
1 μs
0.5 0.5
1 μs
0.5 0.5
1
0.5
1
1
-1
1
-1
0.5
-0.5
1 μs
1 μs
1
-1
1
-1
0.5
-0.5
1 μs
f=0
f=1 MHz
f=500 KHz
© Tallal Elshabrawy
Multi-Path = Frequency-Selective!
 A multi-path channel treats signals with different
frequencies differently
 A signal composed of multiple frequencies would
be distorted by passing through such channel
8
1 μs
0.5 0.5
0 0.5 1 1.5 2
f (MHz)
|H(f)|
1
h(t)
© Tallal Elshabrawy 9
 Subdivide wideband bandwidth into multiple narrowband sub-
carriers
 Bandwidth of each channel is selected such that each sub-carrier
approximately displays Flat Fading characteristics
 The bandwidth over which the wireless channel is assumed to
display flat fading characteristics is called the coherence
bandwidth
Power
Frequency
Frequency Division & Coherence Bandwidth
© Tallal Elshabrawy 10
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x 10
6
0
1
2
3
4
5
6
7
8
9
10
Frequency (Hz)
H(f)
Example Frequency Response for 3G Channel
Resolv
able
Path
Relative
Delay
(nsec)
Average
Power (dB)
1 0 0.0
2 310 -1.0
3 710 -9.0
4 1090 -10.0
5 1730 -15.0
6 2510 -20.0
Simulation Assumptions
 Rayleigh Fading for each resolvable path
 System Bandwidth = 5 MHz
 Coherence Bandwidth = 540 KHz
 Number of Sub-Carriers = 64
 Sub-Carrier Bandwidth = 78.125 KHz
Power Delay Profile
(Vehicular A Channel Model)
Snapshot for Frequency Response
© Tallal Elshabrawy 11
Example Frequency Response for 3G Channel
Resolv
able
Path
Relative
Delay
(nsec)
Average
Power (dB)
1 0 0.0
2 310 -1.0
3 710 -9.0
4 1090 -10.0
5 1730 -15.0
6 2510 -20.0
Simulation Assumptions
 Rayleigh Fading for each resolvable path
 System Bandwidth = 5 MHz
 Coherence Bandwidth = 540 KHz
 Number of Sub-Carriers = 64
 Sub-Carrier Bandwidth = 78.125 KHz
Power Delay Profile
(Vehicular A Channel Model)
Snapshot for Frequency Response
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x 10
6
0
1
2
3
4
5
6
7
8
9
10
Frequency (Hz)
H(f)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x 10
6
0
1
2
3
4
5
6
7
8
9
10
Frequency (Hz)
H(f)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x 10
6
0
1
2
3
4
5
6
7
8
9
10
Frequency (Hz)
H(f)
© Tallal Elshabrawy
Frequency Division Multiplexing (FDM)
+
Binary
Encoder
Transmitting
Filter (f1)
Modulation
Binary
Encoder
Transmitting
Filter (f2)
Modulation
Binary
Encoder
Transmitting
Filter (fN)
Modulation
Wireless
Channel
Bandpass
Filter (f1)
Demod.
Bandpass
Filter (f2)
Demod.
Bandpass
Filter (fN)
Demod.
© Tallal Elshabrawy
Channel Bandwidth of FDM
13
TS
Tx Filter
Time-Limited Communications
0
-fc
Band-Limited Communications
Rectangular Filter Raised Cosine Filter
Tx Signal in
Time
TS
Tx Signal in
Frequency
fc
2/TS
Signal
Bandwidth Zero-to-Zero Bandwidth = 2/TS
0 fc+ RS/2
-fc- RS/2 -fc+ RS/2 fc- RS/2
Bandwidth = RS = 1/TS
© Tallal Elshabrawy
Orthogonal FDM
14
   
S
T
i j
0
cos 2πft cos 2πf t dt 0 i j
  

Is it possible to find carrier
frequencies f1, f2 … fN such that
       
 
S S
T T
i j i j i j
0 0
1
cos 2πft cos 2πf t dt cos2π f f t cos2π f f t dt
2
 
    
 
 
 
 
   
 
 
 
 
S
S
T
T
i j i j
i j
0 i j i j
0
sin2π f f t sin2π f f t
1
cos 2πft cos 2πf t dt
2 2π f f 2π f f
 
 
 
 
 
 
 

   
 
 
 
 
S
T
i j S i j S
i j
0 i j i j
sin2π f f T sin2π f f T
1
cos 2πft cos 2πf t dt
2 2π f f 2π f f
 
 
 
 
 
 
 

© Tallal Elshabrawy
Orthogonal FDM
15
   
S
T
i j
0
cos 2πft cos 2πf t dt 0 i j
  

Is it possible to find carrier
frequencies f1, f2 … fN such that
   
 
 
 
 
S
T
i j S i j S
i j
0 i j i j
sin2π f f T sin2π f f T
1
cos 2πft cos 2πf t dt
2 2π f f 2π f f
 
 
 
 
 
 
 

   
   
   
S
T
i j
0
i j S i j S
i j i j
S S
cos 2πft cos 2πf t dt 0
2π f f T nπ n=1,2,3, .... & 2π f f T mπ m=1,2,3, ....
n m
f f n=1,2,3, .... & f f m=1,2,3, ....
2T 2T

    
    

© Tallal Elshabrawy
Orthogonality of Sub-Carriers
16
The sinusoid signals with
frequencies f1, f2, f3, f4 are
all mutually orthogonal
over the symbol period Ts
4
s
2
f
T

Ts
1
s
1
f
2T

2
s
1
f
T

3
s
3
f
2T

© Tallal Elshabrawy
Orthogonality of Sub-Carriers
17
Ts
1
s
1
f
2T

2
s
1
f
T

The sinusoid signals with
frequencies f1, f2, f3, f4 are
all mutually orthogonal
over the symbol period Ts
s s
πt 2πt
sin sin
T T
   
   
   
 
 
 
 
s s s
s
s
T T T
s s s s
0 0 0
T
T
s s
s s s s
0 0
πt 2πt πt 3πt
sin sin dt cos dt cos dt
T T T T
sin πt T sin 3πt T
πt 2πt
sin sin dt 0
T T πt T 3πt T
       
 
       
       
 
   
  
 
   
 
     
  

© Tallal Elshabrawy
Orthogonality of Sub-Carriers
The sinusoid signals with
frequencies f1, f2, f3, f4 are
all mutually orthogonal
over the symbol period Ts
Ts
1
s
1
f
2T

3
s
3
f
2T

s s
πt 3πt
sin sin
T T
   
   
   
 
 
 
 
s s s
s
s
T T T
s s s s
0 0 0
T
T
s s
s s s s
0 0
πt 3πt 2πt 4πt
sin sin dt cos dt cos dt
T T T T
sin 2πt T sin 4πt T
πt 3πt
sin sin dt 0
T T 2πt T 4πt T
       
 
       
       
 
   
  
 
   
 
     
  

© Tallal Elshabrawy
Orthogonality of Sub-Carriers
The sinusoid signals with
frequencies f1, f2, f3, f4 are
all mutually orthogonal
over the symbol period Ts
Ts
1
s
1
f
2T

4
s
2
f
T

s s
πt 4πt
sin sin
T T
   
   
   
 
 
 
 
s s s
s
s
T T T
s s s s
0 0 0
T
T
s s
s s s s
0 0
πt 4πt 3πt 5πt
sin sin dt cos dt cos dt
T T T T
sin 3πt T sin 5πt T
πt 4πt
sin sin dt 0
T T 3πt T 5πt T
       
 
       
       
 
   
  
 
   
 
     
  

© Tallal Elshabrawy
Orthogonality of Sub-Carriers
Ts
The sinusoid signals with
frequencies f1, f2, f3, f4 are
all mutually orthogonal
over the symbol period Ts
2
s
1
f
T

3
s
3
f
2T

s s
2πt 3πt
sin sin
T T
   
   
   
 
 
 
 
s s s
s
s
T T T
s s s s
0 0 0
T
T
s s
s s s s
0 0
2πt 3πt πt 5πt
sin sin dt cos dt cos dt
T T T T
sin πt T sin 5πt T
2πt 3πt
sin sin dt 0
T T πt T 5πt T
       
 
       
       
 
   
  
 
   
 
     
  

© Tallal Elshabrawy
Orthogonality of Sub-Carriers
The sinusoid signals with
frequencies f1, f2, f3, f4 are
all mutually orthogonal
over the symbol period Ts
Ts
2
s
1
f
T

4
s
2
f
T

s s
2πt 4πt
sin sin
T T
   
   
   
 
 
 
 
s s s
s
s
T T T
s s s s
0 0 0
T
T
s s
s s s s
0 0
2πt 4πt 2πt 6πt
sin sin dt cos dt cos dt
T T T T
sin 2πt T sin 6πt T
2πt 4πt
sin sin dt 0
T T 2πt T 6πt T
       
 
       
       
 
   
  
 
   
 
     
  

© Tallal Elshabrawy
Orthogonality of Sub-Carriers
The sinusoid signals with
frequencies f1, f2, f3, f4 are
all mutually orthogonal
over the symbol period Ts
Ts
4
s
2
f
T

3
s
3
f
2T

s s
3πt 4πt
sin sin
T T
   
   
   
 
 
 
 
s s s
s
s
T T T
s s s s
0 0 0
T
T
s s
s s s s
0 0
3πt 4πt πt 7πt
sin sin dt cos dt cos dt
T T T T
sin πt T sin 7πt T
3πt 4πt
sin sin dt 0
T T πt T 7πt T
       
 
       
       
 
   
  
 
   
 
     
  

© Tallal Elshabrawy
Orthogonal FDM
23
+
Binary
Encoder
Transmitting
Filter (f1)
Modulation
Binary
Encoder
Transmitting
Filter (f2)
Modulation
Binary
Encoder
Transmitting
Filter (fN)
Modulation
Wireless
Channel
Correlate
with (f1)
Demod.
Correlate
with (f2)
Demod.
Correlate
with (fN)
Demod.
f2=f1+1/2TS
fN=f1+1/2(N-1)TS
© Tallal Elshabrawy
Number of Subcarriers in OFDM
 For band-limited FDM if the system bandwidth is
B, number of sub-carriers is given by:
24
   
S
C
S
BT
B
N
1 α / T 1 α
 
 
 For OFDM if the system bandwidth is B, Number
of sub-carriers is given by:
C S
S
B
N 2BT
1/ 2T
 
0 α 1 Rolloff Factor
  
OFDM has the potential to at least double the
number of sub-carriers (i.e., double the total
transmission rate over the system bandwidth)
© Tallal Elshabrawy
+
Intersymbol Interference in OFDM
Ts
1
s
1
f
T

2
s
2
f
T

25
Ts
OFDM Symbol
Tx
Signal
Assume OFDM over two subcarriers: f1=1/Ts, f2=2/Ts
© Tallal Elshabrawy
Intersymbol Interference in OFDM
Suppose multi-path channel with delay Ts/8
26
h0 h1
Ts/8
Inter-Symbol
Interference (ISI)
Inter-symbol interference (ISI) occurs when one OFDM symbol affects the next
one due to the multi-path channel
OFDM Symbol
Tx
Signal
OFDM Symbol
Rx
Signal
© Tallal Elshabrawy
Inserting Guard Time
 Guard Time eliminates ISI between neighboring OFDM symbols
 However each OFDM symbol suffers from inter-carrier interference (ICI)
 Guard time corresponds to a reduction of bit rate
27
OFDM Symbol
Guard
Time
Ts Ts/4
Tx
Signal
No ISI
Ts
Ts/8
Rx
Signal
Suppose multi-path channel with delay Ts/8
h0 h1
Ts/8
Guard
Time
Ts Ts/4
Ts
Ts/8
© Tallal Elshabrawy
Guard Time & Inter-Carrier Interference
28
OFDM Symbol
Guard
Time
Ts
Ts/8
+
Tx Signal Rx Signal
OFDM Symbol
+
Guard
Time
Ts
Ts/8
© Tallal Elshabrawy
Guard Time & Inter-Carrier Interference
Rx Signal
Correlation at Rx over Ts
Consider the receiver for f1=1/Ts that
correlates over Ts with  
s
sin 2πt T
Ts
29
x
Not
Orthogonal
Intra-Carrier
Interference
+
Guard
Time
Ts
Ts/8
OFDM Symbol
© Tallal Elshabrawy
Guard Time & Inter-Carrier Interference
Consider the receiver for f1=1/Ts that
correlates over Ts with  
s
sin 2πt T
Ts
30
x
Orthogonal
No
Interference
Rx Signal
Correlation at Rx over Ts
+
Guard
Time
Ts
Ts/8
OFDM Symbol
© Tallal Elshabrawy
Guard Time & Inter-Carrier Interference
Consider the receiver for f1=1/Ts that
correlates over Ts with  
s
sin 2πt T
Ts
31
x
Not
Orthogonal
Inter-Carrier
Interference
Rx Signal
Correlation at Rx over Ts
+
Guard
Time
Ts
Ts/8
OFDM Symbol
© Tallal Elshabrawy
Ts
Ts/8
+
Cyclic Prefix
Tx Signal (Guard Time) Tx Signal (Cyclix Prefix)
The cyclic prefix is used to eliminate Inter-carrier interference
Cyclic Prefix
Cyclic Prefix
Cyclic Prefix
OFDM Symbol
Guard
Time
Ts
Ts/8
+
OFDM Symbol
Ts/8
© Tallal Elshabrawy
Cyclic Prefix
Rx Signal (Cyclix Prefix)
+
Cyclic Prefix
Correlation at Rx over Ts
Consider the receiver for f1=1/Ts that
correlates over Ts with  
s
sin 2πt T
Ts
x
Ts
Ts/8
Ts/8
Not
Orthogonal
Intra-Carrier
Interference
© Tallal Elshabrawy
Cyclic Prefix
Consider the receiver for f1=1/Ts that
correlates over Ts with  
s
sin 2πt T
Ts
x
Orthogonal
No
Interference
Rx Signal (Cyclix Prefix)
+
Cyclic Prefix
Correlation at Rx over Ts
Ts
Ts/8
Ts/8
© Tallal Elshabrawy
Cyclic Prefix
Consider the receiver for f1=1/Ts that
correlates over Ts with  
s
sin 2πt T
Ts
x
Orthogonal
No Inter-
Carrier
Interference
Rx Signal (Cyclix Prefix)
+
Cyclic Prefix
Correlation at Rx over Ts
Ts
Ts/8
Ts/8
© Tallal Elshabrawy
Cyclic Prefix (Summary)
Assume fi, fj are two OFDM sub-carriers and φij is the phase
shift associated with the cyclic prefix and multi-path channel
36
Cyclic Prefix eliminates Inter-carrier Interference (ICI)
   
         
           
   
s
s
s s
s
T
i j ij
0
T
i j ij j ij
0
T T
ij i j ij i j
0 0
T
i j ij
0
sin 2πft sin 2πf t φ dt
sin 2πft sin 2πf t cos φ cos 2πf t sin φ dt
cos φ sin 2πft sin 2πf t dt sin φ sin 2πft cos 2πf t dt
sin 2πft sin 2πf t φ dt 0

 
 
 
 
  


 

© Tallal Elshabrawy
Cyclic Prefix (Summary)
Assume an OFDM sub-carrier fi, and φii is the phase shift
associated with the cyclic prefix and multi-path channel
37
With Cyclic Prefix remains the component cos φii as a
source of Intra-Carrier Interference
   
         
         
         
s
s
s s
s s
T
i i ii
0
T
i i ii i ii
0
T T
2
ii i ii i i
0 0
T T
2
i i ii ii i ii
0 0
sin 2πft sin 2πft φ dt
sin 2πft sin 2πft cos φ cos 2πft sin φ dt
cos φ sin 2πft dt sin φ sin 2πft cos 2πft dt
sin 2πft sin 2πft φ dt cos φ sin 2πft dt 0 cos φ

 
 
 
 
    


 
 
© Tallal Elshabrawy
Cyclic Prefix vs Guard Time
38
Guard Time Cyclic Prefix
Eliminates Inter-symbol
Interference
Eliminates Inter-symbol
Interference
Suffers from Inter-carrier
Interference
Eliminates Inter-carrier Interference
Suffers from Intra-carrier
Interference
Suffers from Intra-carrier
Interference
Causes a reduction in data rate as
a result of the increased OFDM
symbol time
Causes a reduction in data rate as
a result of the increased OFDM
symbol time
Does not consume additional
power associated with OFDM
symbol time expansion due to the
guard time
Necessitates additional power
associated with OFDM symbol
expansion due to the introduction
of cyclic prefix
© Tallal Elshabrawy
OFDM with Cyclic Prefix System Model
39
Suppose multi-path channel with delay Ts/8
Each sub-carrier is treated as an independent
transmission
h0 h1
Ts/8
Cyclic Prefix
Correlation at Rx over Ts
Tx Signal Rx Signal
multiplied by h0 multiplied by h1
       
 
s s
T T
i 0 i i 1 i ii
0 0
0 1 ii
β sin 2πft h sin 2πft dt sin 2πft h sin 2πft φ dt
β h h cos φ
  
 
 
Fading Effect of the Channel
© Tallal Elshabrawy
Mitigation of Fading: Freq. Equalization
 Conduct channel estimation for h0 and h1
 Divide the correlated signal by β=h0+h1cos(φii)
40
 Requires channel estimation
 For low value values of β equalization also results
in noise amplification
© Tallal Elshabrawy
Mitigation of Fading: Precoding
 Conduct channel estimation for h0 and h1
 Divide the transmitted signal by β=h0+h1cos(φii)
41
 Requires channel estimation
 Requires channel estimation knowledge at
transmitter
 Does not result in any noise amplification at the
receiver
 For low values of β, excessively high transmission
power might be needed at the transmitter
© Tallal Elshabrawy
Mitigation of Fading: Adaptive Loading
 Distribute power over sub-carriers such as to
maximize total system data rate
42
 Requires channel estimation
 Requires channel estimation knowledge at
transmitter

More Related Content

Similar to COMM 1001 Modulation & Coding Lecture 9.ppt

chap4_lec1.ppt Engineering and technical
chap4_lec1.ppt Engineering and technicalchap4_lec1.ppt Engineering and technical
chap4_lec1.ppt Engineering and technical
shreenathji26
 
Unit 1
Unit 1Unit 1
Unit 1
Ramanalluri
 
Ch4 2 _fm modulator and demodulator15
Ch4 2 _fm modulator and demodulator15Ch4 2 _fm modulator and demodulator15
Ch4 2 _fm modulator and demodulator15
Jyothirmaye Suneel
 
1 radar signal processing
1 radar signal processing1 radar signal processing
1 radar signal processing
Solo Hermelin
 
RF Module Design - [Chapter 4] Transceiver Architecture
RF Module Design - [Chapter 4] Transceiver ArchitectureRF Module Design - [Chapter 4] Transceiver Architecture
RF Module Design - [Chapter 4] Transceiver Architecture
Simen Li
 
Angle Modulation
Angle ModulationAngle Modulation
Angle Modulation
sangeetha rakhi
 
Si Intro(100413)
Si Intro(100413)Si Intro(100413)
Si Intro(100413)
imsong
 
4g LTE and LTE-A for mobile broadband-note
4g LTE and LTE-A for mobile broadband-note4g LTE and LTE-A for mobile broadband-note
4g LTE and LTE-A for mobile broadband-note
Pei-Che Chang
 
FOURIER__ANALYSIS,[1].pptx
FOURIER__ANALYSIS,[1].pptxFOURIER__ANALYSIS,[1].pptx
FOURIER__ANALYSIS,[1].pptx
MariaJoseph591921
 
Analog communicationintroduction
Analog communicationintroductionAnalog communicationintroduction
Analog communicationintroduction
srilaxmi524
 
10 Angle_modulation.pdf
10 Angle_modulation.pdf10 Angle_modulation.pdf
10 Angle_modulation.pdf
Mohamedshabana38
 
Frequency hopping rohit
Frequency hopping rohitFrequency hopping rohit
Frequency hopping rohit
Rohit Singh
 
Frequency hopping rohit
Frequency hopping rohitFrequency hopping rohit
Frequency hopping rohit
Rohit Singh
 
EEP306: Phase locked loop
EEP306: Phase locked loopEEP306: Phase locked loop
EEP306: Phase locked loop
Umang Gupta
 
Introduction to OFDM
Introduction to OFDMIntroduction to OFDM
Introduction to OFDM
Pei-Che Chang
 
RiseFalltime031114.pptx
RiseFalltime031114.pptxRiseFalltime031114.pptx
RiseFalltime031114.pptx
Vignesh899811
 
Chapter7 circuits
Chapter7 circuitsChapter7 circuits
Chapter7 circuits
Vin Voro
 
Transmissor telefonico
Transmissor telefonicoTransmissor telefonico
Transmissor telefonico
William Carvalho Leite
 
F Comm 8 FM.pptx
F Comm 8 FM.pptxF Comm 8 FM.pptx
F Comm 8 FM.pptx
MohamedAbdullahiYusu
 
Chap2 ofdm basics
Chap2 ofdm basicsChap2 ofdm basics
Chap2 ofdm basics
Karuthapandi A
 

Similar to COMM 1001 Modulation & Coding Lecture 9.ppt (20)

chap4_lec1.ppt Engineering and technical
chap4_lec1.ppt Engineering and technicalchap4_lec1.ppt Engineering and technical
chap4_lec1.ppt Engineering and technical
 
Unit 1
Unit 1Unit 1
Unit 1
 
Ch4 2 _fm modulator and demodulator15
Ch4 2 _fm modulator and demodulator15Ch4 2 _fm modulator and demodulator15
Ch4 2 _fm modulator and demodulator15
 
1 radar signal processing
1 radar signal processing1 radar signal processing
1 radar signal processing
 
RF Module Design - [Chapter 4] Transceiver Architecture
RF Module Design - [Chapter 4] Transceiver ArchitectureRF Module Design - [Chapter 4] Transceiver Architecture
RF Module Design - [Chapter 4] Transceiver Architecture
 
Angle Modulation
Angle ModulationAngle Modulation
Angle Modulation
 
Si Intro(100413)
Si Intro(100413)Si Intro(100413)
Si Intro(100413)
 
4g LTE and LTE-A for mobile broadband-note
4g LTE and LTE-A for mobile broadband-note4g LTE and LTE-A for mobile broadband-note
4g LTE and LTE-A for mobile broadband-note
 
FOURIER__ANALYSIS,[1].pptx
FOURIER__ANALYSIS,[1].pptxFOURIER__ANALYSIS,[1].pptx
FOURIER__ANALYSIS,[1].pptx
 
Analog communicationintroduction
Analog communicationintroductionAnalog communicationintroduction
Analog communicationintroduction
 
10 Angle_modulation.pdf
10 Angle_modulation.pdf10 Angle_modulation.pdf
10 Angle_modulation.pdf
 
Frequency hopping rohit
Frequency hopping rohitFrequency hopping rohit
Frequency hopping rohit
 
Frequency hopping rohit
Frequency hopping rohitFrequency hopping rohit
Frequency hopping rohit
 
EEP306: Phase locked loop
EEP306: Phase locked loopEEP306: Phase locked loop
EEP306: Phase locked loop
 
Introduction to OFDM
Introduction to OFDMIntroduction to OFDM
Introduction to OFDM
 
RiseFalltime031114.pptx
RiseFalltime031114.pptxRiseFalltime031114.pptx
RiseFalltime031114.pptx
 
Chapter7 circuits
Chapter7 circuitsChapter7 circuits
Chapter7 circuits
 
Transmissor telefonico
Transmissor telefonicoTransmissor telefonico
Transmissor telefonico
 
F Comm 8 FM.pptx
F Comm 8 FM.pptxF Comm 8 FM.pptx
F Comm 8 FM.pptx
 
Chap2 ofdm basics
Chap2 ofdm basicsChap2 ofdm basics
Chap2 ofdm basics
 

Recently uploaded

Build applications with generative AI on Google Cloud
Build applications with generative AI on Google CloudBuild applications with generative AI on Google Cloud
Build applications with generative AI on Google Cloud
Márton Kodok
 
[VCOSA] Monthly Report - Cotton & Yarn Statistics May 2024
[VCOSA] Monthly Report - Cotton & Yarn Statistics May 2024[VCOSA] Monthly Report - Cotton & Yarn Statistics May 2024
[VCOSA] Monthly Report - Cotton & Yarn Statistics May 2024
Vietnam Cotton & Spinning Association
 
Open Source Contributions to Postgres: The Basics POSETTE 2024
Open Source Contributions to Postgres: The Basics POSETTE 2024Open Source Contributions to Postgres: The Basics POSETTE 2024
Open Source Contributions to Postgres: The Basics POSETTE 2024
ElizabethGarrettChri
 
一比一原版加拿大麦吉尔大学毕业证(mcgill毕业证书)如何办理
一比一原版加拿大麦吉尔大学毕业证(mcgill毕业证书)如何办理一比一原版加拿大麦吉尔大学毕业证(mcgill毕业证书)如何办理
一比一原版加拿大麦吉尔大学毕业证(mcgill毕业证书)如何办理
agdhot
 
一比一原版美国帕森斯设计学院毕业证(parsons毕业证书)如何办理
一比一原版美国帕森斯设计学院毕业证(parsons毕业证书)如何办理一比一原版美国帕森斯设计学院毕业证(parsons毕业证书)如何办理
一比一原版美国帕森斯设计学院毕业证(parsons毕业证书)如何办理
asyed10
 
一比一原版(uom毕业证书)曼彻斯特大学毕业证如何办理
一比一原版(uom毕业证书)曼彻斯特大学毕业证如何办理一比一原版(uom毕业证书)曼彻斯特大学毕业证如何办理
一比一原版(uom毕业证书)曼彻斯特大学毕业证如何办理
osoyvvf
 
一比一原版(UofT毕业证)多伦多大学毕业证如何办理
一比一原版(UofT毕业证)多伦多大学毕业证如何办理一比一原版(UofT毕业证)多伦多大学毕业证如何办理
一比一原版(UofT毕业证)多伦多大学毕业证如何办理
exukyp
 
Experts live - Improving user adoption with AI
Experts live - Improving user adoption with AIExperts live - Improving user adoption with AI
Experts live - Improving user adoption with AI
jitskeb
 
Drownings spike from May to August in children
Drownings spike from May to August in childrenDrownings spike from May to August in children
Drownings spike from May to August in children
Bisnar Chase Personal Injury Attorneys
 
原版一比一爱尔兰都柏林大学毕业证(UCD毕业证书)如何办理
原版一比一爱尔兰都柏林大学毕业证(UCD毕业证书)如何办理 原版一比一爱尔兰都柏林大学毕业证(UCD毕业证书)如何办理
原版一比一爱尔兰都柏林大学毕业证(UCD毕业证书)如何办理
tzu5xla
 
一比一原版加拿大渥太华大学毕业证(uottawa毕业证书)如何办理
一比一原版加拿大渥太华大学毕业证(uottawa毕业证书)如何办理一比一原版加拿大渥太华大学毕业证(uottawa毕业证书)如何办理
一比一原版加拿大渥太华大学毕业证(uottawa毕业证书)如何办理
uevausa
 
DATA COMMS-NETWORKS YR2 lecture 08 NAT & CLOUD.docx
DATA COMMS-NETWORKS YR2 lecture 08 NAT & CLOUD.docxDATA COMMS-NETWORKS YR2 lecture 08 NAT & CLOUD.docx
DATA COMMS-NETWORKS YR2 lecture 08 NAT & CLOUD.docx
SaffaIbrahim1
 
Sample Devops SRE Product Companies .pdf
Sample Devops SRE  Product Companies .pdfSample Devops SRE  Product Companies .pdf
Sample Devops SRE Product Companies .pdf
Vineet
 
ML-PPT-UNIT-2 Generative Classifiers Discriminative Classifiers
ML-PPT-UNIT-2 Generative Classifiers Discriminative ClassifiersML-PPT-UNIT-2 Generative Classifiers Discriminative Classifiers
ML-PPT-UNIT-2 Generative Classifiers Discriminative Classifiers
MastanaihnaiduYasam
 
Module 1 ppt BIG DATA ANALYTICS_NOTES FOR MCA
Module 1 ppt BIG DATA ANALYTICS_NOTES FOR MCAModule 1 ppt BIG DATA ANALYTICS_NOTES FOR MCA
Module 1 ppt BIG DATA ANALYTICS_NOTES FOR MCA
yuvarajkumar334
 
一比一原版爱尔兰都柏林大学毕业证(本硕)ucd学位证书如何办理
一比一原版爱尔兰都柏林大学毕业证(本硕)ucd学位证书如何办理一比一原版爱尔兰都柏林大学毕业证(本硕)ucd学位证书如何办理
一比一原版爱尔兰都柏林大学毕业证(本硕)ucd学位证书如何办理
hqfek
 
06-12-2024-BudapestDataForum-BuildingReal-timePipelineswithFLaNK AIM
06-12-2024-BudapestDataForum-BuildingReal-timePipelineswithFLaNK AIM06-12-2024-BudapestDataForum-BuildingReal-timePipelineswithFLaNK AIM
06-12-2024-BudapestDataForum-BuildingReal-timePipelineswithFLaNK AIM
Timothy Spann
 
一比一原版南十字星大学毕业证(SCU毕业证书)学历如何办理
一比一原版南十字星大学毕业证(SCU毕业证书)学历如何办理一比一原版南十字星大学毕业证(SCU毕业证书)学历如何办理
一比一原版南十字星大学毕业证(SCU毕业证书)学历如何办理
slg6lamcq
 
Cell The Unit of Life for NEET Multiple Choice Questions.docx
Cell The Unit of Life for NEET Multiple Choice Questions.docxCell The Unit of Life for NEET Multiple Choice Questions.docx
Cell The Unit of Life for NEET Multiple Choice Questions.docx
vasanthatpuram
 
一比一原版(lbs毕业证书)伦敦商学院毕业证如何办理
一比一原版(lbs毕业证书)伦敦商学院毕业证如何办理一比一原版(lbs毕业证书)伦敦商学院毕业证如何办理
一比一原版(lbs毕业证书)伦敦商学院毕业证如何办理
ywqeos
 

Recently uploaded (20)

Build applications with generative AI on Google Cloud
Build applications with generative AI on Google CloudBuild applications with generative AI on Google Cloud
Build applications with generative AI on Google Cloud
 
[VCOSA] Monthly Report - Cotton & Yarn Statistics May 2024
[VCOSA] Monthly Report - Cotton & Yarn Statistics May 2024[VCOSA] Monthly Report - Cotton & Yarn Statistics May 2024
[VCOSA] Monthly Report - Cotton & Yarn Statistics May 2024
 
Open Source Contributions to Postgres: The Basics POSETTE 2024
Open Source Contributions to Postgres: The Basics POSETTE 2024Open Source Contributions to Postgres: The Basics POSETTE 2024
Open Source Contributions to Postgres: The Basics POSETTE 2024
 
一比一原版加拿大麦吉尔大学毕业证(mcgill毕业证书)如何办理
一比一原版加拿大麦吉尔大学毕业证(mcgill毕业证书)如何办理一比一原版加拿大麦吉尔大学毕业证(mcgill毕业证书)如何办理
一比一原版加拿大麦吉尔大学毕业证(mcgill毕业证书)如何办理
 
一比一原版美国帕森斯设计学院毕业证(parsons毕业证书)如何办理
一比一原版美国帕森斯设计学院毕业证(parsons毕业证书)如何办理一比一原版美国帕森斯设计学院毕业证(parsons毕业证书)如何办理
一比一原版美国帕森斯设计学院毕业证(parsons毕业证书)如何办理
 
一比一原版(uom毕业证书)曼彻斯特大学毕业证如何办理
一比一原版(uom毕业证书)曼彻斯特大学毕业证如何办理一比一原版(uom毕业证书)曼彻斯特大学毕业证如何办理
一比一原版(uom毕业证书)曼彻斯特大学毕业证如何办理
 
一比一原版(UofT毕业证)多伦多大学毕业证如何办理
一比一原版(UofT毕业证)多伦多大学毕业证如何办理一比一原版(UofT毕业证)多伦多大学毕业证如何办理
一比一原版(UofT毕业证)多伦多大学毕业证如何办理
 
Experts live - Improving user adoption with AI
Experts live - Improving user adoption with AIExperts live - Improving user adoption with AI
Experts live - Improving user adoption with AI
 
Drownings spike from May to August in children
Drownings spike from May to August in childrenDrownings spike from May to August in children
Drownings spike from May to August in children
 
原版一比一爱尔兰都柏林大学毕业证(UCD毕业证书)如何办理
原版一比一爱尔兰都柏林大学毕业证(UCD毕业证书)如何办理 原版一比一爱尔兰都柏林大学毕业证(UCD毕业证书)如何办理
原版一比一爱尔兰都柏林大学毕业证(UCD毕业证书)如何办理
 
一比一原版加拿大渥太华大学毕业证(uottawa毕业证书)如何办理
一比一原版加拿大渥太华大学毕业证(uottawa毕业证书)如何办理一比一原版加拿大渥太华大学毕业证(uottawa毕业证书)如何办理
一比一原版加拿大渥太华大学毕业证(uottawa毕业证书)如何办理
 
DATA COMMS-NETWORKS YR2 lecture 08 NAT & CLOUD.docx
DATA COMMS-NETWORKS YR2 lecture 08 NAT & CLOUD.docxDATA COMMS-NETWORKS YR2 lecture 08 NAT & CLOUD.docx
DATA COMMS-NETWORKS YR2 lecture 08 NAT & CLOUD.docx
 
Sample Devops SRE Product Companies .pdf
Sample Devops SRE  Product Companies .pdfSample Devops SRE  Product Companies .pdf
Sample Devops SRE Product Companies .pdf
 
ML-PPT-UNIT-2 Generative Classifiers Discriminative Classifiers
ML-PPT-UNIT-2 Generative Classifiers Discriminative ClassifiersML-PPT-UNIT-2 Generative Classifiers Discriminative Classifiers
ML-PPT-UNIT-2 Generative Classifiers Discriminative Classifiers
 
Module 1 ppt BIG DATA ANALYTICS_NOTES FOR MCA
Module 1 ppt BIG DATA ANALYTICS_NOTES FOR MCAModule 1 ppt BIG DATA ANALYTICS_NOTES FOR MCA
Module 1 ppt BIG DATA ANALYTICS_NOTES FOR MCA
 
一比一原版爱尔兰都柏林大学毕业证(本硕)ucd学位证书如何办理
一比一原版爱尔兰都柏林大学毕业证(本硕)ucd学位证书如何办理一比一原版爱尔兰都柏林大学毕业证(本硕)ucd学位证书如何办理
一比一原版爱尔兰都柏林大学毕业证(本硕)ucd学位证书如何办理
 
06-12-2024-BudapestDataForum-BuildingReal-timePipelineswithFLaNK AIM
06-12-2024-BudapestDataForum-BuildingReal-timePipelineswithFLaNK AIM06-12-2024-BudapestDataForum-BuildingReal-timePipelineswithFLaNK AIM
06-12-2024-BudapestDataForum-BuildingReal-timePipelineswithFLaNK AIM
 
一比一原版南十字星大学毕业证(SCU毕业证书)学历如何办理
一比一原版南十字星大学毕业证(SCU毕业证书)学历如何办理一比一原版南十字星大学毕业证(SCU毕业证书)学历如何办理
一比一原版南十字星大学毕业证(SCU毕业证书)学历如何办理
 
Cell The Unit of Life for NEET Multiple Choice Questions.docx
Cell The Unit of Life for NEET Multiple Choice Questions.docxCell The Unit of Life for NEET Multiple Choice Questions.docx
Cell The Unit of Life for NEET Multiple Choice Questions.docx
 
一比一原版(lbs毕业证书)伦敦商学院毕业证如何办理
一比一原版(lbs毕业证书)伦敦商学院毕业证如何办理一比一原版(lbs毕业证书)伦敦商学院毕业证如何办理
一比一原版(lbs毕业证书)伦敦商学院毕业证如何办理
 

COMM 1001 Modulation & Coding Lecture 9.ppt

  • 1. IV. Orthogonal Frequency Division Multiplexing (OFDM)
  • 2. © Tallal Elshabrawy Introduction 2 Evolution of Wireless Communication Standards OFDM
  • 3. © Tallal Elshabrawy 3 Wireless Communication Channels  Communications over wireless channels suffer from multi-path propagation  Multi-path channels are usually frequency selective  OFDM supports high data rate communications over frequency selective channels From “Wireless Communications” Edfors, Molisch, Tufvesson
  • 4. © Tallal Elshabrawy 4 Multi-Path Propagation Modeling Multi-path results from reflection, diffraction, and scattering off environment surroundings Note: The figure above demonstrates the roles of reflection and scattering only on multi-path Power Time τ0 τ1 τ2 Multi-Path Components
  • 5. © Tallal Elshabrawy 5 Multi-Path Propagation Modeling As the mobile receiver (i.e. car) moves in the environment, the strength of each multi-path component varies Power Time τ0 τ1 τ2 Multi-Path Components
  • 6. © Tallal Elshabrawy 6 Multi-Path Propagation Modeling Power Time τ0 τ1 τ2 Multi-Path Components As the mobile receiver (i.e. car) moves in the environment, the strength of each multi-path component varies
  • 7. © Tallal Elshabrawy Multi-Path = Frequency-Selective! 7 1 μs 0.5 0.5 1 μs 0.5 0.5 1 μs 0.5 0.5 1 0.5 1 1 -1 1 -1 0.5 -0.5 1 μs 1 μs 1 -1 1 -1 0.5 -0.5 1 μs f=0 f=1 MHz f=500 KHz
  • 8. © Tallal Elshabrawy Multi-Path = Frequency-Selective!  A multi-path channel treats signals with different frequencies differently  A signal composed of multiple frequencies would be distorted by passing through such channel 8 1 μs 0.5 0.5 0 0.5 1 1.5 2 f (MHz) |H(f)| 1 h(t)
  • 9. © Tallal Elshabrawy 9  Subdivide wideband bandwidth into multiple narrowband sub- carriers  Bandwidth of each channel is selected such that each sub-carrier approximately displays Flat Fading characteristics  The bandwidth over which the wireless channel is assumed to display flat fading characteristics is called the coherence bandwidth Power Frequency Frequency Division & Coherence Bandwidth
  • 10. © Tallal Elshabrawy 10 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 x 10 6 0 1 2 3 4 5 6 7 8 9 10 Frequency (Hz) H(f) Example Frequency Response for 3G Channel Resolv able Path Relative Delay (nsec) Average Power (dB) 1 0 0.0 2 310 -1.0 3 710 -9.0 4 1090 -10.0 5 1730 -15.0 6 2510 -20.0 Simulation Assumptions  Rayleigh Fading for each resolvable path  System Bandwidth = 5 MHz  Coherence Bandwidth = 540 KHz  Number of Sub-Carriers = 64  Sub-Carrier Bandwidth = 78.125 KHz Power Delay Profile (Vehicular A Channel Model) Snapshot for Frequency Response
  • 11. © Tallal Elshabrawy 11 Example Frequency Response for 3G Channel Resolv able Path Relative Delay (nsec) Average Power (dB) 1 0 0.0 2 310 -1.0 3 710 -9.0 4 1090 -10.0 5 1730 -15.0 6 2510 -20.0 Simulation Assumptions  Rayleigh Fading for each resolvable path  System Bandwidth = 5 MHz  Coherence Bandwidth = 540 KHz  Number of Sub-Carriers = 64  Sub-Carrier Bandwidth = 78.125 KHz Power Delay Profile (Vehicular A Channel Model) Snapshot for Frequency Response 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 x 10 6 0 1 2 3 4 5 6 7 8 9 10 Frequency (Hz) H(f) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 x 10 6 0 1 2 3 4 5 6 7 8 9 10 Frequency (Hz) H(f) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 x 10 6 0 1 2 3 4 5 6 7 8 9 10 Frequency (Hz) H(f)
  • 12. © Tallal Elshabrawy Frequency Division Multiplexing (FDM) + Binary Encoder Transmitting Filter (f1) Modulation Binary Encoder Transmitting Filter (f2) Modulation Binary Encoder Transmitting Filter (fN) Modulation Wireless Channel Bandpass Filter (f1) Demod. Bandpass Filter (f2) Demod. Bandpass Filter (fN) Demod.
  • 13. © Tallal Elshabrawy Channel Bandwidth of FDM 13 TS Tx Filter Time-Limited Communications 0 -fc Band-Limited Communications Rectangular Filter Raised Cosine Filter Tx Signal in Time TS Tx Signal in Frequency fc 2/TS Signal Bandwidth Zero-to-Zero Bandwidth = 2/TS 0 fc+ RS/2 -fc- RS/2 -fc+ RS/2 fc- RS/2 Bandwidth = RS = 1/TS
  • 14. © Tallal Elshabrawy Orthogonal FDM 14     S T i j 0 cos 2πft cos 2πf t dt 0 i j     Is it possible to find carrier frequencies f1, f2 … fN such that           S S T T i j i j i j 0 0 1 cos 2πft cos 2πf t dt cos2π f f t cos2π f f t dt 2                            S S T T i j i j i j 0 i j i j 0 sin2π f f t sin2π f f t 1 cos 2πft cos 2πf t dt 2 2π f f 2π f f                            S T i j S i j S i j 0 i j i j sin2π f f T sin2π f f T 1 cos 2πft cos 2πf t dt 2 2π f f 2π f f               
  • 15. © Tallal Elshabrawy Orthogonal FDM 15     S T i j 0 cos 2πft cos 2πf t dt 0 i j     Is it possible to find carrier frequencies f1, f2 … fN such that             S T i j S i j S i j 0 i j i j sin2π f f T sin2π f f T 1 cos 2πft cos 2πf t dt 2 2π f f 2π f f                            S T i j 0 i j S i j S i j i j S S cos 2πft cos 2πf t dt 0 2π f f T nπ n=1,2,3, .... & 2π f f T mπ m=1,2,3, .... n m f f n=1,2,3, .... & f f m=1,2,3, .... 2T 2T            
  • 16. © Tallal Elshabrawy Orthogonality of Sub-Carriers 16 The sinusoid signals with frequencies f1, f2, f3, f4 are all mutually orthogonal over the symbol period Ts 4 s 2 f T  Ts 1 s 1 f 2T  2 s 1 f T  3 s 3 f 2T 
  • 17. © Tallal Elshabrawy Orthogonality of Sub-Carriers 17 Ts 1 s 1 f 2T  2 s 1 f T  The sinusoid signals with frequencies f1, f2, f3, f4 are all mutually orthogonal over the symbol period Ts s s πt 2πt sin sin T T                     s s s s s T T T s s s s 0 0 0 T T s s s s s s 0 0 πt 2πt πt 3πt sin sin dt cos dt cos dt T T T T sin πt T sin 3πt T πt 2πt sin sin dt 0 T T πt T 3πt T                                                     
  • 18. © Tallal Elshabrawy Orthogonality of Sub-Carriers The sinusoid signals with frequencies f1, f2, f3, f4 are all mutually orthogonal over the symbol period Ts Ts 1 s 1 f 2T  3 s 3 f 2T  s s πt 3πt sin sin T T                     s s s s s T T T s s s s 0 0 0 T T s s s s s s 0 0 πt 3πt 2πt 4πt sin sin dt cos dt cos dt T T T T sin 2πt T sin 4πt T πt 3πt sin sin dt 0 T T 2πt T 4πt T                                                     
  • 19. © Tallal Elshabrawy Orthogonality of Sub-Carriers The sinusoid signals with frequencies f1, f2, f3, f4 are all mutually orthogonal over the symbol period Ts Ts 1 s 1 f 2T  4 s 2 f T  s s πt 4πt sin sin T T                     s s s s s T T T s s s s 0 0 0 T T s s s s s s 0 0 πt 4πt 3πt 5πt sin sin dt cos dt cos dt T T T T sin 3πt T sin 5πt T πt 4πt sin sin dt 0 T T 3πt T 5πt T                                                     
  • 20. © Tallal Elshabrawy Orthogonality of Sub-Carriers Ts The sinusoid signals with frequencies f1, f2, f3, f4 are all mutually orthogonal over the symbol period Ts 2 s 1 f T  3 s 3 f 2T  s s 2πt 3πt sin sin T T                     s s s s s T T T s s s s 0 0 0 T T s s s s s s 0 0 2πt 3πt πt 5πt sin sin dt cos dt cos dt T T T T sin πt T sin 5πt T 2πt 3πt sin sin dt 0 T T πt T 5πt T                                                     
  • 21. © Tallal Elshabrawy Orthogonality of Sub-Carriers The sinusoid signals with frequencies f1, f2, f3, f4 are all mutually orthogonal over the symbol period Ts Ts 2 s 1 f T  4 s 2 f T  s s 2πt 4πt sin sin T T                     s s s s s T T T s s s s 0 0 0 T T s s s s s s 0 0 2πt 4πt 2πt 6πt sin sin dt cos dt cos dt T T T T sin 2πt T sin 6πt T 2πt 4πt sin sin dt 0 T T 2πt T 6πt T                                                     
  • 22. © Tallal Elshabrawy Orthogonality of Sub-Carriers The sinusoid signals with frequencies f1, f2, f3, f4 are all mutually orthogonal over the symbol period Ts Ts 4 s 2 f T  3 s 3 f 2T  s s 3πt 4πt sin sin T T                     s s s s s T T T s s s s 0 0 0 T T s s s s s s 0 0 3πt 4πt πt 7πt sin sin dt cos dt cos dt T T T T sin πt T sin 7πt T 3πt 4πt sin sin dt 0 T T πt T 7πt T                                                     
  • 23. © Tallal Elshabrawy Orthogonal FDM 23 + Binary Encoder Transmitting Filter (f1) Modulation Binary Encoder Transmitting Filter (f2) Modulation Binary Encoder Transmitting Filter (fN) Modulation Wireless Channel Correlate with (f1) Demod. Correlate with (f2) Demod. Correlate with (fN) Demod. f2=f1+1/2TS fN=f1+1/2(N-1)TS
  • 24. © Tallal Elshabrawy Number of Subcarriers in OFDM  For band-limited FDM if the system bandwidth is B, number of sub-carriers is given by: 24     S C S BT B N 1 α / T 1 α      For OFDM if the system bandwidth is B, Number of sub-carriers is given by: C S S B N 2BT 1/ 2T   0 α 1 Rolloff Factor    OFDM has the potential to at least double the number of sub-carriers (i.e., double the total transmission rate over the system bandwidth)
  • 25. © Tallal Elshabrawy + Intersymbol Interference in OFDM Ts 1 s 1 f T  2 s 2 f T  25 Ts OFDM Symbol Tx Signal Assume OFDM over two subcarriers: f1=1/Ts, f2=2/Ts
  • 26. © Tallal Elshabrawy Intersymbol Interference in OFDM Suppose multi-path channel with delay Ts/8 26 h0 h1 Ts/8 Inter-Symbol Interference (ISI) Inter-symbol interference (ISI) occurs when one OFDM symbol affects the next one due to the multi-path channel OFDM Symbol Tx Signal OFDM Symbol Rx Signal
  • 27. © Tallal Elshabrawy Inserting Guard Time  Guard Time eliminates ISI between neighboring OFDM symbols  However each OFDM symbol suffers from inter-carrier interference (ICI)  Guard time corresponds to a reduction of bit rate 27 OFDM Symbol Guard Time Ts Ts/4 Tx Signal No ISI Ts Ts/8 Rx Signal Suppose multi-path channel with delay Ts/8 h0 h1 Ts/8 Guard Time Ts Ts/4 Ts Ts/8
  • 28. © Tallal Elshabrawy Guard Time & Inter-Carrier Interference 28 OFDM Symbol Guard Time Ts Ts/8 + Tx Signal Rx Signal OFDM Symbol + Guard Time Ts Ts/8
  • 29. © Tallal Elshabrawy Guard Time & Inter-Carrier Interference Rx Signal Correlation at Rx over Ts Consider the receiver for f1=1/Ts that correlates over Ts with   s sin 2πt T Ts 29 x Not Orthogonal Intra-Carrier Interference + Guard Time Ts Ts/8 OFDM Symbol
  • 30. © Tallal Elshabrawy Guard Time & Inter-Carrier Interference Consider the receiver for f1=1/Ts that correlates over Ts with   s sin 2πt T Ts 30 x Orthogonal No Interference Rx Signal Correlation at Rx over Ts + Guard Time Ts Ts/8 OFDM Symbol
  • 31. © Tallal Elshabrawy Guard Time & Inter-Carrier Interference Consider the receiver for f1=1/Ts that correlates over Ts with   s sin 2πt T Ts 31 x Not Orthogonal Inter-Carrier Interference Rx Signal Correlation at Rx over Ts + Guard Time Ts Ts/8 OFDM Symbol
  • 32. © Tallal Elshabrawy Ts Ts/8 + Cyclic Prefix Tx Signal (Guard Time) Tx Signal (Cyclix Prefix) The cyclic prefix is used to eliminate Inter-carrier interference Cyclic Prefix Cyclic Prefix Cyclic Prefix OFDM Symbol Guard Time Ts Ts/8 + OFDM Symbol Ts/8
  • 33. © Tallal Elshabrawy Cyclic Prefix Rx Signal (Cyclix Prefix) + Cyclic Prefix Correlation at Rx over Ts Consider the receiver for f1=1/Ts that correlates over Ts with   s sin 2πt T Ts x Ts Ts/8 Ts/8 Not Orthogonal Intra-Carrier Interference
  • 34. © Tallal Elshabrawy Cyclic Prefix Consider the receiver for f1=1/Ts that correlates over Ts with   s sin 2πt T Ts x Orthogonal No Interference Rx Signal (Cyclix Prefix) + Cyclic Prefix Correlation at Rx over Ts Ts Ts/8 Ts/8
  • 35. © Tallal Elshabrawy Cyclic Prefix Consider the receiver for f1=1/Ts that correlates over Ts with   s sin 2πt T Ts x Orthogonal No Inter- Carrier Interference Rx Signal (Cyclix Prefix) + Cyclic Prefix Correlation at Rx over Ts Ts Ts/8 Ts/8
  • 36. © Tallal Elshabrawy Cyclic Prefix (Summary) Assume fi, fj are two OFDM sub-carriers and φij is the phase shift associated with the cyclic prefix and multi-path channel 36 Cyclic Prefix eliminates Inter-carrier Interference (ICI)                               s s s s s T i j ij 0 T i j ij j ij 0 T T ij i j ij i j 0 0 T i j ij 0 sin 2πft sin 2πf t φ dt sin 2πft sin 2πf t cos φ cos 2πf t sin φ dt cos φ sin 2πft sin 2πf t dt sin φ sin 2πft cos 2πf t dt sin 2πft sin 2πf t φ dt 0                 
  • 37. © Tallal Elshabrawy Cyclic Prefix (Summary) Assume an OFDM sub-carrier fi, and φii is the phase shift associated with the cyclic prefix and multi-path channel 37 With Cyclic Prefix remains the component cos φii as a source of Intra-Carrier Interference                                   s s s s s s T i i ii 0 T i i ii i ii 0 T T 2 ii i ii i i 0 0 T T 2 i i ii ii i ii 0 0 sin 2πft sin 2πft φ dt sin 2πft sin 2πft cos φ cos 2πft sin φ dt cos φ sin 2πft dt sin φ sin 2πft cos 2πft dt sin 2πft sin 2πft φ dt cos φ sin 2πft dt 0 cos φ                    
  • 38. © Tallal Elshabrawy Cyclic Prefix vs Guard Time 38 Guard Time Cyclic Prefix Eliminates Inter-symbol Interference Eliminates Inter-symbol Interference Suffers from Inter-carrier Interference Eliminates Inter-carrier Interference Suffers from Intra-carrier Interference Suffers from Intra-carrier Interference Causes a reduction in data rate as a result of the increased OFDM symbol time Causes a reduction in data rate as a result of the increased OFDM symbol time Does not consume additional power associated with OFDM symbol time expansion due to the guard time Necessitates additional power associated with OFDM symbol expansion due to the introduction of cyclic prefix
  • 39. © Tallal Elshabrawy OFDM with Cyclic Prefix System Model 39 Suppose multi-path channel with delay Ts/8 Each sub-carrier is treated as an independent transmission h0 h1 Ts/8 Cyclic Prefix Correlation at Rx over Ts Tx Signal Rx Signal multiplied by h0 multiplied by h1           s s T T i 0 i i 1 i ii 0 0 0 1 ii β sin 2πft h sin 2πft dt sin 2πft h sin 2πft φ dt β h h cos φ        Fading Effect of the Channel
  • 40. © Tallal Elshabrawy Mitigation of Fading: Freq. Equalization  Conduct channel estimation for h0 and h1  Divide the correlated signal by β=h0+h1cos(φii) 40  Requires channel estimation  For low value values of β equalization also results in noise amplification
  • 41. © Tallal Elshabrawy Mitigation of Fading: Precoding  Conduct channel estimation for h0 and h1  Divide the transmitted signal by β=h0+h1cos(φii) 41  Requires channel estimation  Requires channel estimation knowledge at transmitter  Does not result in any noise amplification at the receiver  For low values of β, excessively high transmission power might be needed at the transmitter
  • 42. © Tallal Elshabrawy Mitigation of Fading: Adaptive Loading  Distribute power over sub-carriers such as to maximize total system data rate 42  Requires channel estimation  Requires channel estimation knowledge at transmitter