SlideShare a Scribd company logo
CLASSIFICATION USING
BACK-PROPAGATION
Backpropagation Algorithms
 The back-propagation learning algorithm is one of the most important
developments in neural networks.
 Backpropagation is the generalization of the Widrow-Hoff learning
rule to multiple-layer networks and nonlinear differentiable transfer
functions.
 This learning algorithm is applied to multilayer feed-forward networks
consisting of processing elements with continuous differentiable
activation functions.
 The networks associated with back-propagation algorithm are also
called back-propagation networks(BPNs).
Backpropagation Algorithms
 The Aim Of The Neural Network Is To Train The Net Ot
Achieve A Balance Between The Net’s Ability To
Respond(memorization) And Its Ability To Give
Resasonable Responses To The Input That Is Similar But
Not Identical To The One That Is Use In Trianing
(Generalization).
Architecture
This section presents the architecture of the network that is most
commonly used with the backpropagation algorithm –
the multilayer feedforward network
Architecture
Feedforward Network
Feedforward networks often have one or more hidden layers of sigmoid neurons followed
by an output layer of linear neurons.
Multiple layers of neurons with nonlinear transfer functions allow the network to learn
nonlinear and linear relationships between input and output vectors.
The linear output layer lets the network produce values outside the range -1 to +1. On the
other hand, if you want to constrain the outputs of a network (such as between 0 and 1),
then the output layer should use a sigmoid transfer function (such as logsig).
Learning Algorithm:
Backpropagation
The following slides describes teaching process of multi-layer neural network
employing backpropagation algorithm. To illustrate this process the three layer neural
network with two inputs and one output,which is shown in the picture below, is used:
Learning Algorithm:
Backpropagation
Each neuron is composed of two units. First unit adds products of weights coefficients and
input signals. The second unit realise nonlinear function, called neuron transfer (activation)
function. Signal e is adder output signal, and y = f(e) is output signal of nonlinear element.
Signal y is also output signal of neuron.
Learning Algorithm:
Backpropagation
To teach the neural network we need training data set. The training data set consists of input
signals (x1 and x2 ) assigned with corresponding target (desired output) z.
The network training is an iterative process. In each iteration weights coefficients of nodes
are modified using new data from training data set. Modification is calculated using
algorithm described below:
Each teaching step starts with forcing both input signals from training set. After this stage we
can determine output signals values for each neuron in each network layer.
Learning Algorithm:
Backpropagation
Pictures below illustrate how signal is propagating through the network,
Symbols w(xm)n represent weights of connections between network input xm and
neuron n in input layer. Symbols yn represents output signal of neuron n.
Learning Algorithm:
Backpropagation
Learning Algorithm:
Backpropagation
Learning Algorithm:
Backpropagation
Propagation of signals through the hidden layer. Symbols wmn represent weights
of connections between output of neuron m and input of neuron n in the next
layer.
Learning Algorithm:
Backpropagation
Learning Algorithm:
Backpropagation
Learning Algorithm:
Backpropagation
Propagation of signals through the output layer.
Learning Algorithm:
Backpropagation
In the next algorithm step the output signal of the network y is compared
with the desired output value (the target), which is found in training data
set. The difference is called error signal d of output layer neuron
Learning Algorithm:
Backpropagation
The idea is to propagate error signal d (computed in single teaching step)
back to all neurons, which output signals were input for discussed
neuron.
Learning Algorithm:
Backpropagation
The idea is to propagate error signal d (computed in single teaching step)
back to all neurons, which output signals were input for discussed
neuron.
Learning Algorithm:
Backpropagation
The weights' coefficients wmn used to propagate errors back are equal to
this used during computing output value. Only the direction of data flow
is changed (signals are propagated from output to inputs one after the
other). This technique is used for all network layers. If propagated errors
came from few neurons they are added. The illustration is below:
Learning Algorithm:
Backpropagation
When the error signal for each neuron is computed, the weights
coefficients of each neuron input node may be modified. In formulas
below df(e)/de represents derivative of neuron activation function (which
weights are modified).
Learning Algorithm:
Backpropagation
When the error signal for each neuron is computed, the weights
coefficients of each neuron input node may be modified. In formulas
below df(e)/de represents derivative of neuron activation function (which
weights are modified).
Learning Algorithm:
Backpropagation
When the error signal for each neuron is computed, the weights
coefficients of each neuron input node may be modified. In formulas
below df(e)/de represents derivative of neuron activation function (which
weights are modified).
Backpropagation
applications
 They have been successful on a wide array of real-world data,
including
 handwritten character recognition,
 pathology and laboratory medicine,
 and training a computer to pronounce English text.
Backpropagation
terminologies
 EPOCH
 EPOCHUPDATION
 TERMINATING CONDITION

More Related Content

What's hot

Edge Detection and Segmentation
Edge Detection and SegmentationEdge Detection and Segmentation
Edge Detection and Segmentation
A B Shinde
 
And or graph
And or graphAnd or graph
And or graph
Ali A Jalil
 
04 Multi-layer Feedforward Networks
04 Multi-layer Feedforward Networks04 Multi-layer Feedforward Networks
04 Multi-layer Feedforward Networks
Tamer Ahmed Farrag, PhD
 
Artificial Neural Networks for Data Mining
Artificial Neural Networks for Data MiningArtificial Neural Networks for Data Mining
Homomorphic filtering
Homomorphic filteringHomomorphic filtering
Homomorphic filtering
Gautam Saxena
 
Point processing
Point processingPoint processing
Point processing
panupriyaa7
 
2.5 backpropagation
2.5 backpropagation2.5 backpropagation
2.5 backpropagation
Krish_ver2
 
I. AO* SEARCH ALGORITHM
I. AO* SEARCH ALGORITHMI. AO* SEARCH ALGORITHM
I. AO* SEARCH ALGORITHM
vikas dhakane
 
Frequent itemset mining methods
Frequent itemset mining methodsFrequent itemset mining methods
Frequent itemset mining methods
Prof.Nilesh Magar
 
daa-unit-3-greedy method
daa-unit-3-greedy methoddaa-unit-3-greedy method
daa-unit-3-greedy method
hodcsencet
 
Multilayer & Back propagation algorithm
Multilayer & Back propagation algorithmMultilayer & Back propagation algorithm
Multilayer & Back propagation algorithm
swapnac12
 
Digital Image Processing: Image Segmentation
Digital Image Processing: Image SegmentationDigital Image Processing: Image Segmentation
Digital Image Processing: Image Segmentation
Mostafa G. M. Mostafa
 
Hebb network
Hebb networkHebb network
Cohen-Sutherland Line Clipping Algorithm
Cohen-Sutherland Line Clipping AlgorithmCohen-Sutherland Line Clipping Algorithm
Cohen-Sutherland Line Clipping Algorithm
Maruf Abdullah (Rion)
 
Vc dimension in Machine Learning
Vc dimension in Machine LearningVc dimension in Machine Learning
Vc dimension in Machine Learning
VARUN KUMAR
 
lazy learners and other classication methods
lazy learners and other classication methodslazy learners and other classication methods
lazy learners and other classication methods
rajshreemuthiah
 
ELEMENTS OF TRANSPORT PROTOCOL
ELEMENTS OF TRANSPORT PROTOCOLELEMENTS OF TRANSPORT PROTOCOL
ELEMENTS OF TRANSPORT PROTOCOL
Shashank Rustagi
 
Forms of learning in ai
Forms of learning in aiForms of learning in ai
Forms of learning in ai
Robert Antony
 
Mining Frequent Patterns, Association and Correlations
Mining Frequent Patterns, Association and CorrelationsMining Frequent Patterns, Association and Correlations
Mining Frequent Patterns, Association and Correlations
Justin Cletus
 
Machine Learning: Introduction to Neural Networks
Machine Learning: Introduction to Neural NetworksMachine Learning: Introduction to Neural Networks
Machine Learning: Introduction to Neural NetworksFrancesco Collova'
 

What's hot (20)

Edge Detection and Segmentation
Edge Detection and SegmentationEdge Detection and Segmentation
Edge Detection and Segmentation
 
And or graph
And or graphAnd or graph
And or graph
 
04 Multi-layer Feedforward Networks
04 Multi-layer Feedforward Networks04 Multi-layer Feedforward Networks
04 Multi-layer Feedforward Networks
 
Artificial Neural Networks for Data Mining
Artificial Neural Networks for Data MiningArtificial Neural Networks for Data Mining
Artificial Neural Networks for Data Mining
 
Homomorphic filtering
Homomorphic filteringHomomorphic filtering
Homomorphic filtering
 
Point processing
Point processingPoint processing
Point processing
 
2.5 backpropagation
2.5 backpropagation2.5 backpropagation
2.5 backpropagation
 
I. AO* SEARCH ALGORITHM
I. AO* SEARCH ALGORITHMI. AO* SEARCH ALGORITHM
I. AO* SEARCH ALGORITHM
 
Frequent itemset mining methods
Frequent itemset mining methodsFrequent itemset mining methods
Frequent itemset mining methods
 
daa-unit-3-greedy method
daa-unit-3-greedy methoddaa-unit-3-greedy method
daa-unit-3-greedy method
 
Multilayer & Back propagation algorithm
Multilayer & Back propagation algorithmMultilayer & Back propagation algorithm
Multilayer & Back propagation algorithm
 
Digital Image Processing: Image Segmentation
Digital Image Processing: Image SegmentationDigital Image Processing: Image Segmentation
Digital Image Processing: Image Segmentation
 
Hebb network
Hebb networkHebb network
Hebb network
 
Cohen-Sutherland Line Clipping Algorithm
Cohen-Sutherland Line Clipping AlgorithmCohen-Sutherland Line Clipping Algorithm
Cohen-Sutherland Line Clipping Algorithm
 
Vc dimension in Machine Learning
Vc dimension in Machine LearningVc dimension in Machine Learning
Vc dimension in Machine Learning
 
lazy learners and other classication methods
lazy learners and other classication methodslazy learners and other classication methods
lazy learners and other classication methods
 
ELEMENTS OF TRANSPORT PROTOCOL
ELEMENTS OF TRANSPORT PROTOCOLELEMENTS OF TRANSPORT PROTOCOL
ELEMENTS OF TRANSPORT PROTOCOL
 
Forms of learning in ai
Forms of learning in aiForms of learning in ai
Forms of learning in ai
 
Mining Frequent Patterns, Association and Correlations
Mining Frequent Patterns, Association and CorrelationsMining Frequent Patterns, Association and Correlations
Mining Frequent Patterns, Association and Correlations
 
Machine Learning: Introduction to Neural Networks
Machine Learning: Introduction to Neural NetworksMachine Learning: Introduction to Neural Networks
Machine Learning: Introduction to Neural Networks
 

Similar to Classification using back propagation algorithm

Artificial neural network
Artificial neural networkArtificial neural network
Artificial neural network
mustafa aadel
 
Classification by back propagation, multi layered feed forward neural network...
Classification by back propagation, multi layered feed forward neural network...Classification by back propagation, multi layered feed forward neural network...
Classification by back propagation, multi layered feed forward neural network...
bihira aggrey
 
Intro to Deep learning - Autoencoders
Intro to Deep learning - Autoencoders Intro to Deep learning - Autoencoders
Intro to Deep learning - Autoencoders
Akash Goel
 
Lec 6-bp
Lec 6-bpLec 6-bp
Lec 6-bp
Taymoor Nazmy
 
MNN
MNNMNN
Unit ii supervised ii
Unit ii supervised iiUnit ii supervised ii
Unit ii supervised ii
Indira Priyadarsini
 
Electricity Demand Forecasting Using ANN
Electricity Demand Forecasting Using ANNElectricity Demand Forecasting Using ANN
Electricity Demand Forecasting Using ANNNaren Chandra Kattla
 
Artificial Neural Network for machine learning
Artificial Neural Network for machine learningArtificial Neural Network for machine learning
Artificial Neural Network for machine learning
2303oyxxxjdeepak
 
Multi Layer Network
Multi Layer NetworkMulti Layer Network
lecture07.ppt
lecture07.pptlecture07.ppt
lecture07.pptbutest
 
Web spam classification using supervised artificial neural network algorithms
Web spam classification using supervised artificial neural network algorithmsWeb spam classification using supervised artificial neural network algorithms
Web spam classification using supervised artificial neural network algorithms
aciijournal
 
Neural-Networks.ppt
Neural-Networks.pptNeural-Networks.ppt
Neural-Networks.ppt
RINUSATHYAN
 
Web Spam Classification Using Supervised Artificial Neural Network Algorithms
Web Spam Classification Using Supervised Artificial Neural Network AlgorithmsWeb Spam Classification Using Supervised Artificial Neural Network Algorithms
Web Spam Classification Using Supervised Artificial Neural Network Algorithms
aciijournal
 
Backpropagation.pptx
Backpropagation.pptxBackpropagation.pptx
Backpropagation.pptx
VandanaVipparthi
 
Artifical Neural Network and its applications
Artifical Neural Network and its applicationsArtifical Neural Network and its applications
Artifical Neural Network and its applications
Sangeeta Tiwari
 
Backpropagation
BackpropagationBackpropagation
Backpropagationariffast
 
ARTIFICIAL NEURAL NETWORK APPROACH TO MODELING OF POLYPROPYLENE REACTOR
ARTIFICIAL NEURAL NETWORK APPROACH TO MODELING OF POLYPROPYLENE REACTORARTIFICIAL NEURAL NETWORK APPROACH TO MODELING OF POLYPROPYLENE REACTOR
ARTIFICIAL NEURAL NETWORK APPROACH TO MODELING OF POLYPROPYLENE REACTOR
ijac123
 
nural network ER. Abhishek k. upadhyay
nural network ER. Abhishek  k. upadhyaynural network ER. Abhishek  k. upadhyay
nural network ER. Abhishek k. upadhyay
abhishek upadhyay
 

Similar to Classification using back propagation algorithm (20)

Artificial neural network
Artificial neural networkArtificial neural network
Artificial neural network
 
Classification by back propagation, multi layered feed forward neural network...
Classification by back propagation, multi layered feed forward neural network...Classification by back propagation, multi layered feed forward neural network...
Classification by back propagation, multi layered feed forward neural network...
 
Intro to Deep learning - Autoencoders
Intro to Deep learning - Autoencoders Intro to Deep learning - Autoencoders
Intro to Deep learning - Autoencoders
 
Lec 6-bp
Lec 6-bpLec 6-bp
Lec 6-bp
 
MNN
MNNMNN
MNN
 
Unit ii supervised ii
Unit ii supervised iiUnit ii supervised ii
Unit ii supervised ii
 
Electricity Demand Forecasting Using ANN
Electricity Demand Forecasting Using ANNElectricity Demand Forecasting Using ANN
Electricity Demand Forecasting Using ANN
 
Artificial Neural Network for machine learning
Artificial Neural Network for machine learningArtificial Neural Network for machine learning
Artificial Neural Network for machine learning
 
Multi Layer Network
Multi Layer NetworkMulti Layer Network
Multi Layer Network
 
lecture07.ppt
lecture07.pptlecture07.ppt
lecture07.ppt
 
Web spam classification using supervised artificial neural network algorithms
Web spam classification using supervised artificial neural network algorithmsWeb spam classification using supervised artificial neural network algorithms
Web spam classification using supervised artificial neural network algorithms
 
Neural-Networks.ppt
Neural-Networks.pptNeural-Networks.ppt
Neural-Networks.ppt
 
Web Spam Classification Using Supervised Artificial Neural Network Algorithms
Web Spam Classification Using Supervised Artificial Neural Network AlgorithmsWeb Spam Classification Using Supervised Artificial Neural Network Algorithms
Web Spam Classification Using Supervised Artificial Neural Network Algorithms
 
Backpropagation.pptx
Backpropagation.pptxBackpropagation.pptx
Backpropagation.pptx
 
Artifical Neural Network and its applications
Artifical Neural Network and its applicationsArtifical Neural Network and its applications
Artifical Neural Network and its applications
 
20120140503023
2012014050302320120140503023
20120140503023
 
Backpropagation
BackpropagationBackpropagation
Backpropagation
 
ARTIFICIAL NEURAL NETWORK APPROACH TO MODELING OF POLYPROPYLENE REACTOR
ARTIFICIAL NEURAL NETWORK APPROACH TO MODELING OF POLYPROPYLENE REACTORARTIFICIAL NEURAL NETWORK APPROACH TO MODELING OF POLYPROPYLENE REACTOR
ARTIFICIAL NEURAL NETWORK APPROACH TO MODELING OF POLYPROPYLENE REACTOR
 
ANN.pptx
ANN.pptxANN.pptx
ANN.pptx
 
nural network ER. Abhishek k. upadhyay
nural network ER. Abhishek  k. upadhyaynural network ER. Abhishek  k. upadhyay
nural network ER. Abhishek k. upadhyay
 

Recently uploaded

The role of big data in decision making.
The role of big data in decision making.The role of big data in decision making.
The role of big data in decision making.
ankuprajapati0525
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
SamSarthak3
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
MdTanvirMahtab2
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
R&R Consult
 
English lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdfEnglish lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdf
BrazilAccount1
 
WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
AafreenAbuthahir2
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
JoytuBarua2
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
Pratik Pawar
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
fxintegritypublishin
 
Investor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptxInvestor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptx
AmarGB2
 
Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
manasideore6
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
Pipe Restoration Solutions
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
thanhdowork
 
Runway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptxRunway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptx
SupreethSP4
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
TeeVichai
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
Kamal Acharya
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
karthi keyan
 
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
WENKENLI1
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
ViniHema
 

Recently uploaded (20)

The role of big data in decision making.
The role of big data in decision making.The role of big data in decision making.
The role of big data in decision making.
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
 
English lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdfEnglish lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdf
 
WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
 
Investor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptxInvestor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptx
 
Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
 
Runway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptxRunway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptx
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
 
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
 

Classification using back propagation algorithm

  • 2. Backpropagation Algorithms  The back-propagation learning algorithm is one of the most important developments in neural networks.  Backpropagation is the generalization of the Widrow-Hoff learning rule to multiple-layer networks and nonlinear differentiable transfer functions.  This learning algorithm is applied to multilayer feed-forward networks consisting of processing elements with continuous differentiable activation functions.  The networks associated with back-propagation algorithm are also called back-propagation networks(BPNs).
  • 3. Backpropagation Algorithms  The Aim Of The Neural Network Is To Train The Net Ot Achieve A Balance Between The Net’s Ability To Respond(memorization) And Its Ability To Give Resasonable Responses To The Input That Is Similar But Not Identical To The One That Is Use In Trianing (Generalization).
  • 4. Architecture This section presents the architecture of the network that is most commonly used with the backpropagation algorithm – the multilayer feedforward network
  • 5. Architecture Feedforward Network Feedforward networks often have one or more hidden layers of sigmoid neurons followed by an output layer of linear neurons. Multiple layers of neurons with nonlinear transfer functions allow the network to learn nonlinear and linear relationships between input and output vectors. The linear output layer lets the network produce values outside the range -1 to +1. On the other hand, if you want to constrain the outputs of a network (such as between 0 and 1), then the output layer should use a sigmoid transfer function (such as logsig).
  • 6. Learning Algorithm: Backpropagation The following slides describes teaching process of multi-layer neural network employing backpropagation algorithm. To illustrate this process the three layer neural network with two inputs and one output,which is shown in the picture below, is used:
  • 7. Learning Algorithm: Backpropagation Each neuron is composed of two units. First unit adds products of weights coefficients and input signals. The second unit realise nonlinear function, called neuron transfer (activation) function. Signal e is adder output signal, and y = f(e) is output signal of nonlinear element. Signal y is also output signal of neuron.
  • 8. Learning Algorithm: Backpropagation To teach the neural network we need training data set. The training data set consists of input signals (x1 and x2 ) assigned with corresponding target (desired output) z. The network training is an iterative process. In each iteration weights coefficients of nodes are modified using new data from training data set. Modification is calculated using algorithm described below: Each teaching step starts with forcing both input signals from training set. After this stage we can determine output signals values for each neuron in each network layer.
  • 9. Learning Algorithm: Backpropagation Pictures below illustrate how signal is propagating through the network, Symbols w(xm)n represent weights of connections between network input xm and neuron n in input layer. Symbols yn represents output signal of neuron n.
  • 12. Learning Algorithm: Backpropagation Propagation of signals through the hidden layer. Symbols wmn represent weights of connections between output of neuron m and input of neuron n in the next layer.
  • 15. Learning Algorithm: Backpropagation Propagation of signals through the output layer.
  • 16. Learning Algorithm: Backpropagation In the next algorithm step the output signal of the network y is compared with the desired output value (the target), which is found in training data set. The difference is called error signal d of output layer neuron
  • 17. Learning Algorithm: Backpropagation The idea is to propagate error signal d (computed in single teaching step) back to all neurons, which output signals were input for discussed neuron.
  • 18. Learning Algorithm: Backpropagation The idea is to propagate error signal d (computed in single teaching step) back to all neurons, which output signals were input for discussed neuron.
  • 19. Learning Algorithm: Backpropagation The weights' coefficients wmn used to propagate errors back are equal to this used during computing output value. Only the direction of data flow is changed (signals are propagated from output to inputs one after the other). This technique is used for all network layers. If propagated errors came from few neurons they are added. The illustration is below:
  • 20. Learning Algorithm: Backpropagation When the error signal for each neuron is computed, the weights coefficients of each neuron input node may be modified. In formulas below df(e)/de represents derivative of neuron activation function (which weights are modified).
  • 21. Learning Algorithm: Backpropagation When the error signal for each neuron is computed, the weights coefficients of each neuron input node may be modified. In formulas below df(e)/de represents derivative of neuron activation function (which weights are modified).
  • 22. Learning Algorithm: Backpropagation When the error signal for each neuron is computed, the weights coefficients of each neuron input node may be modified. In formulas below df(e)/de represents derivative of neuron activation function (which weights are modified).
  • 23. Backpropagation applications  They have been successful on a wide array of real-world data, including  handwritten character recognition,  pathology and laboratory medicine,  and training a computer to pronounce English text.