SlideShare a Scribd company logo
Building a semantic/metrics
layer using Apache Calcite
Julian Hyde (Calcite, Google)
Community over Code • Halifax, Nova Scotia • 2023-10-09
Abstract
A semantic layer, also known as a metrics layer, lies between business users and the
database, and lets those users compose queries in the concepts that they understand.
It also governs access to the data, manages data transformations, and can tune the
database by defining materializations.
Like many new ideas, the semantic layer is a distillation and evolution of many old ideas, such as query
languages, multidimensional OLAP, and query federation.
In this talk, we describe the features we are adding to Calcite to define business views, query measures, and
optimize performance.
Julian Hyde is the original developer of Apache Calcite, an open source framework for building data
management systems, and Morel, a functional query language. Previously he created Mondrian, an analytics
engine, and SQLstream, an engine for continuous queries. He is a staff engineer at Google, where he works on
Looker and BigQuery.
Database
What products
are doing better
this year?
Semantic
layer
SELECT …
FROM …
GROUP BY …
Data system = Model + Query + Engine
Query
language
Data
model
Engine
Agenda
1. Relational model vs
dimensional model
2. Adding measures to SQL
3. Machine-learning patterns
4. Semantic layer
1. Relational model vs
dimensional model
2. Adding measures to SQL
3. Machine-learning patterns
4. Semantic layer
1. Relational model vs
dimensional model
2. Adding measures to SQL
3. Machine-learning patterns
4. Semantic layer
SQL vs BI
BI tools implement their own languages on top of SQL. Why not SQL?
Possible reasons:
● Semantic Model
● Control presentation / visualization
● Governance
● Pre-join tables
● Define reusable calculations
● Ask complex questions in a concise way
Processing BI in SQL
Why we should do it
● Move processing, not data
● Cloud SQL scale
● Remove data lag
● SQL is open
Why it’s hard
● Different paradigm
● More complex data model
● Can’t break SQL
Apache Calcite
Apache Calcite
Avatica
JDBC server
JDBC client
Pluggable
rewrite rules
Pluggable
stats / cost
Pluggable
catalog
ODBC client
Adapter
Physical
operators
Storage
SQL parser &
validator
Query
planner
Relational
algebra
Core – Operator expressions
(relational algebra) and planner
(based on Cascades)
External – Data storage,
algorithms and catalog
Optional – SQL parser, JDBC &
ODBC drivers
Extensible – Planner rewrite rules,
statistics, cost model, algebra,
UDFs
RelBuilder
Pasta machine vs Pizza delivery
Relational algebra (bottom-up) Multidimensional (top-down)
Products
Suppliers
⨝
⨝
Σ
⨝
σ
Sales
Products
Suppliers
⨝
⨝
Σ
σ
Sales
π
(Supplier: ‘ACE’,
Date: ‘1994-01’,
Product: all)
(Supplier: ‘ACE’,
Date: ‘1995-01’,
Product: all)
Supplier
Product
Date
Bottom-up vs Top-down query
1. Relational model vs
dimensional model
2. Adding measures to SQL
3. Machine-learning patterns
4. Semantic layer
1. Relational model vs
dimensional model
2. Adding measures to SQL
3. Machine-learning patterns
4. Semantic layer
Some multidimensional queries
● Give the total sales for each product in each quarter of 1995. (Note that quarter is a function of date).
● For supplier “Ace” and for each product, give the fractional increase in the sales in January 1995 relative to
the sales in January 1994.
● For each product give its market share in its category today minus its market share in its category in
October 1994.
● Select top 5 suppliers for each product category for last year, based on total sales.
● For each product category, select total sales this month of the product that had highest sales in that
category last month.
● Select suppliers that currently sell the highest selling product of last month.
● Select suppliers for which the total sale of every product increased in each of last 5 years.
● Select suppliers for which the total sale of every product category increased in each of last 5 years.
From [Agrawal1997]. Assumes a database with dimensions {supplier, date, product} and measure {sales}.)
Some multidimensional queries
● Give the total sales for each product in each quarter of 1995. (Note that quarter is a function of date).
● For supplier “Ace” and for each product, give the fractional increase in the sales in January 1995 relative to
the sales in January 1994.
● For each product give its market share in its category today minus its market share in its category in
October 1994.
● Select top 5 suppliers for each product category for last year, based on total sales.
● For each product category, select total sales this month of the product that had highest sales in that
category last month.
● Select suppliers that currently sell the highest selling product of last month.
● Select suppliers for which the total sale of every product increased in each of last 5 years
● Select suppliers for which the total sale of every product category increased in each of last 5 years.
From [Agrawal1997]. Assumes a database with dimensions {supplier, date, product} and measure {sales}.)
Query:
● For supplier “Ace” and for each product, give the fractional increase in the sales in January 1995 relative to
the sales in January 1994.
SQL MDX
SELECT p.prodId,
s95.sales,
(s95.sales - s94.sales) / s95.sales
FROM (
SELECT p.prodId, SUM(s.sales) AS sales
FROM Sales AS s
JOIN Suppliers AS u USING (suppId)
JOIN Products AS p USING (prodId)
WHERE u.name = ‘ACE’
AND FLOOR(s.date TO MONTH) = ‘1995-01-01’
GROUP BY p.prodId) AS s95
LEFT JOIN (
SELECT p.prodId, SUM(s.sales) AS sales
FROM Sales AS s
JOIN Suppliers AS u USING (suppId)
JOIN Products AS p USING (prodId)
WHERE u.name = ‘ACE’
AND FLOOR(s.date TO MONTH) = ‘1994-01-01’
GROUP BY p.prodId) AS s94
USING (prodId)
WITH MEMBER [Measures].[Sales Last Year] =
([Measures].[Sales],
ParallelPeriod([Date], 1, [Date].[Year]))
MEMBER [Measures].[Sales Growth] =
([Measures].[Sales]
- [Measures].[Sales Last Year])
/ [Measures].[Sales Last Year]
SELECT [Measures].[Sales Growth] ON COLUMNS,
[Product].Members ON ROWS
FROM [Sales]
WHERE [Supplier].[ACE]
Query:
● For supplier “Ace” and for each product, give the fractional increase in the sales in January 1995 relative to
the sales in January 1994.
SQL SQL with measures
SELECT p.prodId,
s95.sales,
(s95.sales - s94.sales) / s95.sales
FROM (
SELECT p.prodId, SUM(s.sales) AS sales
FROM Sales AS s
JOIN Suppliers AS u USING (suppId)
JOIN Products AS p USING (prodId)
WHERE u.name = ‘ACE’
AND FLOOR(s.date TO MONTH) = ‘1995-01-01’
GROUP BY p.prodId) AS s95
LEFT JOIN (
SELECT p.prodId, SUM(s.sales) AS sales
FROM Sales AS s
JOIN Suppliers AS u USING (suppId)
JOIN Products AS p USING (prodId)
WHERE u.name = ‘ACE’
AND FLOOR(s.date TO MONTH) = ‘1994-01-01’
GROUP BY p.prodId) AS s94
USING (prodId)
SELECT p.prodId,
SUM(s.sales) AS MEASURE sumSales,
sumSales AT (SET FLOOR(s.date TO MONTH)
= ‘1994-01-01’)
AS MEASURE sumSalesLastYear
FROM Sales AS s
JOIN Suppliers AS u USING (suppId)
JOIN Products AS p USING (prodId))
WHERE u.name = ‘ACE’
AND FLOOR(s.date TO MONTH) = ‘1995-01-01’
GROUP BY p.prodId
Self-joins, correlated subqueries, window aggregates, measures
Window aggregate functions were introduced to save on
self-joins.
Some DBs rewrite scalar subqueries and self-joins to
window aggregates [Zuzarte2003].
Window aggregates are more concise, easier to optimize,
and often more efficient.
However, window aggregates can only see data that is from
the same table, and is allowed by the WHERE clause.
Measures overcome that limitation.
SELECT *
FROM Employees AS e
WHERE sal > (
SELECT AVG(sal)
FROM Employees
WHERE deptno = e.deptno)
SELECT *
FROM Employees AS e
WHERE sal > AVG(sal)
OVER (PARTITION BY deptno)
A measure is… ?
… a column with an aggregate function. SUM(sales)
A measure is… ?
… a column with an aggregate function. SUM(sales)
… a column that, when used as an
expression, knows how to aggregate itself.
(SUM(sales) - SUM(cost))
/ SUM(sales)
A measure is… ?
… a column with an aggregate function. SUM(sales)
… a column that, when used as an
expression, knows how to aggregate itself.
(SUM(sales) - SUM(cost))
/ SUM(sales)
… a column that, when used as expression,
can evaluate itself in any context.
(SELECT SUM(forecastSales)
FROM SalesForecast AS s
WHERE predicate(s))
ExchService$ClosingRate(
‘USD’, ‘EUR’, sales.date)
A measure is…
… a column with an aggregate function. SUM(sales)
… a column that, when used as an
expression, knows how to aggregate itself.
(SUM(sales) - SUM(cost))
/ SUM(sales)
… a column that, when used as expression,
can evaluate itself in any context.
Its value depends on, and only on, the
predicate placed on its dimensions.
(SELECT SUM(forecastSales)
FROM SalesForecast AS s
WHERE predicate(s))
ExchService$ClosingRate(
‘USD’, ‘EUR’, sales.date)
SELECT MOD(deptno, 2) = 0 AS evenDeptno, avgSal2
FROM
WHERE deptno < 30
SELECT deptno, AVG(avgSal) AS avgSal2
FROM
GROUP BY deptno
Table model
Tables are SQL’s fundamental
model.
The model is closed – queries
consume and produce tables.
Tables are opaque – you can’t
deduce the type, structure or
private data of a table.
SELECT deptno, job,
AVG(sal) AS avgSal
FROM Employees
GROUP BY deptno, job
Employees2
Employees3
SELECT MOD(deptno, 2) = 0 AS evenDeptno, avgSal2
FROM
WHERE deptno < 30
SELECT deptno, AVG(avgSal) AS avgSal2
FROM
GROUP BY deptno
Table model
Tables are SQL’s fundamental
model.
The model is closed – queries
consume and produce tables.
Tables are opaque – you can’t
deduce the type, structure or
private data of a table.
SELECT deptno, job,
AVG(sal) AS avgSal
FROM Employees
GROUP BY deptno, job
SELECT e.deptno, e.job, d.dname, e.avgSal / e.deptAvgSal
FROM
AS e
JOIN Departments AS d USING (deptno)
WHERE d.dname <> ‘MARKETING’
GROUP BY deptno, job
We propose to allow any table and
query to have measure columns.
The model is closed – queries
consume and produce
tables-with-measures.
Tables-with-measures are
semi-opaque – you can’t deduce the
type, structure or private data, but
you can evaluate the measure in any
context that can be expressed as a
predicate on the measure’s
dimensions.
SELECT *,
avgSal AS MEASURE avgSal,
avgSal AT (CLEAR deptno) AS MEASURE deptAvgSal
FROM
Table model with measures
SELECT *,
AVG(sal) AS MEASURE avgSal
FROM Employees
AnalyticEmployees
AnalyticEmployees2
SELECT e.deptno, e.job, d.dname, e.avgSal / e.deptAvgSal
FROM
AS e
JOIN Departments AS d USING (deptno)
WHERE d.dname <> ‘MARKETING’
GROUP BY deptno, job
We propose to allow any table and
query to have measure columns.
The model is closed – queries
consume and produce
tables-with-measures.
Tables-with-measures are
semi-opaque – you can’t deduce the
type, structure or private data, but
you can evaluate the measure in any
context that can be expressed as a
predicate on the measure’s
dimensions.
SELECT *,
avgSal AS MEASURE avgSal,
avgSal AT (ALL deptno) AS MEASURE deptAvgSal
FROM
Table model with measures
SELECT *,
AVG(sal) AS MEASURE avgSal
FROM Employees
Syntax
expression AS MEASURE – defines a measure in the SELECT clause
AGGREGATE(measure) – evaluates a measure in a GROUP BY query
expression AT (contextModifier…) – evaluates expression in a modified context
contextModifier ::=
ALL
| ALL dimension [, dimension…]
| ALL EXCEPT dimension [, dimension…]
| SET dimension = [CURRENT] expression
| VISIBLE
aggFunction(aggFunction(expression) PER dimension) – multi-level aggregation
Plan of attack
1. Add measures to the table model, and allow queries to use them
◆ Measures are defined only via the Table API
2. Define measures using SQL expressions (AS MEASURE)
◆ You can still define them using the Table API
3. Context-sensitive expressions (AT)
Semantics
0. We have a measure M, value type V,
in a table T.
CREATE VIEW AnalyticEmployees AS
SELECT *, AVG(sal) AS MEASURE avgSal
FROM Employees
1. System defines a row type R with the
non-measure columns.
CREATE TYPE R AS
ROW (deptno: INTEGER, job: VARCHAR)
2. System defines an auxiliary function
for M. (Function is typically a scalar
subquery that references the measure’s
underlying table.)
CREATE FUNCTION computeAvgSal(
rowPredicate: FUNCTION<R, BOOLEAN>) =
(SELECT AVG(e.sal)
FROM Employees AS e
WHERE APPLY(rowPredicate, e))
Semantics (continued)
3. We have a query that uses M. SELECT deptno,
avgSal
/ avgSal AT (ALL deptno)
FROM AnalyticEmployees AS e
GROUP BY deptno
4. Substitute measure references with
calls to the auxiliary function with the
appropriate predicate
SELECT deptno,
computeAvgSal(r ->🠚(r.deptno = e.deptno))
/ computeAvgSal(r 🠚 TRUE))
FROM AnalyticEmployees AS e
GROUP BY deptno
5. Planner inlines computeAvgSal and
scalar subqueries
SELECT deptno, AVG(sal) / MIN(avgSal)
FROM (
SELECT deptno, sal,
AVG(sal) OVER () AS avgSal
FROM Employees)
GROUP BY deptno
Calculating at the right grain
Example Formula Grain
Computing the revenue from
units and unit price
units * pricePerUnit AS revenue Row
Sum of revenue (additive) SUM(revenue)
AS MEASURE sumRevenue
Top
Profit margin (non-additive) (SUM(revenue) - SUM(cost))
/ SUM(revenue)
AS MEASURE profitMargin
Top
Inventory (semi-additive) SUM(LAST_VALUE(unitsInStock)
PER inventoryDate)
AS MEASURE sumInventory
Intermediate
Daily average (weighted
average)
AVG(sumRevenue PER orderDate)
AS MEASURE dailyAvgRevenue
Intermediate
Subtotals & visible
SELECT deptno, job,
SUM(sal), sumSal
FROM (
SELECT *,
SUM(sal) AS MEASURE sumSal
FROM Employees)
WHERE job <> ‘ANALYST’
GROUP BY ROLLUP(deptno, job)
ORDER BY 1,2
deptno job SUM(sal) sumSal
10 CLERK 1,300 1,300
10 MANAGER 2,450 2,450
10 PRESIDENT 5,000 5,000
10 8,750 8,750
20 CLERK 1,900 1,900
20 MANAGER 2,975 2,975
20 4,875 10,875
30 CLERK 950 950
30 MANAGER 2,850 2,850
30 SALES 5,600 5,600
30 9,400 9,400
20,750 29,025
Measures by default sum ALL rows;
Aggregate functions sum only VISIBLE rows
Visible
Expression Example Which rows?
Aggregate function SUM(sal) Visible only
Measure sumSal All
AGGREGATE applied to measure AGGREGATE(sumSal) Visible only
Measure with VISIBLE sumSal AT (VISIBLE) Visible only
Measure with ALL sumSal AT (ALL) All
1. Relational model vs
dimensional model
2. Adding measures to SQL
3. Machine-learning patterns
4. Semantic layer
1. Relational model vs
dimensional model
2. Adding measures to SQL
3. Machine-learning patterns
4. Semantic layer
Forecasting
A forecast is simply a measure whose value at
some point in the future is determined, in some
manner, by a calculation on past data.
SELECT year(order_date), product, revenue,
forecast_revenue
FROM Orders
WHERE year(order_date) BETWEEN 2018 AND 2022
GROUP BY 1, 2
Forecasting: implementation
Problems
1. Predictive model under the forecast
(such as ARIMA or linear regression) is
probably too expensive to re-compute for
every query
2. We want to evaluate forecast for regions
for which there is not (yet) any data
Solutions
1. Amortize the cost of running the model
using (some kind of) materialized view
2. Add a SQL EXTEND operation to
implicitly generate data
SELECT year(order_date), product, revenue,
forecast_revenue
FROM Orders EXTEND (order_date)
WHERE year(order_date) BETWEEN 2021 AND 2025
GROUP BY 1, 2
Clustering
A clustering algorithm assigns data points to
regions of N-dimensional space called clusters such
that points that are in the same cluster are, by some
measure, close to each other and distant from points
in other clusters.
SELECT id, firstName, lastName, firstPurchaseDate,
latitude, longitude, revenue, region
FROM Customers;
CREATE VIEW Customers AS
SELECT *,
KMEANS(3, ROW(latitude, longitude)) AS MEASURE
region,
(SELECT SUM(revenue)
FROM Orders AS o
WHERE o.customerId = c.id) AS MEASURE revenue
FROM BaseCustomers AS c;
region is a measure (based on the
centroid of a cluster)
Clustering: fixing the baseline
The measure is a little too dynamic. Fix the baseline, so that cluster centroids don’t
change from one query to the next:
SELECT id, firstName, lastName, firstPurchaseDate,
latitude, longitude,
region AT (ALL
SET YEAR(firstPurchaseDate) = 2020)
FROM Customers;
Clustering: amortizing the cost
To amortize the cost of the algorithm, create a materialized view:
CREATE MATERIALIZED VIEW CustomersMV AS
SELECT *,
region AT (ALL
SET YEAR(firstPurchaseDate) = 2020) AS region2020
FROM Customers;
Classification
Classification predicts the value of a variable given the values of other variables and a
model trained on similar data.
For example, does a particular household own a dog?
Whether they have a dog may depend on household income, education level, location
of the household, purchasing history of the household.
SELECT last_name, zipcode, probability_that_household_has_dog,
expected_dog_count
FROM Customers
WHERE state = ‘AZ’
Classification: training & running
Pseudo-function CLASSIFY:
SELECT last_name, zipcode,
CLASSIFY(firstPurchaseDate = ‘2023-05-01’,
has_dog,
ROW (zipcode, state, income_level, education_level))
AS probability_that_household_has_dog,
expected_dog_count
FROM Customers
GROUP BY state
FUNCTION classify(isTraining, actualValue, features)
We assume that has_dog has
the correct value for customers
who purchased on 2023-05-01
A SQL view can both train the algorithm (given the correct
result) and execute it (generating the result from features):
1. Relational model vs
dimensional model
2. Adding measures to SQL
3. Machine-learning patterns
4. Semantic layer
1. Relational model vs
dimensional model
2. Adding measures to SQL
3. Machine-learning patterns
4. Semantic layer
Database
What products
are doing better
this year?
Semantic
layer
SELECT …
FROM …
GROUP BY …
Natural language query
Example query:
“Show me the top 5 products in each state where revenue declined since last year”
“Revenue” is a measure.
“Declined since last year” asks whether
revenue - revenue AT (SET year = CURRENT year - 1)
is negative.
“Products in each state” establishes the filter context.
Semantic model for natural-language query
Extended semantic model
“Show me regions where customers ordered low-inventory products last year”
Data model is a graph that
connects business views:
● Business views – tables,
possibly based on joins, with
measures, and display hints
● Domains – shared attributes
● Entities – shared dimensions
● Metrics – shared measures
● Ontology/synonyms
Do we need a new query language?
orders
product
customer
warehouse
shipments
inventory
geography
Summary
Measures in SQL allow…
● concise queries without self-joins
● top-down evaluation
● reusable calculations
● natural-language query
…and don’t break SQL
A semantic model is table with measures, accessed via analytic SQL..
A extended semantic model links such tables into a knowledge graph.
Resources
Papers
● “Modeling multidimensional databases”
(Agrawal, Gupta, and Sarawagi, 1997)
● “WinMagic: Subquery Elimination Using
Window Aggregation” (Zuzarte, Pirahash,
Ma, Cheng, Liu, and Wong, 2003)
● “Analyza: Exploring Data with
Conversation” (Dhamdhere, McCurley,
Nahmias, Sundararajan, Yan, 2017)
Issues
● [CALCITE-4488] WITHIN DISTINCT
clause for aggregate functions
(experimental)
● [CALCITE-4496] Measure columns
("SELECT ... AS MEASURE")
● [CALCITE-5105] Add MEASURE type and
AGGREGATE aggregate function
● [CALCITE-5155] Custom time frames
● [CALCITE-xxxx] PER operator
● [CALCITE-5692] Add AT operator, for
context-sensitive expressions
● [CALCITE-5951] PRECEDES function, for
period-to-date calculations
Thank you!
Any questions?
@julianhyde
@ApacheCalcite
https://calcite.apache.org

More Related Content

What's hot

Accelerating Spark SQL Workloads to 50X Performance with Apache Arrow-Based F...
Accelerating Spark SQL Workloads to 50X Performance with Apache Arrow-Based F...Accelerating Spark SQL Workloads to 50X Performance with Apache Arrow-Based F...
Accelerating Spark SQL Workloads to 50X Performance with Apache Arrow-Based F...
Databricks
 
Sap batch management overview
Sap batch management overviewSap batch management overview
Sap batch management overviewdhl1234
 
SQL for NoSQL and how Apache Calcite can help
SQL for NoSQL and how  Apache Calcite can helpSQL for NoSQL and how  Apache Calcite can help
SQL for NoSQL and how Apache Calcite can help
Christian Tzolov
 
Top 10 Mistakes When Migrating From Oracle to PostgreSQL
Top 10 Mistakes When Migrating From Oracle to PostgreSQLTop 10 Mistakes When Migrating From Oracle to PostgreSQL
Top 10 Mistakes When Migrating From Oracle to PostgreSQL
Jim Mlodgenski
 
Apache Calcite (a tutorial given at BOSS '21)
Apache Calcite (a tutorial given at BOSS '21)Apache Calcite (a tutorial given at BOSS '21)
Apache Calcite (a tutorial given at BOSS '21)
Julian Hyde
 
Apache Calcite: A Foundational Framework for Optimized Query Processing Over ...
Apache Calcite: A Foundational Framework for Optimized Query Processing Over ...Apache Calcite: A Foundational Framework for Optimized Query Processing Over ...
Apache Calcite: A Foundational Framework for Optimized Query Processing Over ...
Julian Hyde
 
Treinamento co fm controladoria e orçamento carga horária- 12h instrutora- ki...
Treinamento co fm controladoria e orçamento carga horária- 12h instrutora- ki...Treinamento co fm controladoria e orçamento carga horária- 12h instrutora- ki...
Treinamento co fm controladoria e orçamento carga horária- 12h instrutora- ki...
Marcelo Pires Batalha
 
Bucketing 2.0: Improve Spark SQL Performance by Removing Shuffle
Bucketing 2.0: Improve Spark SQL Performance by Removing ShuffleBucketing 2.0: Improve Spark SQL Performance by Removing Shuffle
Bucketing 2.0: Improve Spark SQL Performance by Removing Shuffle
Databricks
 
Presto: Optimizing Performance of SQL-on-Anything Engine
Presto: Optimizing Performance of SQL-on-Anything EnginePresto: Optimizing Performance of SQL-on-Anything Engine
Presto: Optimizing Performance of SQL-on-Anything Engine
DataWorks Summit
 
OData Services
OData ServicesOData Services
OData Services
Jovan Popovic
 
Tableau vs PowerBI
Tableau vs PowerBITableau vs PowerBI
Tableau vs PowerBI
walnutmercury
 
Treinamento pricing
Treinamento pricingTreinamento pricing
Treinamento pricinglgiordani
 
Kunwar resume SAP consultant
Kunwar resume SAP consultantKunwar resume SAP consultant
Kunwar resume SAP consultant
Kunwar Goyal
 
Deep Dive into the New Features of Apache Spark 3.0
Deep Dive into the New Features of Apache Spark 3.0Deep Dive into the New Features of Apache Spark 3.0
Deep Dive into the New Features of Apache Spark 3.0
Databricks
 
Sd vendas e distribuição
Sd vendas e distribuiçãoSd vendas e distribuição
Sd vendas e distribuição
William Soares
 
Operation Level Costing - Part 1
Operation Level Costing - Part 1Operation Level Costing - Part 1
Operation Level Costing - Part 1
Harikrishna Anumandla
 
SAP BADI Implementation Learning for Functional Consultant
SAP BADI Implementation Learning for Functional ConsultantSAP BADI Implementation Learning for Functional Consultant
SAP BADI Implementation Learning for Functional Consultant
Ankit Sharma
 
Optimizing Apache Spark SQL Joins
Optimizing Apache Spark SQL JoinsOptimizing Apache Spark SQL Joins
Optimizing Apache Spark SQL Joins
Databricks
 
Apache Iceberg - A Table Format for Hige Analytic Datasets
Apache Iceberg - A Table Format for Hige Analytic DatasetsApache Iceberg - A Table Format for Hige Analytic Datasets
Apache Iceberg - A Table Format for Hige Analytic Datasets
Alluxio, Inc.
 
Using Apache Calcite for Enabling SQL and JDBC Access to Apache Geode and Oth...
Using Apache Calcite for Enabling SQL and JDBC Access to Apache Geode and Oth...Using Apache Calcite for Enabling SQL and JDBC Access to Apache Geode and Oth...
Using Apache Calcite for Enabling SQL and JDBC Access to Apache Geode and Oth...
Christian Tzolov
 

What's hot (20)

Accelerating Spark SQL Workloads to 50X Performance with Apache Arrow-Based F...
Accelerating Spark SQL Workloads to 50X Performance with Apache Arrow-Based F...Accelerating Spark SQL Workloads to 50X Performance with Apache Arrow-Based F...
Accelerating Spark SQL Workloads to 50X Performance with Apache Arrow-Based F...
 
Sap batch management overview
Sap batch management overviewSap batch management overview
Sap batch management overview
 
SQL for NoSQL and how Apache Calcite can help
SQL for NoSQL and how  Apache Calcite can helpSQL for NoSQL and how  Apache Calcite can help
SQL for NoSQL and how Apache Calcite can help
 
Top 10 Mistakes When Migrating From Oracle to PostgreSQL
Top 10 Mistakes When Migrating From Oracle to PostgreSQLTop 10 Mistakes When Migrating From Oracle to PostgreSQL
Top 10 Mistakes When Migrating From Oracle to PostgreSQL
 
Apache Calcite (a tutorial given at BOSS '21)
Apache Calcite (a tutorial given at BOSS '21)Apache Calcite (a tutorial given at BOSS '21)
Apache Calcite (a tutorial given at BOSS '21)
 
Apache Calcite: A Foundational Framework for Optimized Query Processing Over ...
Apache Calcite: A Foundational Framework for Optimized Query Processing Over ...Apache Calcite: A Foundational Framework for Optimized Query Processing Over ...
Apache Calcite: A Foundational Framework for Optimized Query Processing Over ...
 
Treinamento co fm controladoria e orçamento carga horária- 12h instrutora- ki...
Treinamento co fm controladoria e orçamento carga horária- 12h instrutora- ki...Treinamento co fm controladoria e orçamento carga horária- 12h instrutora- ki...
Treinamento co fm controladoria e orçamento carga horária- 12h instrutora- ki...
 
Bucketing 2.0: Improve Spark SQL Performance by Removing Shuffle
Bucketing 2.0: Improve Spark SQL Performance by Removing ShuffleBucketing 2.0: Improve Spark SQL Performance by Removing Shuffle
Bucketing 2.0: Improve Spark SQL Performance by Removing Shuffle
 
Presto: Optimizing Performance of SQL-on-Anything Engine
Presto: Optimizing Performance of SQL-on-Anything EnginePresto: Optimizing Performance of SQL-on-Anything Engine
Presto: Optimizing Performance of SQL-on-Anything Engine
 
OData Services
OData ServicesOData Services
OData Services
 
Tableau vs PowerBI
Tableau vs PowerBITableau vs PowerBI
Tableau vs PowerBI
 
Treinamento pricing
Treinamento pricingTreinamento pricing
Treinamento pricing
 
Kunwar resume SAP consultant
Kunwar resume SAP consultantKunwar resume SAP consultant
Kunwar resume SAP consultant
 
Deep Dive into the New Features of Apache Spark 3.0
Deep Dive into the New Features of Apache Spark 3.0Deep Dive into the New Features of Apache Spark 3.0
Deep Dive into the New Features of Apache Spark 3.0
 
Sd vendas e distribuição
Sd vendas e distribuiçãoSd vendas e distribuição
Sd vendas e distribuição
 
Operation Level Costing - Part 1
Operation Level Costing - Part 1Operation Level Costing - Part 1
Operation Level Costing - Part 1
 
SAP BADI Implementation Learning for Functional Consultant
SAP BADI Implementation Learning for Functional ConsultantSAP BADI Implementation Learning for Functional Consultant
SAP BADI Implementation Learning for Functional Consultant
 
Optimizing Apache Spark SQL Joins
Optimizing Apache Spark SQL JoinsOptimizing Apache Spark SQL Joins
Optimizing Apache Spark SQL Joins
 
Apache Iceberg - A Table Format for Hige Analytic Datasets
Apache Iceberg - A Table Format for Hige Analytic DatasetsApache Iceberg - A Table Format for Hige Analytic Datasets
Apache Iceberg - A Table Format for Hige Analytic Datasets
 
Using Apache Calcite for Enabling SQL and JDBC Access to Apache Geode and Oth...
Using Apache Calcite for Enabling SQL and JDBC Access to Apache Geode and Oth...Using Apache Calcite for Enabling SQL and JDBC Access to Apache Geode and Oth...
Using Apache Calcite for Enabling SQL and JDBC Access to Apache Geode and Oth...
 

Similar to Building a semantic/metrics layer using Calcite

Multidimensional Data Analysis with Ruby (sample)
Multidimensional Data Analysis with Ruby (sample)Multidimensional Data Analysis with Ruby (sample)
Multidimensional Data Analysis with Ruby (sample)Raimonds Simanovskis
 
Cubing and Metrics in SQL, oh my!
Cubing and Metrics in SQL, oh my!Cubing and Metrics in SQL, oh my!
Cubing and Metrics in SQL, oh my!
Julian Hyde
 
Project report aditi paul1
Project report aditi paul1Project report aditi paul1
Project report aditi paul1
guest9529cb
 
DWO -Pertemuan 1
DWO -Pertemuan 1DWO -Pertemuan 1
DWO -Pertemuan 1
Abrianto Nugraha
 
Company segmentation - an approach with R
Company segmentation - an approach with RCompany segmentation - an approach with R
Company segmentation - an approach with R
Casper Crause
 
Set Analyse OK.pdf
Set Analyse OK.pdfSet Analyse OK.pdf
Set Analyse OK.pdf
qlik2learn2024
 
Building a Data Warehouse for Business Analytics using Spark SQL-(Blagoy Kalo...
Building a Data Warehouse for Business Analytics using Spark SQL-(Blagoy Kalo...Building a Data Warehouse for Business Analytics using Spark SQL-(Blagoy Kalo...
Building a Data Warehouse for Business Analytics using Spark SQL-(Blagoy Kalo...
Spark Summit
 
Become BI Architect with 1KEY Agile BI Suite - OLAP
Become BI Architect with 1KEY Agile BI Suite - OLAPBecome BI Architect with 1KEY Agile BI Suite - OLAP
Become BI Architect with 1KEY Agile BI Suite - OLAP
Dhiren Gala
 
Business Intelligence Portfolio
Business Intelligence PortfolioBusiness Intelligence Portfolio
Business Intelligence Portfolioeileensauer
 
Business Intelligence Portfolio
Business Intelligence PortfolioBusiness Intelligence Portfolio
Business Intelligence Portfolioeileensauer
 
Lec -1 & 2MarketingAnalytics_Ch1_Introduction.ppt
Lec -1 & 2MarketingAnalytics_Ch1_Introduction.pptLec -1 & 2MarketingAnalytics_Ch1_Introduction.ppt
Lec -1 & 2MarketingAnalytics_Ch1_Introduction.ppt
SomitAwasthi
 
IT301-Datawarehousing (1) and its sub topics.pptx
IT301-Datawarehousing (1) and its sub topics.pptxIT301-Datawarehousing (1) and its sub topics.pptx
IT301-Datawarehousing (1) and its sub topics.pptx
ReneeClintGortifacio
 
Rick Watkins Power Point presentation
Rick Watkins Power Point presentationRick Watkins Power Point presentation
Rick Watkins Power Point presentationrickwatkins
 
Data ware housing- Introduction to olap .
Data ware housing- Introduction to  olap .Data ware housing- Introduction to  olap .
Data ware housing- Introduction to olap .
Vibrant Technologies & Computers
 
DMA Analytic Challenge 2015 final
DMA Analytic Challenge 2015 finalDMA Analytic Challenge 2015 final
DMA Analytic Challenge 2015 final
Karan Sarao
 
Ali upload
Ali uploadAli upload
Ali upload
Ali Zahraei, Ph.D
 

Similar to Building a semantic/metrics layer using Calcite (20)

Multidimensional Data Analysis with Ruby (sample)
Multidimensional Data Analysis with Ruby (sample)Multidimensional Data Analysis with Ruby (sample)
Multidimensional Data Analysis with Ruby (sample)
 
02 Essbase
02 Essbase02 Essbase
02 Essbase
 
Cubing and Metrics in SQL, oh my!
Cubing and Metrics in SQL, oh my!Cubing and Metrics in SQL, oh my!
Cubing and Metrics in SQL, oh my!
 
Project report aditi paul1
Project report aditi paul1Project report aditi paul1
Project report aditi paul1
 
Essbase intro
Essbase introEssbase intro
Essbase intro
 
DWO -Pertemuan 1
DWO -Pertemuan 1DWO -Pertemuan 1
DWO -Pertemuan 1
 
SAP Flexible Planning
SAP Flexible PlanningSAP Flexible Planning
SAP Flexible Planning
 
Company segmentation - an approach with R
Company segmentation - an approach with RCompany segmentation - an approach with R
Company segmentation - an approach with R
 
Set Analyse OK.pdf
Set Analyse OK.pdfSet Analyse OK.pdf
Set Analyse OK.pdf
 
Getting power bi
Getting power biGetting power bi
Getting power bi
 
Building a Data Warehouse for Business Analytics using Spark SQL-(Blagoy Kalo...
Building a Data Warehouse for Business Analytics using Spark SQL-(Blagoy Kalo...Building a Data Warehouse for Business Analytics using Spark SQL-(Blagoy Kalo...
Building a Data Warehouse for Business Analytics using Spark SQL-(Blagoy Kalo...
 
Become BI Architect with 1KEY Agile BI Suite - OLAP
Become BI Architect with 1KEY Agile BI Suite - OLAPBecome BI Architect with 1KEY Agile BI Suite - OLAP
Become BI Architect with 1KEY Agile BI Suite - OLAP
 
Business Intelligence Portfolio
Business Intelligence PortfolioBusiness Intelligence Portfolio
Business Intelligence Portfolio
 
Business Intelligence Portfolio
Business Intelligence PortfolioBusiness Intelligence Portfolio
Business Intelligence Portfolio
 
Lec -1 & 2MarketingAnalytics_Ch1_Introduction.ppt
Lec -1 & 2MarketingAnalytics_Ch1_Introduction.pptLec -1 & 2MarketingAnalytics_Ch1_Introduction.ppt
Lec -1 & 2MarketingAnalytics_Ch1_Introduction.ppt
 
IT301-Datawarehousing (1) and its sub topics.pptx
IT301-Datawarehousing (1) and its sub topics.pptxIT301-Datawarehousing (1) and its sub topics.pptx
IT301-Datawarehousing (1) and its sub topics.pptx
 
Rick Watkins Power Point presentation
Rick Watkins Power Point presentationRick Watkins Power Point presentation
Rick Watkins Power Point presentation
 
Data ware housing- Introduction to olap .
Data ware housing- Introduction to  olap .Data ware housing- Introduction to  olap .
Data ware housing- Introduction to olap .
 
DMA Analytic Challenge 2015 final
DMA Analytic Challenge 2015 finalDMA Analytic Challenge 2015 final
DMA Analytic Challenge 2015 final
 
Ali upload
Ali uploadAli upload
Ali upload
 

More from Julian Hyde

Measures in SQL (a talk at SF Distributed Systems meetup, 2024-05-22)
Measures in SQL (a talk at SF Distributed Systems meetup, 2024-05-22)Measures in SQL (a talk at SF Distributed Systems meetup, 2024-05-22)
Measures in SQL (a talk at SF Distributed Systems meetup, 2024-05-22)
Julian Hyde
 
Morel, a data-parallel programming language
Morel, a data-parallel programming languageMorel, a data-parallel programming language
Morel, a data-parallel programming language
Julian Hyde
 
Is there a perfect data-parallel programming language? (Experiments with More...
Is there a perfect data-parallel programming language? (Experiments with More...Is there a perfect data-parallel programming language? (Experiments with More...
Is there a perfect data-parallel programming language? (Experiments with More...
Julian Hyde
 
Morel, a Functional Query Language
Morel, a Functional Query LanguageMorel, a Functional Query Language
Morel, a Functional Query Language
Julian Hyde
 
The evolution of Apache Calcite and its Community
The evolution of Apache Calcite and its CommunityThe evolution of Apache Calcite and its Community
The evolution of Apache Calcite and its Community
Julian Hyde
 
What to expect when you're Incubating
What to expect when you're IncubatingWhat to expect when you're Incubating
What to expect when you're Incubating
Julian Hyde
 
Open Source SQL - beyond parsers: ZetaSQL and Apache Calcite
Open Source SQL - beyond parsers: ZetaSQL and Apache CalciteOpen Source SQL - beyond parsers: ZetaSQL and Apache Calcite
Open Source SQL - beyond parsers: ZetaSQL and Apache Calcite
Julian Hyde
 
Efficient spatial queries on vanilla databases
Efficient spatial queries on vanilla databasesEfficient spatial queries on vanilla databases
Efficient spatial queries on vanilla databases
Julian Hyde
 
Smarter Together - Bringing Relational Algebra, Powered by Apache Calcite, in...
Smarter Together - Bringing Relational Algebra, Powered by Apache Calcite, in...Smarter Together - Bringing Relational Algebra, Powered by Apache Calcite, in...
Smarter Together - Bringing Relational Algebra, Powered by Apache Calcite, in...
Julian Hyde
 
Tactical data engineering
Tactical data engineeringTactical data engineering
Tactical data engineering
Julian Hyde
 
Don't optimize my queries, organize my data!
Don't optimize my queries, organize my data!Don't optimize my queries, organize my data!
Don't optimize my queries, organize my data!
Julian Hyde
 
Spatial query on vanilla databases
Spatial query on vanilla databasesSpatial query on vanilla databases
Spatial query on vanilla databases
Julian Hyde
 
Lazy beats Smart and Fast
Lazy beats Smart and FastLazy beats Smart and Fast
Lazy beats Smart and Fast
Julian Hyde
 
Don’t optimize my queries, optimize my data!
Don’t optimize my queries, optimize my data!Don’t optimize my queries, optimize my data!
Don’t optimize my queries, optimize my data!
Julian Hyde
 
Data profiling with Apache Calcite
Data profiling with Apache CalciteData profiling with Apache Calcite
Data profiling with Apache Calcite
Julian Hyde
 
A smarter Pig: Building a SQL interface to Apache Pig using Apache Calcite
A smarter Pig: Building a SQL interface to Apache Pig using Apache CalciteA smarter Pig: Building a SQL interface to Apache Pig using Apache Calcite
A smarter Pig: Building a SQL interface to Apache Pig using Apache Calcite
Julian Hyde
 
Data Profiling in Apache Calcite
Data Profiling in Apache CalciteData Profiling in Apache Calcite
Data Profiling in Apache Calcite
Julian Hyde
 
Streaming SQL
Streaming SQLStreaming SQL
Streaming SQL
Julian Hyde
 
Streaming SQL (at FlinkForward, Berlin, 2016/09/12)
Streaming SQL (at FlinkForward, Berlin, 2016/09/12)Streaming SQL (at FlinkForward, Berlin, 2016/09/12)
Streaming SQL (at FlinkForward, Berlin, 2016/09/12)
Julian Hyde
 
Streaming SQL
Streaming SQLStreaming SQL
Streaming SQL
Julian Hyde
 

More from Julian Hyde (20)

Measures in SQL (a talk at SF Distributed Systems meetup, 2024-05-22)
Measures in SQL (a talk at SF Distributed Systems meetup, 2024-05-22)Measures in SQL (a talk at SF Distributed Systems meetup, 2024-05-22)
Measures in SQL (a talk at SF Distributed Systems meetup, 2024-05-22)
 
Morel, a data-parallel programming language
Morel, a data-parallel programming languageMorel, a data-parallel programming language
Morel, a data-parallel programming language
 
Is there a perfect data-parallel programming language? (Experiments with More...
Is there a perfect data-parallel programming language? (Experiments with More...Is there a perfect data-parallel programming language? (Experiments with More...
Is there a perfect data-parallel programming language? (Experiments with More...
 
Morel, a Functional Query Language
Morel, a Functional Query LanguageMorel, a Functional Query Language
Morel, a Functional Query Language
 
The evolution of Apache Calcite and its Community
The evolution of Apache Calcite and its CommunityThe evolution of Apache Calcite and its Community
The evolution of Apache Calcite and its Community
 
What to expect when you're Incubating
What to expect when you're IncubatingWhat to expect when you're Incubating
What to expect when you're Incubating
 
Open Source SQL - beyond parsers: ZetaSQL and Apache Calcite
Open Source SQL - beyond parsers: ZetaSQL and Apache CalciteOpen Source SQL - beyond parsers: ZetaSQL and Apache Calcite
Open Source SQL - beyond parsers: ZetaSQL and Apache Calcite
 
Efficient spatial queries on vanilla databases
Efficient spatial queries on vanilla databasesEfficient spatial queries on vanilla databases
Efficient spatial queries on vanilla databases
 
Smarter Together - Bringing Relational Algebra, Powered by Apache Calcite, in...
Smarter Together - Bringing Relational Algebra, Powered by Apache Calcite, in...Smarter Together - Bringing Relational Algebra, Powered by Apache Calcite, in...
Smarter Together - Bringing Relational Algebra, Powered by Apache Calcite, in...
 
Tactical data engineering
Tactical data engineeringTactical data engineering
Tactical data engineering
 
Don't optimize my queries, organize my data!
Don't optimize my queries, organize my data!Don't optimize my queries, organize my data!
Don't optimize my queries, organize my data!
 
Spatial query on vanilla databases
Spatial query on vanilla databasesSpatial query on vanilla databases
Spatial query on vanilla databases
 
Lazy beats Smart and Fast
Lazy beats Smart and FastLazy beats Smart and Fast
Lazy beats Smart and Fast
 
Don’t optimize my queries, optimize my data!
Don’t optimize my queries, optimize my data!Don’t optimize my queries, optimize my data!
Don’t optimize my queries, optimize my data!
 
Data profiling with Apache Calcite
Data profiling with Apache CalciteData profiling with Apache Calcite
Data profiling with Apache Calcite
 
A smarter Pig: Building a SQL interface to Apache Pig using Apache Calcite
A smarter Pig: Building a SQL interface to Apache Pig using Apache CalciteA smarter Pig: Building a SQL interface to Apache Pig using Apache Calcite
A smarter Pig: Building a SQL interface to Apache Pig using Apache Calcite
 
Data Profiling in Apache Calcite
Data Profiling in Apache CalciteData Profiling in Apache Calcite
Data Profiling in Apache Calcite
 
Streaming SQL
Streaming SQLStreaming SQL
Streaming SQL
 
Streaming SQL (at FlinkForward, Berlin, 2016/09/12)
Streaming SQL (at FlinkForward, Berlin, 2016/09/12)Streaming SQL (at FlinkForward, Berlin, 2016/09/12)
Streaming SQL (at FlinkForward, Berlin, 2016/09/12)
 
Streaming SQL
Streaming SQLStreaming SQL
Streaming SQL
 

Recently uploaded

How Recreation Management Software Can Streamline Your Operations.pptx
How Recreation Management Software Can Streamline Your Operations.pptxHow Recreation Management Software Can Streamline Your Operations.pptx
How Recreation Management Software Can Streamline Your Operations.pptx
wottaspaceseo
 
Understanding Globus Data Transfers with NetSage
Understanding Globus Data Transfers with NetSageUnderstanding Globus Data Transfers with NetSage
Understanding Globus Data Transfers with NetSage
Globus
 
Introduction to Pygame (Lecture 7 Python Game Development)
Introduction to Pygame (Lecture 7 Python Game Development)Introduction to Pygame (Lecture 7 Python Game Development)
Introduction to Pygame (Lecture 7 Python Game Development)
abdulrafaychaudhry
 
Lecture 1 Introduction to games development
Lecture 1 Introduction to games developmentLecture 1 Introduction to games development
Lecture 1 Introduction to games development
abdulrafaychaudhry
 
Dominate Social Media with TubeTrivia AI’s Addictive Quiz Videos.pdf
Dominate Social Media with TubeTrivia AI’s Addictive Quiz Videos.pdfDominate Social Media with TubeTrivia AI’s Addictive Quiz Videos.pdf
Dominate Social Media with TubeTrivia AI’s Addictive Quiz Videos.pdf
AMB-Review
 
Orion Context Broker introduction 20240604
Orion Context Broker introduction 20240604Orion Context Broker introduction 20240604
Orion Context Broker introduction 20240604
Fermin Galan
 
Vitthal Shirke Microservices Resume Montevideo
Vitthal Shirke Microservices Resume MontevideoVitthal Shirke Microservices Resume Montevideo
Vitthal Shirke Microservices Resume Montevideo
Vitthal Shirke
 
Vitthal Shirke Java Microservices Resume.pdf
Vitthal Shirke Java Microservices Resume.pdfVitthal Shirke Java Microservices Resume.pdf
Vitthal Shirke Java Microservices Resume.pdf
Vitthal Shirke
 
AI Pilot Review: The World’s First Virtual Assistant Marketing Suite
AI Pilot Review: The World’s First Virtual Assistant Marketing SuiteAI Pilot Review: The World’s First Virtual Assistant Marketing Suite
AI Pilot Review: The World’s First Virtual Assistant Marketing Suite
Google
 
2024 RoOUG Security model for the cloud.pptx
2024 RoOUG Security model for the cloud.pptx2024 RoOUG Security model for the cloud.pptx
2024 RoOUG Security model for the cloud.pptx
Georgi Kodinov
 
Utilocate provides Smarter, Better, Faster, Safer Locate Ticket Management
Utilocate provides Smarter, Better, Faster, Safer Locate Ticket ManagementUtilocate provides Smarter, Better, Faster, Safer Locate Ticket Management
Utilocate provides Smarter, Better, Faster, Safer Locate Ticket Management
Utilocate
 
BoxLang: Review our Visionary Licenses of 2024
BoxLang: Review our Visionary Licenses of 2024BoxLang: Review our Visionary Licenses of 2024
BoxLang: Review our Visionary Licenses of 2024
Ortus Solutions, Corp
 
Climate Science Flows: Enabling Petabyte-Scale Climate Analysis with the Eart...
Climate Science Flows: Enabling Petabyte-Scale Climate Analysis with the Eart...Climate Science Flows: Enabling Petabyte-Scale Climate Analysis with the Eart...
Climate Science Flows: Enabling Petabyte-Scale Climate Analysis with the Eart...
Globus
 
APIs for Browser Automation (MoT Meetup 2024)
APIs for Browser Automation (MoT Meetup 2024)APIs for Browser Automation (MoT Meetup 2024)
APIs for Browser Automation (MoT Meetup 2024)
Boni García
 
Enterprise Resource Planning System in Telangana
Enterprise Resource Planning System in TelanganaEnterprise Resource Planning System in Telangana
Enterprise Resource Planning System in Telangana
NYGGS Automation Suite
 
Innovating Inference - Remote Triggering of Large Language Models on HPC Clus...
Innovating Inference - Remote Triggering of Large Language Models on HPC Clus...Innovating Inference - Remote Triggering of Large Language Models on HPC Clus...
Innovating Inference - Remote Triggering of Large Language Models on HPC Clus...
Globus
 
Top 7 Unique WhatsApp API Benefits | Saudi Arabia
Top 7 Unique WhatsApp API Benefits | Saudi ArabiaTop 7 Unique WhatsApp API Benefits | Saudi Arabia
Top 7 Unique WhatsApp API Benefits | Saudi Arabia
Yara Milbes
 
Globus Connect Server Deep Dive - GlobusWorld 2024
Globus Connect Server Deep Dive - GlobusWorld 2024Globus Connect Server Deep Dive - GlobusWorld 2024
Globus Connect Server Deep Dive - GlobusWorld 2024
Globus
 
GraphSummit Paris - The art of the possible with Graph Technology
GraphSummit Paris - The art of the possible with Graph TechnologyGraphSummit Paris - The art of the possible with Graph Technology
GraphSummit Paris - The art of the possible with Graph Technology
Neo4j
 
Exploring Innovations in Data Repository Solutions - Insights from the U.S. G...
Exploring Innovations in Data Repository Solutions - Insights from the U.S. G...Exploring Innovations in Data Repository Solutions - Insights from the U.S. G...
Exploring Innovations in Data Repository Solutions - Insights from the U.S. G...
Globus
 

Recently uploaded (20)

How Recreation Management Software Can Streamline Your Operations.pptx
How Recreation Management Software Can Streamline Your Operations.pptxHow Recreation Management Software Can Streamline Your Operations.pptx
How Recreation Management Software Can Streamline Your Operations.pptx
 
Understanding Globus Data Transfers with NetSage
Understanding Globus Data Transfers with NetSageUnderstanding Globus Data Transfers with NetSage
Understanding Globus Data Transfers with NetSage
 
Introduction to Pygame (Lecture 7 Python Game Development)
Introduction to Pygame (Lecture 7 Python Game Development)Introduction to Pygame (Lecture 7 Python Game Development)
Introduction to Pygame (Lecture 7 Python Game Development)
 
Lecture 1 Introduction to games development
Lecture 1 Introduction to games developmentLecture 1 Introduction to games development
Lecture 1 Introduction to games development
 
Dominate Social Media with TubeTrivia AI’s Addictive Quiz Videos.pdf
Dominate Social Media with TubeTrivia AI’s Addictive Quiz Videos.pdfDominate Social Media with TubeTrivia AI’s Addictive Quiz Videos.pdf
Dominate Social Media with TubeTrivia AI’s Addictive Quiz Videos.pdf
 
Orion Context Broker introduction 20240604
Orion Context Broker introduction 20240604Orion Context Broker introduction 20240604
Orion Context Broker introduction 20240604
 
Vitthal Shirke Microservices Resume Montevideo
Vitthal Shirke Microservices Resume MontevideoVitthal Shirke Microservices Resume Montevideo
Vitthal Shirke Microservices Resume Montevideo
 
Vitthal Shirke Java Microservices Resume.pdf
Vitthal Shirke Java Microservices Resume.pdfVitthal Shirke Java Microservices Resume.pdf
Vitthal Shirke Java Microservices Resume.pdf
 
AI Pilot Review: The World’s First Virtual Assistant Marketing Suite
AI Pilot Review: The World’s First Virtual Assistant Marketing SuiteAI Pilot Review: The World’s First Virtual Assistant Marketing Suite
AI Pilot Review: The World’s First Virtual Assistant Marketing Suite
 
2024 RoOUG Security model for the cloud.pptx
2024 RoOUG Security model for the cloud.pptx2024 RoOUG Security model for the cloud.pptx
2024 RoOUG Security model for the cloud.pptx
 
Utilocate provides Smarter, Better, Faster, Safer Locate Ticket Management
Utilocate provides Smarter, Better, Faster, Safer Locate Ticket ManagementUtilocate provides Smarter, Better, Faster, Safer Locate Ticket Management
Utilocate provides Smarter, Better, Faster, Safer Locate Ticket Management
 
BoxLang: Review our Visionary Licenses of 2024
BoxLang: Review our Visionary Licenses of 2024BoxLang: Review our Visionary Licenses of 2024
BoxLang: Review our Visionary Licenses of 2024
 
Climate Science Flows: Enabling Petabyte-Scale Climate Analysis with the Eart...
Climate Science Flows: Enabling Petabyte-Scale Climate Analysis with the Eart...Climate Science Flows: Enabling Petabyte-Scale Climate Analysis with the Eart...
Climate Science Flows: Enabling Petabyte-Scale Climate Analysis with the Eart...
 
APIs for Browser Automation (MoT Meetup 2024)
APIs for Browser Automation (MoT Meetup 2024)APIs for Browser Automation (MoT Meetup 2024)
APIs for Browser Automation (MoT Meetup 2024)
 
Enterprise Resource Planning System in Telangana
Enterprise Resource Planning System in TelanganaEnterprise Resource Planning System in Telangana
Enterprise Resource Planning System in Telangana
 
Innovating Inference - Remote Triggering of Large Language Models on HPC Clus...
Innovating Inference - Remote Triggering of Large Language Models on HPC Clus...Innovating Inference - Remote Triggering of Large Language Models on HPC Clus...
Innovating Inference - Remote Triggering of Large Language Models on HPC Clus...
 
Top 7 Unique WhatsApp API Benefits | Saudi Arabia
Top 7 Unique WhatsApp API Benefits | Saudi ArabiaTop 7 Unique WhatsApp API Benefits | Saudi Arabia
Top 7 Unique WhatsApp API Benefits | Saudi Arabia
 
Globus Connect Server Deep Dive - GlobusWorld 2024
Globus Connect Server Deep Dive - GlobusWorld 2024Globus Connect Server Deep Dive - GlobusWorld 2024
Globus Connect Server Deep Dive - GlobusWorld 2024
 
GraphSummit Paris - The art of the possible with Graph Technology
GraphSummit Paris - The art of the possible with Graph TechnologyGraphSummit Paris - The art of the possible with Graph Technology
GraphSummit Paris - The art of the possible with Graph Technology
 
Exploring Innovations in Data Repository Solutions - Insights from the U.S. G...
Exploring Innovations in Data Repository Solutions - Insights from the U.S. G...Exploring Innovations in Data Repository Solutions - Insights from the U.S. G...
Exploring Innovations in Data Repository Solutions - Insights from the U.S. G...
 

Building a semantic/metrics layer using Calcite

  • 1. Building a semantic/metrics layer using Apache Calcite Julian Hyde (Calcite, Google) Community over Code • Halifax, Nova Scotia • 2023-10-09
  • 2. Abstract A semantic layer, also known as a metrics layer, lies between business users and the database, and lets those users compose queries in the concepts that they understand. It also governs access to the data, manages data transformations, and can tune the database by defining materializations. Like many new ideas, the semantic layer is a distillation and evolution of many old ideas, such as query languages, multidimensional OLAP, and query federation. In this talk, we describe the features we are adding to Calcite to define business views, query measures, and optimize performance. Julian Hyde is the original developer of Apache Calcite, an open source framework for building data management systems, and Morel, a functional query language. Previously he created Mondrian, an analytics engine, and SQLstream, an engine for continuous queries. He is a staff engineer at Google, where he works on Looker and BigQuery.
  • 3.
  • 4. Database What products are doing better this year? Semantic layer SELECT … FROM … GROUP BY …
  • 5. Data system = Model + Query + Engine Query language Data model Engine
  • 6. Agenda 1. Relational model vs dimensional model 2. Adding measures to SQL 3. Machine-learning patterns 4. Semantic layer
  • 7. 1. Relational model vs dimensional model 2. Adding measures to SQL 3. Machine-learning patterns 4. Semantic layer
  • 8. 1. Relational model vs dimensional model 2. Adding measures to SQL 3. Machine-learning patterns 4. Semantic layer
  • 9. SQL vs BI BI tools implement their own languages on top of SQL. Why not SQL? Possible reasons: ● Semantic Model ● Control presentation / visualization ● Governance ● Pre-join tables ● Define reusable calculations ● Ask complex questions in a concise way
  • 10. Processing BI in SQL Why we should do it ● Move processing, not data ● Cloud SQL scale ● Remove data lag ● SQL is open Why it’s hard ● Different paradigm ● More complex data model ● Can’t break SQL
  • 11. Apache Calcite Apache Calcite Avatica JDBC server JDBC client Pluggable rewrite rules Pluggable stats / cost Pluggable catalog ODBC client Adapter Physical operators Storage SQL parser & validator Query planner Relational algebra Core – Operator expressions (relational algebra) and planner (based on Cascades) External – Data storage, algorithms and catalog Optional – SQL parser, JDBC & ODBC drivers Extensible – Planner rewrite rules, statistics, cost model, algebra, UDFs RelBuilder
  • 12.
  • 13. Pasta machine vs Pizza delivery
  • 14. Relational algebra (bottom-up) Multidimensional (top-down) Products Suppliers ⨝ ⨝ Σ ⨝ σ Sales Products Suppliers ⨝ ⨝ Σ σ Sales π (Supplier: ‘ACE’, Date: ‘1994-01’, Product: all) (Supplier: ‘ACE’, Date: ‘1995-01’, Product: all) Supplier Product Date Bottom-up vs Top-down query
  • 15. 1. Relational model vs dimensional model 2. Adding measures to SQL 3. Machine-learning patterns 4. Semantic layer
  • 16. 1. Relational model vs dimensional model 2. Adding measures to SQL 3. Machine-learning patterns 4. Semantic layer
  • 17. Some multidimensional queries ● Give the total sales for each product in each quarter of 1995. (Note that quarter is a function of date). ● For supplier “Ace” and for each product, give the fractional increase in the sales in January 1995 relative to the sales in January 1994. ● For each product give its market share in its category today minus its market share in its category in October 1994. ● Select top 5 suppliers for each product category for last year, based on total sales. ● For each product category, select total sales this month of the product that had highest sales in that category last month. ● Select suppliers that currently sell the highest selling product of last month. ● Select suppliers for which the total sale of every product increased in each of last 5 years. ● Select suppliers for which the total sale of every product category increased in each of last 5 years. From [Agrawal1997]. Assumes a database with dimensions {supplier, date, product} and measure {sales}.)
  • 18. Some multidimensional queries ● Give the total sales for each product in each quarter of 1995. (Note that quarter is a function of date). ● For supplier “Ace” and for each product, give the fractional increase in the sales in January 1995 relative to the sales in January 1994. ● For each product give its market share in its category today minus its market share in its category in October 1994. ● Select top 5 suppliers for each product category for last year, based on total sales. ● For each product category, select total sales this month of the product that had highest sales in that category last month. ● Select suppliers that currently sell the highest selling product of last month. ● Select suppliers for which the total sale of every product increased in each of last 5 years ● Select suppliers for which the total sale of every product category increased in each of last 5 years. From [Agrawal1997]. Assumes a database with dimensions {supplier, date, product} and measure {sales}.)
  • 19. Query: ● For supplier “Ace” and for each product, give the fractional increase in the sales in January 1995 relative to the sales in January 1994. SQL MDX SELECT p.prodId, s95.sales, (s95.sales - s94.sales) / s95.sales FROM ( SELECT p.prodId, SUM(s.sales) AS sales FROM Sales AS s JOIN Suppliers AS u USING (suppId) JOIN Products AS p USING (prodId) WHERE u.name = ‘ACE’ AND FLOOR(s.date TO MONTH) = ‘1995-01-01’ GROUP BY p.prodId) AS s95 LEFT JOIN ( SELECT p.prodId, SUM(s.sales) AS sales FROM Sales AS s JOIN Suppliers AS u USING (suppId) JOIN Products AS p USING (prodId) WHERE u.name = ‘ACE’ AND FLOOR(s.date TO MONTH) = ‘1994-01-01’ GROUP BY p.prodId) AS s94 USING (prodId) WITH MEMBER [Measures].[Sales Last Year] = ([Measures].[Sales], ParallelPeriod([Date], 1, [Date].[Year])) MEMBER [Measures].[Sales Growth] = ([Measures].[Sales] - [Measures].[Sales Last Year]) / [Measures].[Sales Last Year] SELECT [Measures].[Sales Growth] ON COLUMNS, [Product].Members ON ROWS FROM [Sales] WHERE [Supplier].[ACE]
  • 20. Query: ● For supplier “Ace” and for each product, give the fractional increase in the sales in January 1995 relative to the sales in January 1994. SQL SQL with measures SELECT p.prodId, s95.sales, (s95.sales - s94.sales) / s95.sales FROM ( SELECT p.prodId, SUM(s.sales) AS sales FROM Sales AS s JOIN Suppliers AS u USING (suppId) JOIN Products AS p USING (prodId) WHERE u.name = ‘ACE’ AND FLOOR(s.date TO MONTH) = ‘1995-01-01’ GROUP BY p.prodId) AS s95 LEFT JOIN ( SELECT p.prodId, SUM(s.sales) AS sales FROM Sales AS s JOIN Suppliers AS u USING (suppId) JOIN Products AS p USING (prodId) WHERE u.name = ‘ACE’ AND FLOOR(s.date TO MONTH) = ‘1994-01-01’ GROUP BY p.prodId) AS s94 USING (prodId) SELECT p.prodId, SUM(s.sales) AS MEASURE sumSales, sumSales AT (SET FLOOR(s.date TO MONTH) = ‘1994-01-01’) AS MEASURE sumSalesLastYear FROM Sales AS s JOIN Suppliers AS u USING (suppId) JOIN Products AS p USING (prodId)) WHERE u.name = ‘ACE’ AND FLOOR(s.date TO MONTH) = ‘1995-01-01’ GROUP BY p.prodId
  • 21. Self-joins, correlated subqueries, window aggregates, measures Window aggregate functions were introduced to save on self-joins. Some DBs rewrite scalar subqueries and self-joins to window aggregates [Zuzarte2003]. Window aggregates are more concise, easier to optimize, and often more efficient. However, window aggregates can only see data that is from the same table, and is allowed by the WHERE clause. Measures overcome that limitation. SELECT * FROM Employees AS e WHERE sal > ( SELECT AVG(sal) FROM Employees WHERE deptno = e.deptno) SELECT * FROM Employees AS e WHERE sal > AVG(sal) OVER (PARTITION BY deptno)
  • 22. A measure is… ? … a column with an aggregate function. SUM(sales)
  • 23. A measure is… ? … a column with an aggregate function. SUM(sales) … a column that, when used as an expression, knows how to aggregate itself. (SUM(sales) - SUM(cost)) / SUM(sales)
  • 24. A measure is… ? … a column with an aggregate function. SUM(sales) … a column that, when used as an expression, knows how to aggregate itself. (SUM(sales) - SUM(cost)) / SUM(sales) … a column that, when used as expression, can evaluate itself in any context. (SELECT SUM(forecastSales) FROM SalesForecast AS s WHERE predicate(s)) ExchService$ClosingRate( ‘USD’, ‘EUR’, sales.date)
  • 25. A measure is… … a column with an aggregate function. SUM(sales) … a column that, when used as an expression, knows how to aggregate itself. (SUM(sales) - SUM(cost)) / SUM(sales) … a column that, when used as expression, can evaluate itself in any context. Its value depends on, and only on, the predicate placed on its dimensions. (SELECT SUM(forecastSales) FROM SalesForecast AS s WHERE predicate(s)) ExchService$ClosingRate( ‘USD’, ‘EUR’, sales.date)
  • 26. SELECT MOD(deptno, 2) = 0 AS evenDeptno, avgSal2 FROM WHERE deptno < 30 SELECT deptno, AVG(avgSal) AS avgSal2 FROM GROUP BY deptno Table model Tables are SQL’s fundamental model. The model is closed – queries consume and produce tables. Tables are opaque – you can’t deduce the type, structure or private data of a table. SELECT deptno, job, AVG(sal) AS avgSal FROM Employees GROUP BY deptno, job Employees2 Employees3
  • 27. SELECT MOD(deptno, 2) = 0 AS evenDeptno, avgSal2 FROM WHERE deptno < 30 SELECT deptno, AVG(avgSal) AS avgSal2 FROM GROUP BY deptno Table model Tables are SQL’s fundamental model. The model is closed – queries consume and produce tables. Tables are opaque – you can’t deduce the type, structure or private data of a table. SELECT deptno, job, AVG(sal) AS avgSal FROM Employees GROUP BY deptno, job
  • 28. SELECT e.deptno, e.job, d.dname, e.avgSal / e.deptAvgSal FROM AS e JOIN Departments AS d USING (deptno) WHERE d.dname <> ‘MARKETING’ GROUP BY deptno, job We propose to allow any table and query to have measure columns. The model is closed – queries consume and produce tables-with-measures. Tables-with-measures are semi-opaque – you can’t deduce the type, structure or private data, but you can evaluate the measure in any context that can be expressed as a predicate on the measure’s dimensions. SELECT *, avgSal AS MEASURE avgSal, avgSal AT (CLEAR deptno) AS MEASURE deptAvgSal FROM Table model with measures SELECT *, AVG(sal) AS MEASURE avgSal FROM Employees AnalyticEmployees AnalyticEmployees2
  • 29. SELECT e.deptno, e.job, d.dname, e.avgSal / e.deptAvgSal FROM AS e JOIN Departments AS d USING (deptno) WHERE d.dname <> ‘MARKETING’ GROUP BY deptno, job We propose to allow any table and query to have measure columns. The model is closed – queries consume and produce tables-with-measures. Tables-with-measures are semi-opaque – you can’t deduce the type, structure or private data, but you can evaluate the measure in any context that can be expressed as a predicate on the measure’s dimensions. SELECT *, avgSal AS MEASURE avgSal, avgSal AT (ALL deptno) AS MEASURE deptAvgSal FROM Table model with measures SELECT *, AVG(sal) AS MEASURE avgSal FROM Employees
  • 30. Syntax expression AS MEASURE – defines a measure in the SELECT clause AGGREGATE(measure) – evaluates a measure in a GROUP BY query expression AT (contextModifier…) – evaluates expression in a modified context contextModifier ::= ALL | ALL dimension [, dimension…] | ALL EXCEPT dimension [, dimension…] | SET dimension = [CURRENT] expression | VISIBLE aggFunction(aggFunction(expression) PER dimension) – multi-level aggregation
  • 31. Plan of attack 1. Add measures to the table model, and allow queries to use them ◆ Measures are defined only via the Table API 2. Define measures using SQL expressions (AS MEASURE) ◆ You can still define them using the Table API 3. Context-sensitive expressions (AT)
  • 32. Semantics 0. We have a measure M, value type V, in a table T. CREATE VIEW AnalyticEmployees AS SELECT *, AVG(sal) AS MEASURE avgSal FROM Employees 1. System defines a row type R with the non-measure columns. CREATE TYPE R AS ROW (deptno: INTEGER, job: VARCHAR) 2. System defines an auxiliary function for M. (Function is typically a scalar subquery that references the measure’s underlying table.) CREATE FUNCTION computeAvgSal( rowPredicate: FUNCTION<R, BOOLEAN>) = (SELECT AVG(e.sal) FROM Employees AS e WHERE APPLY(rowPredicate, e))
  • 33. Semantics (continued) 3. We have a query that uses M. SELECT deptno, avgSal / avgSal AT (ALL deptno) FROM AnalyticEmployees AS e GROUP BY deptno 4. Substitute measure references with calls to the auxiliary function with the appropriate predicate SELECT deptno, computeAvgSal(r ->🠚(r.deptno = e.deptno)) / computeAvgSal(r 🠚 TRUE)) FROM AnalyticEmployees AS e GROUP BY deptno 5. Planner inlines computeAvgSal and scalar subqueries SELECT deptno, AVG(sal) / MIN(avgSal) FROM ( SELECT deptno, sal, AVG(sal) OVER () AS avgSal FROM Employees) GROUP BY deptno
  • 34. Calculating at the right grain Example Formula Grain Computing the revenue from units and unit price units * pricePerUnit AS revenue Row Sum of revenue (additive) SUM(revenue) AS MEASURE sumRevenue Top Profit margin (non-additive) (SUM(revenue) - SUM(cost)) / SUM(revenue) AS MEASURE profitMargin Top Inventory (semi-additive) SUM(LAST_VALUE(unitsInStock) PER inventoryDate) AS MEASURE sumInventory Intermediate Daily average (weighted average) AVG(sumRevenue PER orderDate) AS MEASURE dailyAvgRevenue Intermediate
  • 35. Subtotals & visible SELECT deptno, job, SUM(sal), sumSal FROM ( SELECT *, SUM(sal) AS MEASURE sumSal FROM Employees) WHERE job <> ‘ANALYST’ GROUP BY ROLLUP(deptno, job) ORDER BY 1,2 deptno job SUM(sal) sumSal 10 CLERK 1,300 1,300 10 MANAGER 2,450 2,450 10 PRESIDENT 5,000 5,000 10 8,750 8,750 20 CLERK 1,900 1,900 20 MANAGER 2,975 2,975 20 4,875 10,875 30 CLERK 950 950 30 MANAGER 2,850 2,850 30 SALES 5,600 5,600 30 9,400 9,400 20,750 29,025 Measures by default sum ALL rows; Aggregate functions sum only VISIBLE rows
  • 36. Visible Expression Example Which rows? Aggregate function SUM(sal) Visible only Measure sumSal All AGGREGATE applied to measure AGGREGATE(sumSal) Visible only Measure with VISIBLE sumSal AT (VISIBLE) Visible only Measure with ALL sumSal AT (ALL) All
  • 37. 1. Relational model vs dimensional model 2. Adding measures to SQL 3. Machine-learning patterns 4. Semantic layer
  • 38. 1. Relational model vs dimensional model 2. Adding measures to SQL 3. Machine-learning patterns 4. Semantic layer
  • 39. Forecasting A forecast is simply a measure whose value at some point in the future is determined, in some manner, by a calculation on past data. SELECT year(order_date), product, revenue, forecast_revenue FROM Orders WHERE year(order_date) BETWEEN 2018 AND 2022 GROUP BY 1, 2
  • 40. Forecasting: implementation Problems 1. Predictive model under the forecast (such as ARIMA or linear regression) is probably too expensive to re-compute for every query 2. We want to evaluate forecast for regions for which there is not (yet) any data Solutions 1. Amortize the cost of running the model using (some kind of) materialized view 2. Add a SQL EXTEND operation to implicitly generate data SELECT year(order_date), product, revenue, forecast_revenue FROM Orders EXTEND (order_date) WHERE year(order_date) BETWEEN 2021 AND 2025 GROUP BY 1, 2
  • 41. Clustering A clustering algorithm assigns data points to regions of N-dimensional space called clusters such that points that are in the same cluster are, by some measure, close to each other and distant from points in other clusters. SELECT id, firstName, lastName, firstPurchaseDate, latitude, longitude, revenue, region FROM Customers; CREATE VIEW Customers AS SELECT *, KMEANS(3, ROW(latitude, longitude)) AS MEASURE region, (SELECT SUM(revenue) FROM Orders AS o WHERE o.customerId = c.id) AS MEASURE revenue FROM BaseCustomers AS c; region is a measure (based on the centroid of a cluster)
  • 42. Clustering: fixing the baseline The measure is a little too dynamic. Fix the baseline, so that cluster centroids don’t change from one query to the next: SELECT id, firstName, lastName, firstPurchaseDate, latitude, longitude, region AT (ALL SET YEAR(firstPurchaseDate) = 2020) FROM Customers;
  • 43. Clustering: amortizing the cost To amortize the cost of the algorithm, create a materialized view: CREATE MATERIALIZED VIEW CustomersMV AS SELECT *, region AT (ALL SET YEAR(firstPurchaseDate) = 2020) AS region2020 FROM Customers;
  • 44. Classification Classification predicts the value of a variable given the values of other variables and a model trained on similar data. For example, does a particular household own a dog? Whether they have a dog may depend on household income, education level, location of the household, purchasing history of the household. SELECT last_name, zipcode, probability_that_household_has_dog, expected_dog_count FROM Customers WHERE state = ‘AZ’
  • 45. Classification: training & running Pseudo-function CLASSIFY: SELECT last_name, zipcode, CLASSIFY(firstPurchaseDate = ‘2023-05-01’, has_dog, ROW (zipcode, state, income_level, education_level)) AS probability_that_household_has_dog, expected_dog_count FROM Customers GROUP BY state FUNCTION classify(isTraining, actualValue, features) We assume that has_dog has the correct value for customers who purchased on 2023-05-01 A SQL view can both train the algorithm (given the correct result) and execute it (generating the result from features):
  • 46. 1. Relational model vs dimensional model 2. Adding measures to SQL 3. Machine-learning patterns 4. Semantic layer
  • 47. 1. Relational model vs dimensional model 2. Adding measures to SQL 3. Machine-learning patterns 4. Semantic layer
  • 48. Database What products are doing better this year? Semantic layer SELECT … FROM … GROUP BY …
  • 49. Natural language query Example query: “Show me the top 5 products in each state where revenue declined since last year” “Revenue” is a measure. “Declined since last year” asks whether revenue - revenue AT (SET year = CURRENT year - 1) is negative. “Products in each state” establishes the filter context.
  • 50. Semantic model for natural-language query
  • 51. Extended semantic model “Show me regions where customers ordered low-inventory products last year” Data model is a graph that connects business views: ● Business views – tables, possibly based on joins, with measures, and display hints ● Domains – shared attributes ● Entities – shared dimensions ● Metrics – shared measures ● Ontology/synonyms Do we need a new query language? orders product customer warehouse shipments inventory geography
  • 52.
  • 53. Summary Measures in SQL allow… ● concise queries without self-joins ● top-down evaluation ● reusable calculations ● natural-language query …and don’t break SQL A semantic model is table with measures, accessed via analytic SQL.. A extended semantic model links such tables into a knowledge graph.
  • 54. Resources Papers ● “Modeling multidimensional databases” (Agrawal, Gupta, and Sarawagi, 1997) ● “WinMagic: Subquery Elimination Using Window Aggregation” (Zuzarte, Pirahash, Ma, Cheng, Liu, and Wong, 2003) ● “Analyza: Exploring Data with Conversation” (Dhamdhere, McCurley, Nahmias, Sundararajan, Yan, 2017) Issues ● [CALCITE-4488] WITHIN DISTINCT clause for aggregate functions (experimental) ● [CALCITE-4496] Measure columns ("SELECT ... AS MEASURE") ● [CALCITE-5105] Add MEASURE type and AGGREGATE aggregate function ● [CALCITE-5155] Custom time frames ● [CALCITE-xxxx] PER operator ● [CALCITE-5692] Add AT operator, for context-sensitive expressions ● [CALCITE-5951] PRECEDES function, for period-to-date calculations