-
population ( parameters M ) -
( l -
a) is confidence level
+ =
⇒
-
finite ( N )
-
PC tzta ,✓)=F Str
~tn -1
-
simple random sample [ I -
ten 'Fn ,I+tE,v
.
In ] 4. Determine crit .
value
( same prob .
of being selected ) -
When n > 1000 ,
Use Standard -
lowertailtestcha :m< Mo ) :P( ztzxta
-
infinite normal Table -
uppertailtestltta :M > Mo ) :P( 2 > Zxkx
-
random sample ( each elm .
2. population proportion twotailtestltta :m¥mo )
Comes from same pop . E. is
-
( 1 -
X ) is Confidence level
-
lfteststatoo :P( 2<-2 ; )=E
selected independently ) [ F- 2
;
F
"n⇒
'
, 15+2;
F
"n→
'
] -
ifteststat > o :p( z >
zq)=E
-
pop . mean : M .
desirable
margin
of error 5. Compare Critval . { test . Stat
-
pop .
Std :O
-
pop .
mean WIO known towertailtest :
lfteststattzxirejecttto
-
pop .
proportion :p
-
Zxz
Fntmarginoferrr -
upper tail test :# teststat > zx :
reject Ho
.
Sample ↳ solve n
-
twotailtest :
-
point estimator
-
pop .
prop .
-
Ifteststatcoteststattzairejecttto
-
sample Mean :I -
2g
#nt= margin of error
-
ifteststat > oteststat >
zq
:
reject Ho
-
sample Std :S 3. difference in means
type terror :
reject Ho when
-
sample proportion :p
-
A=I ,
-
Iz Hoistrul
-
Underlying pop has expected
-
E 1 d) =M ,
-
Mz
type # error :
accept Ho
value ME variance 02 -
Varcd )=¥+ ⇒ when Ho is false
-
ELI )=M -
a~N( M ,
-
Mz ,
# +
¥ ) .
level ofsig ( × ) :
maxprob .
02
-
Vara )=T a) O , ,Oz known that can be tolerated for
-
Stdlx )= TF =0E
[ ixixz ,
.ee#Font.uixz)+qfEn.+nEztftypeIerr0r
↳ standard error of mean
.
p
-
value approach ( Gknown )
-
I~N( M ,
# ) if pop .
b) 0 , ,0z Unknown 1. Develop Ho ,
Ha
is normally distributed or
→
assume 0 ,=oz=op 2. Specify ×
if n >_ 30 ( central limit theorem
)Var(4) =Op2(÷ntn÷ ) 3. Cakteststat Z*
-
EC f)
=÷E(
xktnlnp )=p .
Pooled sample variance 4. Computers -
value
-
Var( F) = ( ht )2Var( × ) -
sp2=
5 ? ( ni -
1) +5221^2-1 ) -
lowertailtest :p .
vai .=p(z<z* )
=
ntznp ( 1 -
D) = #fe= 0,52 Ni +
nz
-
2 -
upper tail test :p -val=p( 2>2*1
-
Std (f) =
0,5=5*3
' -
Var (d) ~~Sp2( F. +
th ) -
ztail : if 2*0 ,p-vai=zp(2<z* )
↳ standard error
-
Std (d) =
Sptnfhz ifz*>o ,p-vai=zp( 2>2*1
-
F~N( p ,
#n# ) When -
Uset -
distribution 5. Compare p-valGx
npzg { n( 1 -
p )z5 [hiixzttezirspfnttnz .LI#zlttE.vsPFnntz ] -
If pval > x. cannot reject Ho
.
Interval Estimation
-
V=n,+nz -
2 -
lfp .
vak x. reject Ho
1.
pop .
mean M
.
hypothesis testing pop .
prop .
-
teststat :Z*= F -
P
a) oknown
-
Critical value approach repos
-
( l -
X ) is Confidence ( Usedfcroknownoq
-
Canusecritval .
orpval .
difference in means
level UNKNOWN ) -
easel :O , Gozknown
-
PL -
BEZE b) =1 -
X 1. Develop Ho ,
Ha Teststat :z*=I .
-
Ez -
do
IOI -
b) =F 2. Specify levelofsigx
It #
PCZ > ZE )= E 3. cake . test Stat
-
Case 2 :O ,
EQ unknown
-
Assume 01=02
[ I -2g
.
In ,I+Zq
.
# ] Z for 0 known
tes+s+a+:t*=
I # 2- do
b) 0 Unknown I -
Mo SP in
,
+
's
Ztoyn ~N( Oil ) *
useomycritval . approach-
t distribution
degrelsoffreedomfort : n ,
+
nz
-
2
-
degrees of freedom =V=n -
Itfor 0 unknown

Statistics for Economics Final Exam Cheat Sheet

  • 1.
    - population ( parametersM ) - ( l - a) is confidence level + = ⇒ - finite ( N ) - PC tzta ,✓)=F Str ~tn -1 - simple random sample [ I - ten 'Fn ,I+tE,v . In ] 4. Determine crit . value ( same prob . of being selected ) - When n > 1000 , Use Standard - lowertailtestcha :m< Mo ) :P( ztzxta - infinite normal Table - uppertailtestltta :M > Mo ) :P( 2 > Zxkx - random sample ( each elm . 2. population proportion twotailtestltta :m¥mo ) Comes from same pop . E. is - ( 1 - X ) is Confidence level - lfteststatoo :P( 2<-2 ; )=E selected independently ) [ F- 2 ; F "n⇒ ' , 15+2; F "n→ ' ] - ifteststat > o :p( z > zq)=E - pop . mean : M . desirable margin of error 5. Compare Critval . { test . Stat - pop . Std :O - pop . mean WIO known towertailtest : lfteststattzxirejecttto - pop . proportion :p - Zxz Fntmarginoferrr - upper tail test :# teststat > zx : reject Ho . Sample ↳ solve n - twotailtest : - point estimator - pop . prop . - Ifteststatcoteststattzairejecttto - sample Mean :I - 2g #nt= margin of error - ifteststat > oteststat > zq : reject Ho - sample Std :S 3. difference in means type terror : reject Ho when - sample proportion :p - A=I , - Iz Hoistrul - Underlying pop has expected - E 1 d) =M , - Mz type # error : accept Ho value ME variance 02 - Varcd )=¥+ ⇒ when Ho is false - ELI )=M - a~N( M , - Mz , # + ¥ ) . level ofsig ( × ) : maxprob . 02 - Vara )=T a) O , ,Oz known that can be tolerated for - Stdlx )= TF =0E [ ixixz , .ee#Font.uixz)+qfEn.+nEztftypeIerr0r ↳ standard error of mean . p - value approach ( Gknown ) - I~N( M , # ) if pop . b) 0 , ,0z Unknown 1. Develop Ho , Ha is normally distributed or → assume 0 ,=oz=op 2. Specify × if n >_ 30 ( central limit theorem )Var(4) =Op2(÷ntn÷ ) 3. Cakteststat Z* - EC f) =÷E( xktnlnp )=p . Pooled sample variance 4. Computers - value - Var( F) = ( ht )2Var( × ) - sp2= 5 ? ( ni - 1) +5221^2-1 ) - lowertailtest :p . vai .=p(z<z* ) = ntznp ( 1 - D) = #fe= 0,52 Ni + nz - 2 - upper tail test :p -val=p( 2>2*1 - Std (f) = 0,5=5*3 ' - Var (d) ~~Sp2( F. + th ) - ztail : if 2*0 ,p-vai=zp(2<z* ) ↳ standard error - Std (d) = Sptnfhz ifz*>o ,p-vai=zp( 2>2*1 - F~N( p , #n# ) When - Uset - distribution 5. Compare p-valGx npzg { n( 1 - p )z5 [hiixzttezirspfnttnz .LI#zlttE.vsPFnntz ] - If pval > x. cannot reject Ho . Interval Estimation - V=n,+nz - 2 - lfp . vak x. reject Ho 1. pop . mean M . hypothesis testing pop . prop . - teststat :Z*= F - P a) oknown - Critical value approach repos - ( l - X ) is Confidence ( Usedfcroknownoq - Canusecritval . orpval . difference in means level UNKNOWN ) - easel :O , Gozknown - PL - BEZE b) =1 - X 1. Develop Ho , Ha Teststat :z*=I . - Ez - do IOI - b) =F 2. Specify levelofsigx It # PCZ > ZE )= E 3. cake . test Stat - Case 2 :O , EQ unknown - Assume 01=02 [ I -2g . In ,I+Zq . # ] Z for 0 known tes+s+a+:t*= I # 2- do b) 0 Unknown I - Mo SP in , + 's Ztoyn ~N( Oil ) * useomycritval . approach- t distribution degrelsoffreedomfort : n , + nz - 2 - degrees of freedom =V=n - Itfor 0 unknown